SlideShare uma empresa Scribd logo

Recuperação lista exercicios 9º ano 1º bimestre

1 de 3
Baixar para ler offline
Exercícios de Recuperação – 1º Bimestre
Matemática Básica – Professor Rafael
Números Inteiros
Adição e Subtração:
A adição de dois números inteiros obedece às seguintes
regras:
a ) números de mesmo sinal : somam-se os módulos e
conserva-se o sinal comum.
Exemplos:
(-3) + (-5) + (-2) = - 10
(-7) + (-6) = - 13
b) números de sinais opostos: subtraem-se os módulos e
conserva-se o sinal do maior em módulo.
Exemplos:
(-3) + (+7) = + 4
(-12) + (+5) = -7
10 – (-3) = 10 + 3 = 13
(-5) – (- 10) = (-5) +10 = +5 = 5
(-3) – (+7) = (-3) -7 = - 10
Multiplicação
A multiplicação de números inteiros, dar-se-á segundo a
seguinte regra de sinais:
(+) x (+) = +
(+) x (-) = -
(-) x (+) = -
(-) x (-) = +
Exemplos:
(-3) x (-4) = +12 = 12
(-4) x (+3) = -12
Potenciação
É um caso particular da multiplicação, onde os fatores são
iguais. Por exemplo, 53 = 5.5.5 = 125, 71 = 7, 43 = 4.4.4 =
64, etc.
Exemplos:
(-2)4 = +16 = 16
(-3)2 = +9 = 9
(-5)4 = +625 = 625
(-1)4 = + 1 = 1
(-2)3 = - 8
(-5)3 = - 125
(-1)13 = - 1
Divisão
A divisão de números inteiros, no que concerne à regra de
sinais, obedece às mesmas regras vistas para a
multiplicação, ou seja:
Exemplos:
(–10) : (– 2) = + 5 = 5
(– 30) : (+ 5) = – 6
Expressões Numéricas
Nas expressões, as operações se realizam obedecendo à
seguinte ordem:
1º) multiplicações e divisões ( X ÷ )
2º) adições e subtrações ( + - )
Se houver sinais de associação (parênteses, colchetes e
chaves) devemos proceder da seguinte maneira:
1º) As contas dentro dos parênteses seguindo a ordem
acima colocada
2º) As contas dentro dos colchetes seguindo a ordem
acima colocada
3º) As contas dentro das chaves seguindo a ordem
acima colocada
1) Calcule as adições:
a) (+20) + (-18) b) (+21) + (-30)
c) (-81) + (-17) d) (+37) + (+62)
2) Calcule as subtrações:
a) (-9) – (+15) b) (+16) – (+20)
c) (-1) – (-18) d) (-72) – (-81)
3) Calcule as multiplicações:
a) (-20) . (+4) b) (-8) . (-7)
c) (+23) . (+3) d) (+2) . (-27)
4) Resolva as divisões:
a) (-40) : (+2) b) (+20) : (-4)
c) (-18) : (-3) d) (+36) : (+4)
5) Calcule as Potências:
a) (-11)² b) (+5)³
c) ( -7)¹ d) 0²
6) Calcule o valor das expressões:
a) 16+[10-(18:3+2)+5]
b) 25-[12-(3x2+1)]
c) 90-[25+(5x2-1)+3]
d) 45+[(8x5-10:2)+(18:6-2)]
e) 50-2x{7+8:2-[9-3x(5-4)]}
f) 100-3x{5+8:2-[3x(7-6)]}
g) 1000 - [(2 . 4 - 6) + ( 2 + 6 . 4)]
h) 60 + 2 . {[ 4 . ( 6 + 2 ) - 10 ] + 12}
i) [( 4 + 16 . 2) . 5 - 10] . 100
j) { 10 + [ 5 . ( 4 + 2 . 5) - 8] . 2 } - 100
k) 80 - 5 . ( 28 - 6 . 4 ) + 6 - 3 . 4
Números Racionais
1ª condição: denominadores iguais.
Quando os denominadores são iguais, os numeradores
devem ser somados ou subtraídos de acordo com os sinais
operatórios e o valor do denominador mantido.
Observe os exemplos:
2º condição: denominadores diferentes.
Nas operações da adição ou subtração envolvendo
números na forma de fração com denominadores diferentes,
devemos criar um novo denominador através do cálculo do
mínimo múltiplo comum – MMC dos denominadores
fornecidos. O novo denominador deverá ser dividido pelos
denominadores atuais, multiplicando o quociente pelo
numerador correspondente, constituindo novas frações
proporcionalmente iguais as anteriores e com
denominadores iguais. Observe os cálculos:
Realizar o MMC entre 3 e 4.
Multiplicação
A multiplicação de frações é muito simples, basta
multiplicarmos numerador por numerador e denominador
por denominador, respeitando suas posições. Observe:
Divisão
A divisão deve ser efetuada aplicando uma regra prática e
de fácil assimilação, que diz: “repetir a primeira fração e
multiplicar pelo inverso da segunda”.
7) Calcule:
a) 
5
2
3
1
b) 
3
2
2
7
c) 
4
1
2 d) 
5
3
2
5
1
3
e) 
3
2
2
3
f) 
4
3
6
7
2
g)
3
1
2
11
5
2
2  = h) 
2
1
6
5
4
3
i)
18
5
12
7
 = j) 
10
7
3
2
1
5
4
1
k) 
3
2
4
5
6
1
m) 
4
3
6
5
3
1
2
1
8) Efetue as multiplicações:
a) 
2
1
.
4
3
b) 
5
8
.
4
1
.
3
2
c) 
2
9
.
3
25
.
5
6
d) 
4
3
.
7
9
e) 
6
49
.
7
2
.
5
14
f) 
8
5
.
14
7
.
15
16
g) 
8
7
.
5
8
h) 
16
45
.
3
1
.
15
8
i) 
9
22
.
28
2
.
12
18
9) Efetue as divisões:
a) 
3
2
:
5
4
b) 2:
5
4
c) 
14
39
:
49
13
d) 
25
27
:
5
81
e) 
3
14
:
9
7
f) 
9
5
:
3
10
g) 
81
128
:
27
64
h) 
3
1
2:
3
14
i) 
8
3
:
4
3
10) Calcule o valor das expressões numéricas:
a) 












3
2
4
5
5
2
2
3
b) 












8
7
7
8
.
3
4
4
3
c) 












9
7
9
8
6
5
8
7
d)
3
7
.
2
3
5
2
.
3
1
5
3
.
2
1
 =
e) 












4
5
4
7
5
1
2
1
1
f) 












5
1
2
1
.
4
13
2
11
7 =
g) 












6
1
2
1
2
4
1
3
1
h) 












5
1
.
2
1
6
1
.
5
1
3
1
.
2
1
5
1
.
2
1
=
Equações 1º grau
Exemplo1:
4x + 2 = 8 – 2x
Colocamos x de um lado e número do outro, invertendo o
sinal dos termos que mudarem de lado na igualdade.
4x + 2x = 8 – 2
6x = 6
Passamos o 6 da letra x dividindo o 6 que está sozinho do
outro lada da igualdade.
O coeficiente numérico da letra x do 1º membro deve passar
para o outro lado, dividindo o elemento pertencente ao 2º
membro da equação. Observe:
x = 6 / 6
x = 1
Exemplo 02:
10x – 9 = 21 + 2x + 3x
10x – 2x – 3x = 21 + 9
10x – 5x = 30
5x = 30
x = 30/5
x = 6
Propriedade distributiva:
1) Resolva a equação 4 (x + 3) = 4
Devemos multiplicar o número 4 pelos dois fatores que
estão dentro do parênteses ( x e +3), assim teremos a
seguinte equação formada:
4x + 12 = 4
4x = 4 - 12
4x = - 8
x = - 8/4
x = - 2
2) Resolver a equação 5 (2x - 4) = 7 (x+1) - 3
Multiplicamos os termos, teremos:
10x - 20 = 7x + 7 - 3
10x - 7x = 7 - 3 + 20
3x = 4 + 20
3x = 24
x = 24/3
x = 8
11) Resolva as seguintes equações do 1º grau, aplicando a
propriedade distributiva da multiplicação.
a) 4x - 1 = 3 (x -1)
b) 3 (x - 2) = 2x - 4
c) 3x + 4 = 2 (x -1)
d) 3 (x-1) - 7 = 17
e) 7 (x-4) = 2x - 3
f) 3 (3x-1) = 2 (3x +2)
g) 7 (x-2) = 5 (x+4)
h) 5 (x-2) = 3 (x+2)
i) 4 (x+5) - 21 = 3 (x+5)
Equações 2º grau
As equações do 2º grau poderão ser resolvidas
utilizando a seguinte fórmula:
Dada a equação x² + 3x – 10 = 0, determine suas raízes,
se existirem.
a = 1, b = 3 e c = –10
∆ = b² – 4ac
∆ = 3² – 4 * 1 * (–10)
∆= 9 + 40
∆ = 49
As raízes da equação são x’ = 2 e x” = – 5
12) Achar as raízes das equações:
a) x² - 5x + 6 = 0 (R: 2, 3)
b) x² - 8x + 12 = 0 (R: 2, 6)
c) x² + 2x - 8 = 0 (R: 2, -4)
d) 2x² - 8x + 8 = 0 (R: 2,)
e) x² - 4x - 5 = 0 (R: -1, 5)
f) -x² + x + 12 = 0 (R: -3, 4)
g) -x² + 6x - 5 = 0 (R: 1, 5)
h) 6x² + x - 1 = 0 (R: 1/3 , -1/2)
i) 3x² - 7x + 2 = 0 (R: 2, 1/3)
j) 2x² - 7x = 15 (R: 5, -3/2)
k) 4x² + 9 = 12x (R: 3/2)
l) x² = x + 12 (R: -3 , 4)
m) 2x² = -12x - 18 (R: -3 )

Recomendados

Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciostrigono_metria
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)Hélio Rocha
 
Prova do 9º ano auzanir lacerda
Prova do 9º ano auzanir lacerdaProva do 9º ano auzanir lacerda
Prova do 9º ano auzanir lacerdaalunosderoberto
 
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)Ilton Bruno
 
Atividade de matemática plano cartesiano
Atividade de matemática   plano cartesianoAtividade de matemática   plano cartesiano
Atividade de matemática plano cartesianoDanyGoncalves
 
Exercícios de paralelepípedo e cubo
Exercícios de paralelepípedo e cuboExercícios de paralelepípedo e cubo
Exercícios de paralelepípedo e cuboFabiana Gonçalves
 
1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton brunoIlton Bruno
 

Mais conteúdo relacionado

Mais procurados

9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3Erivaldo Duarte
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º anoalunosderoberto
 
Lista de exercícios 1º em - áreas
Lista de exercícios   1º em - áreasLista de exercícios   1º em - áreas
Lista de exercícios 1º em - áreasColégio Parthenon
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOHélio Rocha
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoEverton Moraes
 
D14 (9º ANO - Mat.) - volume de sólidos geométricos.docx
D14 (9º ANO - Mat.)  - volume de sólidos geométricos.docxD14 (9º ANO - Mat.)  - volume de sólidos geométricos.docx
D14 (9º ANO - Mat.) - volume de sólidos geométricos.docxJoabeClaudio2
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasEverton Moraes
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)Ilton Bruno
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiRodrigo Borges
 
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano ilton brunoIlton Bruno
 
Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)
Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)
Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)Otávio Sales
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeAndréia Rodrigues
 
Lista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauLista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauEverton Moraes
 
Lista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemLista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemEverton Moraes
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notávelAlessandra Dias
 
AVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASAVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASVyeyra Santos
 

Mais procurados (20)

9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º ano
 
Lista de exercícios 1º em - áreas
Lista de exercícios   1º em - áreasLista de exercícios   1º em - áreas
Lista de exercícios 1º em - áreas
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃO
 
Areas de figuras planas
Areas de figuras planasAreas de figuras planas
Areas de figuras planas
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
 
D14 (9º ANO - Mat.) - volume de sólidos geométricos.docx
D14 (9º ANO - Mat.)  - volume de sólidos geométricos.docxD14 (9º ANO - Mat.)  - volume de sólidos geométricos.docx
D14 (9º ANO - Mat.) - volume de sólidos geométricos.docx
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade ii
 
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno2ª lista de exerc(monomios e polinômios) 8º ano   ilton bruno
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
 
Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)
Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)
Probabilidade e Estatística - Escola Nova - para 7º ano (ou 6º)
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
 
Lista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauLista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grau
 
Lista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemLista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – Porcentagem
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
 
AVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASAVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETAS
 
Volume do cubo e do paralelepipedo. 8 ano
Volume do cubo e do paralelepipedo. 8 anoVolume do cubo e do paralelepipedo. 8 ano
Volume do cubo e do paralelepipedo. 8 ano
 

Destaque

Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copiasabbeg
 
2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLASENAI/FATEC - MT
 
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do AmanhãProva 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do AmanhãLeonardo Kaplan
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzaniralunosderoberto
 
Exercicios de revisão 7 ano
Exercicios de revisão 7 anoExercicios de revisão 7 ano
Exercicios de revisão 7 anoalex01166
 
Prova de Matemática 8ano
Prova de Matemática 8anoProva de Matemática 8ano
Prova de Matemática 8anoHélio Rocha
 
Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010Leonardo Kaplan
 
PB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabaritoPB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabaritoGrazi Grazi
 

Destaque (10)

Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copias
 
2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA
 
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do AmanhãProva 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzanir
 
Prova 4º bim 9ano
Prova 4º bim   9anoProva 4º bim   9ano
Prova 4º bim 9ano
 
Exercicios de revisão 7 ano
Exercicios de revisão 7 anoExercicios de revisão 7 ano
Exercicios de revisão 7 ano
 
Prova de Matemática 8ano
Prova de Matemática 8anoProva de Matemática 8ano
Prova de Matemática 8ano
 
Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010
 
Revisão para prova
Revisão para provaRevisão para prova
Revisão para prova
 
PB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabaritoPB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabarito
 

Semelhante a Recuperação lista exercicios 9º ano 1º bimestre

Semelhante a Recuperação lista exercicios 9º ano 1º bimestre (20)

Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
 
Fin a01
Fin a01Fin a01
Fin a01
 
Apostila revisao de matematica
Apostila    revisao de matematicaApostila    revisao de matematica
Apostila revisao de matematica
 
Fin a01
Fin a01Fin a01
Fin a01
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Exercicios
ExerciciosExercicios
Exercicios
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Equações do 2° grau
Equações do 2° grauEquações do 2° grau
Equações do 2° grau
 
Aula2 equação 1º_
Aula2 equação 1º_Aula2 equação 1º_
Aula2 equação 1º_
 
Eq. 2º grau
Eq. 2º grauEq. 2º grau
Eq. 2º grau
 
Apostila de matemática aplicada vol i 2004
Apostila de matemática aplicada vol i 2004Apostila de matemática aplicada vol i 2004
Apostila de matemática aplicada vol i 2004
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Matematica
MatematicaMatematica
Matematica
 
Matematica eja
Matematica ejaMatematica eja
Matematica eja
 
Equações e enequações modulares.
Equações e  enequações modulares.Equações e  enequações modulares.
Equações e enequações modulares.
 
Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012
 
Trabalho de mat.pptx
Trabalho de mat.pptxTrabalho de mat.pptx
Trabalho de mat.pptx
 
Apostila bastante completa de matematica
Apostila bastante completa de matematicaApostila bastante completa de matematica
Apostila bastante completa de matematica
 
matematica
matematica matematica
matematica
 

Mais de Rafael Marques

Can and can't revision
Can and can't   revisionCan and can't   revision
Can and can't revisionRafael Marques
 
Formação do território brasileiro
Formação do território brasileiroFormação do território brasileiro
Formação do território brasileiroRafael Marques
 
Fotos feira alimentação saudável
Fotos feira alimentação saudávelFotos feira alimentação saudável
Fotos feira alimentação saudávelRafael Marques
 
Confecção carrinho fabiano
Confecção carrinho fabianoConfecção carrinho fabiano
Confecção carrinho fabianoRafael Marques
 
Guia alimentar populacao_brasileira
Guia alimentar populacao_brasileiraGuia alimentar populacao_brasileira
Guia alimentar populacao_brasileiraRafael Marques
 
Dicas e horario de estudo 2015
Dicas e horario de estudo   2015Dicas e horario de estudo   2015
Dicas e horario de estudo 2015Rafael Marques
 
Alimentacaosaudavel un b
Alimentacaosaudavel un bAlimentacaosaudavel un b
Alimentacaosaudavel un bRafael Marques
 
Cont e procedimentos 7 ano 2º bimestre
Cont e procedimentos 7 ano   2º  bimestreCont e procedimentos 7 ano   2º  bimestre
Cont e procedimentos 7 ano 2º bimestreRafael Marques
 
Cont e procedimentos 6 ano 2º bimestre
Cont e procedimentos 6 ano   2º  bimestreCont e procedimentos 6 ano   2º  bimestre
Cont e procedimentos 6 ano 2º bimestreRafael Marques
 
Revision answers 7th grade
Revision answers   7th gradeRevision answers   7th grade
Revision answers 7th gradeRafael Marques
 
Revision answers 6th grade laura canto
Revision answers 6th grade   laura cantoRevision answers 6th grade   laura canto
Revision answers 6th grade laura cantoRafael Marques
 

Mais de Rafael Marques (20)

Dinamica demográfica
Dinamica demográficaDinamica demográfica
Dinamica demográfica
 
Geofísica da terra
Geofísica da terraGeofísica da terra
Geofísica da terra
 
Brasil rural x urbano
Brasil   rural x urbanoBrasil   rural x urbano
Brasil rural x urbano
 
Can and can't revision
Can and can't   revisionCan and can't   revision
Can and can't revision
 
Formação do território brasileiro
Formação do território brasileiroFormação do território brasileiro
Formação do território brasileiro
 
Fotos feira alimentação saudável
Fotos feira alimentação saudávelFotos feira alimentação saudável
Fotos feira alimentação saudável
 
Teatro lambe lambe
Teatro lambe lambeTeatro lambe lambe
Teatro lambe lambe
 
Confecção carrinho fabiano
Confecção carrinho fabianoConfecção carrinho fabiano
Confecção carrinho fabiano
 
Construção vilmar 2
Construção vilmar 2Construção vilmar 2
Construção vilmar 2
 
Obra 2 banheiro
Obra 2 banheiroObra 2 banheiro
Obra 2 banheiro
 
Obra 1 entrelagos
Obra 1 entrelagosObra 1 entrelagos
Obra 1 entrelagos
 
Pitiguari 2013/2014
Pitiguari 2013/2014Pitiguari 2013/2014
Pitiguari 2013/2014
 
Guia alimentar populacao_brasileira
Guia alimentar populacao_brasileiraGuia alimentar populacao_brasileira
Guia alimentar populacao_brasileira
 
Dicas e horario de estudo 2015
Dicas e horario de estudo   2015Dicas e horario de estudo   2015
Dicas e horario de estudo 2015
 
Alimentacaosaudavel un b
Alimentacaosaudavel un bAlimentacaosaudavel un b
Alimentacaosaudavel un b
 
Cont e procedimentos 7 ano 2º bimestre
Cont e procedimentos 7 ano   2º  bimestreCont e procedimentos 7 ano   2º  bimestre
Cont e procedimentos 7 ano 2º bimestre
 
Cont e procedimentos 6 ano 2º bimestre
Cont e procedimentos 6 ano   2º  bimestreCont e procedimentos 6 ano   2º  bimestre
Cont e procedimentos 6 ano 2º bimestre
 
Revision answers 7th grade
Revision answers   7th gradeRevision answers   7th grade
Revision answers 7th grade
 
Revision answers 6th grade laura canto
Revision answers 6th grade   laura cantoRevision answers 6th grade   laura canto
Revision answers 6th grade laura canto
 
Escala marcos
Escala marcosEscala marcos
Escala marcos
 

Último

3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...apoioacademicoead
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...azulassessoriaacadem3
 
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;azulassessoriaacadem3
 
Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...
Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...
Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...excellenceeducaciona
 
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...azulassessoriaacadem3
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...azulassessoriaacadem3
 
Domínio da Linguagem Oral Classificação Sílaba Inicial
Domínio da Linguagem  Oral Classificação Sílaba InicialDomínio da Linguagem  Oral Classificação Sílaba Inicial
Domínio da Linguagem Oral Classificação Sílaba InicialTeresaCosta92
 
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptxSlides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptxLuizHenriquedeAlmeid6
 
COSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdf
COSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdfCOSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdf
COSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdfalexandrerodriguespk
 
Acróstico - Maria da Penha Lei nº 11.340, de 7 de agosto de 2006
Acróstico - Maria da Penha    Lei nº 11.340, de 7 de agosto de 2006Acróstico - Maria da Penha    Lei nº 11.340, de 7 de agosto de 2006
Acróstico - Maria da Penha Lei nº 11.340, de 7 de agosto de 2006Mary Alvarenga
 
Trovadorismo, Humanismo, Classicismo e Quinhentismo
Trovadorismo, Humanismo, Classicismo e QuinhentismoTrovadorismo, Humanismo, Classicismo e Quinhentismo
Trovadorismo, Humanismo, Classicismo e QuinhentismoPaula Meyer Piagentini
 
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.azulassessoriaacadem3
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...excellenceeducaciona
 
Slides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptx
Slides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptxSlides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptx
Slides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptxLuizHenriquedeAlmeid6
 
B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...
B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...
B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...azulassessoriaacadem3
 
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!Psyc company
 
Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...
Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...
Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...excellenceeducaciona
 
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...AaAssessoriadll
 

Último (20)

GABARITO CRUZADINHA PATRIM E FONTES.docx
GABARITO CRUZADINHA PATRIM E FONTES.docxGABARITO CRUZADINHA PATRIM E FONTES.docx
GABARITO CRUZADINHA PATRIM E FONTES.docx
 
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
 
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
 
Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...
Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...
Discorra sobre a classificação da interpretação jurídica quanto à sua origem ...
 
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
 
Domínio da Linguagem Oral Classificação Sílaba Inicial
Domínio da Linguagem  Oral Classificação Sílaba InicialDomínio da Linguagem  Oral Classificação Sílaba Inicial
Domínio da Linguagem Oral Classificação Sílaba Inicial
 
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptxSlides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
 
COSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdf
COSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdfCOSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdf
COSMOLOGIA DA ENERGIA ESTRELAS - VOLUME 6. EDIÇÃO 2^^.pdf
 
Acróstico - Maria da Penha Lei nº 11.340, de 7 de agosto de 2006
Acróstico - Maria da Penha    Lei nº 11.340, de 7 de agosto de 2006Acróstico - Maria da Penha    Lei nº 11.340, de 7 de agosto de 2006
Acróstico - Maria da Penha Lei nº 11.340, de 7 de agosto de 2006
 
Trovadorismo, Humanismo, Classicismo e Quinhentismo
Trovadorismo, Humanismo, Classicismo e QuinhentismoTrovadorismo, Humanismo, Classicismo e Quinhentismo
Trovadorismo, Humanismo, Classicismo e Quinhentismo
 
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
 
Slides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptx
Slides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptxSlides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptx
Slides Lição 9, CPAD, O Batismo – A Primeira Ordenança da Igreja, 1Tr24.pptx
 
B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...
B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...
B) Discorra sobre o que contempla cada uma das cinco dimensões da sustentabil...
 
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
O Guia Definitivo para Investir em Bitcoin: Domine o Mercado Hoje!
 
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptxSlides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
Slides Lição 8, Betel, Família, uma Obra em permanente construção, 1Tr24.pptx
 
Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...
Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...
Sendo assim, desenvolva um breve texto que possa evidenciar a importância da ...
 
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
 

Recuperação lista exercicios 9º ano 1º bimestre

  • 1. Exercícios de Recuperação – 1º Bimestre Matemática Básica – Professor Rafael Números Inteiros Adição e Subtração: A adição de dois números inteiros obedece às seguintes regras: a ) números de mesmo sinal : somam-se os módulos e conserva-se o sinal comum. Exemplos: (-3) + (-5) + (-2) = - 10 (-7) + (-6) = - 13 b) números de sinais opostos: subtraem-se os módulos e conserva-se o sinal do maior em módulo. Exemplos: (-3) + (+7) = + 4 (-12) + (+5) = -7 10 – (-3) = 10 + 3 = 13 (-5) – (- 10) = (-5) +10 = +5 = 5 (-3) – (+7) = (-3) -7 = - 10 Multiplicação A multiplicação de números inteiros, dar-se-á segundo a seguinte regra de sinais: (+) x (+) = + (+) x (-) = - (-) x (+) = - (-) x (-) = + Exemplos: (-3) x (-4) = +12 = 12 (-4) x (+3) = -12 Potenciação É um caso particular da multiplicação, onde os fatores são iguais. Por exemplo, 53 = 5.5.5 = 125, 71 = 7, 43 = 4.4.4 = 64, etc. Exemplos: (-2)4 = +16 = 16 (-3)2 = +9 = 9 (-5)4 = +625 = 625 (-1)4 = + 1 = 1 (-2)3 = - 8 (-5)3 = - 125 (-1)13 = - 1 Divisão A divisão de números inteiros, no que concerne à regra de sinais, obedece às mesmas regras vistas para a multiplicação, ou seja: Exemplos: (–10) : (– 2) = + 5 = 5 (– 30) : (+ 5) = – 6 Expressões Numéricas Nas expressões, as operações se realizam obedecendo à seguinte ordem: 1º) multiplicações e divisões ( X ÷ ) 2º) adições e subtrações ( + - ) Se houver sinais de associação (parênteses, colchetes e chaves) devemos proceder da seguinte maneira: 1º) As contas dentro dos parênteses seguindo a ordem acima colocada 2º) As contas dentro dos colchetes seguindo a ordem acima colocada 3º) As contas dentro das chaves seguindo a ordem acima colocada 1) Calcule as adições: a) (+20) + (-18) b) (+21) + (-30) c) (-81) + (-17) d) (+37) + (+62) 2) Calcule as subtrações: a) (-9) – (+15) b) (+16) – (+20) c) (-1) – (-18) d) (-72) – (-81) 3) Calcule as multiplicações: a) (-20) . (+4) b) (-8) . (-7) c) (+23) . (+3) d) (+2) . (-27) 4) Resolva as divisões: a) (-40) : (+2) b) (+20) : (-4) c) (-18) : (-3) d) (+36) : (+4) 5) Calcule as Potências: a) (-11)² b) (+5)³ c) ( -7)¹ d) 0² 6) Calcule o valor das expressões: a) 16+[10-(18:3+2)+5] b) 25-[12-(3x2+1)] c) 90-[25+(5x2-1)+3] d) 45+[(8x5-10:2)+(18:6-2)] e) 50-2x{7+8:2-[9-3x(5-4)]} f) 100-3x{5+8:2-[3x(7-6)]} g) 1000 - [(2 . 4 - 6) + ( 2 + 6 . 4)] h) 60 + 2 . {[ 4 . ( 6 + 2 ) - 10 ] + 12} i) [( 4 + 16 . 2) . 5 - 10] . 100 j) { 10 + [ 5 . ( 4 + 2 . 5) - 8] . 2 } - 100 k) 80 - 5 . ( 28 - 6 . 4 ) + 6 - 3 . 4
  • 2. Números Racionais 1ª condição: denominadores iguais. Quando os denominadores são iguais, os numeradores devem ser somados ou subtraídos de acordo com os sinais operatórios e o valor do denominador mantido. Observe os exemplos: 2º condição: denominadores diferentes. Nas operações da adição ou subtração envolvendo números na forma de fração com denominadores diferentes, devemos criar um novo denominador através do cálculo do mínimo múltiplo comum – MMC dos denominadores fornecidos. O novo denominador deverá ser dividido pelos denominadores atuais, multiplicando o quociente pelo numerador correspondente, constituindo novas frações proporcionalmente iguais as anteriores e com denominadores iguais. Observe os cálculos: Realizar o MMC entre 3 e 4. Multiplicação A multiplicação de frações é muito simples, basta multiplicarmos numerador por numerador e denominador por denominador, respeitando suas posições. Observe: Divisão A divisão deve ser efetuada aplicando uma regra prática e de fácil assimilação, que diz: “repetir a primeira fração e multiplicar pelo inverso da segunda”. 7) Calcule: a)  5 2 3 1 b)  3 2 2 7 c)  4 1 2 d)  5 3 2 5 1 3 e)  3 2 2 3 f)  4 3 6 7 2 g) 3 1 2 11 5 2 2  = h)  2 1 6 5 4 3 i) 18 5 12 7  = j)  10 7 3 2 1 5 4 1 k)  3 2 4 5 6 1 m)  4 3 6 5 3 1 2 1 8) Efetue as multiplicações: a)  2 1 . 4 3 b)  5 8 . 4 1 . 3 2 c)  2 9 . 3 25 . 5 6 d)  4 3 . 7 9 e)  6 49 . 7 2 . 5 14 f)  8 5 . 14 7 . 15 16 g)  8 7 . 5 8 h)  16 45 . 3 1 . 15 8 i)  9 22 . 28 2 . 12 18 9) Efetue as divisões: a)  3 2 : 5 4 b) 2: 5 4 c)  14 39 : 49 13 d)  25 27 : 5 81 e)  3 14 : 9 7 f)  9 5 : 3 10 g)  81 128 : 27 64 h)  3 1 2: 3 14 i)  8 3 : 4 3 10) Calcule o valor das expressões numéricas: a)              3 2 4 5 5 2 2 3 b)              8 7 7 8 . 3 4 4 3 c)              9 7 9 8 6 5 8 7 d) 3 7 . 2 3 5 2 . 3 1 5 3 . 2 1  = e)              4 5 4 7 5 1 2 1 1 f)              5 1 2 1 . 4 13 2 11 7 = g)              6 1 2 1 2 4 1 3 1 h)              5 1 . 2 1 6 1 . 5 1 3 1 . 2 1 5 1 . 2 1 =
  • 3. Equações 1º grau Exemplo1: 4x + 2 = 8 – 2x Colocamos x de um lado e número do outro, invertendo o sinal dos termos que mudarem de lado na igualdade. 4x + 2x = 8 – 2 6x = 6 Passamos o 6 da letra x dividindo o 6 que está sozinho do outro lada da igualdade. O coeficiente numérico da letra x do 1º membro deve passar para o outro lado, dividindo o elemento pertencente ao 2º membro da equação. Observe: x = 6 / 6 x = 1 Exemplo 02: 10x – 9 = 21 + 2x + 3x 10x – 2x – 3x = 21 + 9 10x – 5x = 30 5x = 30 x = 30/5 x = 6 Propriedade distributiva: 1) Resolva a equação 4 (x + 3) = 4 Devemos multiplicar o número 4 pelos dois fatores que estão dentro do parênteses ( x e +3), assim teremos a seguinte equação formada: 4x + 12 = 4 4x = 4 - 12 4x = - 8 x = - 8/4 x = - 2 2) Resolver a equação 5 (2x - 4) = 7 (x+1) - 3 Multiplicamos os termos, teremos: 10x - 20 = 7x + 7 - 3 10x - 7x = 7 - 3 + 20 3x = 4 + 20 3x = 24 x = 24/3 x = 8 11) Resolva as seguintes equações do 1º grau, aplicando a propriedade distributiva da multiplicação. a) 4x - 1 = 3 (x -1) b) 3 (x - 2) = 2x - 4 c) 3x + 4 = 2 (x -1) d) 3 (x-1) - 7 = 17 e) 7 (x-4) = 2x - 3 f) 3 (3x-1) = 2 (3x +2) g) 7 (x-2) = 5 (x+4) h) 5 (x-2) = 3 (x+2) i) 4 (x+5) - 21 = 3 (x+5) Equações 2º grau As equações do 2º grau poderão ser resolvidas utilizando a seguinte fórmula: Dada a equação x² + 3x – 10 = 0, determine suas raízes, se existirem. a = 1, b = 3 e c = –10 ∆ = b² – 4ac ∆ = 3² – 4 * 1 * (–10) ∆= 9 + 40 ∆ = 49 As raízes da equação são x’ = 2 e x” = – 5 12) Achar as raízes das equações: a) x² - 5x + 6 = 0 (R: 2, 3) b) x² - 8x + 12 = 0 (R: 2, 6) c) x² + 2x - 8 = 0 (R: 2, -4) d) 2x² - 8x + 8 = 0 (R: 2,) e) x² - 4x - 5 = 0 (R: -1, 5) f) -x² + x + 12 = 0 (R: -3, 4) g) -x² + 6x - 5 = 0 (R: 1, 5) h) 6x² + x - 1 = 0 (R: 1/3 , -1/2) i) 3x² - 7x + 2 = 0 (R: 2, 1/3) j) 2x² - 7x = 15 (R: 5, -3/2) k) 4x² + 9 = 12x (R: 3/2) l) x² = x + 12 (R: -3 , 4) m) 2x² = -12x - 18 (R: -3 )