SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
1) Determine x em cada um dos
triângulos
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
ê + ^f + ^g = 180º
50 + x + 30º = 180
X = 180 -50 -30
X = 100º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é 180º.
Logo, somando:
ê + ^f + ^g = 180º
x + 90º + 30º = 180º
x= 180 -120
x = 60º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
ê + ^f + ^g = 180º
50º + 65 + x = 180º
X = 180 -50 -65
X= 180 – 115
X = 65º
ê + ^f + ^g = 180º
60º + x + 75º = 180º
x= 180 -60 - 75
x = 45º
2) Determine x em cada um dos
triângulos:
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
^r + ^s + ^t = 180º
X + x +50º + 10º = 180
2x + 60º = 180º
2X = 180º -60º
2x = 120º
X = 120º : 2
X = 60º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
^r + ^s + ^t = 180º
5x + 3x + 4x = 180
12x = 180º
X = 180º : 12
x = 15º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
^r + ^s + ^t = 180º
3X + 2x + 90º = 180
5x + 60º = 180º
5X = 180º -60º
5x = 120º
X = 120º :5
X = 24º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
^r + ^s + ^t = 180º
2X + x +6x = 180
9x = 180º
x = 180º : 9
X = 20º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
^r + ^s + ^t = 180º
X +50º+ x +10º +x - 30º = 180
3x + 60º-30 = 180º
3X +30 = 180º
2x = 180º-30
X = 150º : 2
X = 75º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
^r + ^s + ^t = 180º
2X + x +x + 20º = 180º
4x + 20º = 180º
4X = 180º -20º
4x = 160º
X = 160º : 4
X = 40º
3) Determine a medida dos ângulos
x, y e z.
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
*Porém, no triângulo ABC temos o
ângulo A onde a informação não está
clara, pois o ângulo â está dividido
em duas partes chamadas de ângulo
^x e ângulo ^y.
**Assim chamando o ângulo de 90º
de ^d,
Temos o triângulo ABD, onde o
ângulo ^d é 90º, no triângulo ABD e
ADC
Solução de x, em ABD:
^x + 60º + 90º = 180º
X + 150º = 180º
X = 180º - 150º
X = 30º
Determinando y em ABC:
Y + 90º + 45º = 180º
Y = 180º - 135º
Y = 45º
Solução:
Sabemos que a soma dos ângulos
internos de qualquer triângulo é
180º.
Logo, somando:
No triãngulo ABC, está fácil
determinar o valor do ângulo ^x.
^a+ ^b + ^c = 180º
x + 35º+ 105º = 180
x + 140º = 180º
X = 180º -140º
x = 40º
Porém, no triângulo CDE, temos os
ângulo ^z e ^y por determiar.
Lembrando que ^z é um ângulo OPV(
Oposto Pelo Vértice) com o ângulo
de 105º, ficou fácil determinar z, o
valor de z = 105º.
Agora, no triângulo CDE, só falta o
valor de y
^z + ^y + 50º = 180º
105º + y + 50º = 180º
Y = 180º - 155º
Y = 25º
D
Solução: Em ACD temos:
^c + 40º + 30º = 180º
^c = 180º - 70º
^c = 110º
Logo, se ^c = 110º, sabemos que ^x = 70º
Pois ^x + c^= 180º, ângulo raso.
Assim em ABC temos:
^x + ^y + 55 = 180º
70º + y + 55 = 180º
Y = 180º – 125º
Y = 55º

Mais conteúdo relacionado

Mais procurados

Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauEverton Moraes
 
1ª lista de exercícios(razão e proporção) 9º ano ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano ilton brunoIlton Bruno
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoEverton Moraes
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Secretaria de Estado de Educação do Pará
 
Lista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauLista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauEverton Moraes
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciostrigono_metria
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeAndréia Rodrigues
 
Lista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisLista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisalunosderoberto
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exerciciosJeane Carvalho
 
Exercícios de paralelepípedo e cubo
Exercícios de paralelepípedo e cuboExercícios de paralelepípedo e cubo
Exercícios de paralelepípedo e cuboFabiana Gonçalves
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parentesesRita Sousa
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasEverton Moraes
 
atividades áreas
atividades áreas atividades áreas
atividades áreas Frank Junior
 
AVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASAVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASVyeyra Santos
 
Atividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 anoAtividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 anoElisangela Ocea
 
Lista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemLista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemEverton Moraes
 
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Gleidson Luis
 

Mais procurados (20)

Operações com Frações
Operações com FraçõesOperações com Frações
Operações com Frações
 
Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grau
 
Prova números inteiros - 7° ano
Prova números inteiros  - 7° anoProva números inteiros  - 7° ano
Prova números inteiros - 7° ano
 
1ª lista de exercícios(razão e proporção) 9º ano ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano ilton bruno
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
 
Lista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauLista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grau
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exercicios
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
 
Atividades sobre grau - minutos - segundos
Atividades sobre   grau - minutos - segundosAtividades sobre   grau - minutos - segundos
Atividades sobre grau - minutos - segundos
 
Lista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisLista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicais
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exercicios
 
Exercícios de paralelepípedo e cubo
Exercícios de paralelepípedo e cuboExercícios de paralelepípedo e cubo
Exercícios de paralelepípedo e cubo
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parenteses
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
 
atividades áreas
atividades áreas atividades áreas
atividades áreas
 
AVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASAVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETAS
 
Atividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 anoAtividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 ano
 
Lista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemLista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – Porcentagem
 
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.
 

Destaque

8 ano - Exercícios - Ângulos
8 ano - Exercícios - Ângulos8 ano - Exercícios - Ângulos
8 ano - Exercícios - ÂngulosAndréia Rodrigues
 
Atividade de Geometria 6º ano (retas)
Atividade de Geometria 6º ano (retas)Atividade de Geometria 6º ano (retas)
Atividade de Geometria 6º ano (retas)Ilton Bruno
 
ATIVIDADE 01 - IV BIMESTRE - 8ANO
ATIVIDADE 01 - IV BIMESTRE - 8ANOATIVIDADE 01 - IV BIMESTRE - 8ANO
ATIVIDADE 01 - IV BIMESTRE - 8ANOHélio Rocha
 
ATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANO
ATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANOATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANO
ATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANOHélio Rocha
 
Reavaliação gab 1etapa_ 8a_numeros_geometria_2011
Reavaliação gab 1etapa_ 8a_numeros_geometria_2011Reavaliação gab 1etapa_ 8a_numeros_geometria_2011
Reavaliação gab 1etapa_ 8a_numeros_geometria_2011Joelson Lima
 
2ª prova gab 8ano unid2_geometria_2011
2ª prova gab 8ano unid2_geometria_20112ª prova gab 8ano unid2_geometria_2011
2ª prova gab 8ano unid2_geometria_2011Joelson Lima
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciostrigono_metria
 
Ângulos internos e ângulos externos de um polígono
Ângulos internos e ângulos externos de um polígonoÂngulos internos e ângulos externos de um polígono
Ângulos internos e ângulos externos de um polígonoFilipa Guerreiro
 
Uso de tecnologias para ensinar triângulos e seus elementos
Uso de tecnologias para ensinar triângulos e seus elementosUso de tecnologias para ensinar triângulos e seus elementos
Uso de tecnologias para ensinar triângulos e seus elementosPâmela Souza
 
Soma das amplitudes dos ângulos internos de um polígono
Soma das amplitudes dos ângulos internos de um polígonoSoma das amplitudes dos ângulos internos de um polígono
Soma das amplitudes dos ângulos internos de um polígonoaldaalves
 
Ângulos triângulos
Ângulos triângulosÂngulos triângulos
Ângulos triângulosMaryCerq
 
Angulos e Triângulos
Angulos e TriângulosAngulos e Triângulos
Angulos e Triângulosanpanemo
 
Ficha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resoluçãoFicha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resoluçãoArminda Oliveira
 
Triângulos,6ºC Sara
Triângulos,6ºC SaraTriângulos,6ºC Sara
Triângulos,6ºC Saratuchav
 
Triangulos
TriangulosTriangulos
TriangulosPh Neves
 
Ficha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resoluçãoFicha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resoluçãoArminda Oliveira
 
Mat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilaterosMat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilaterostrigono_metria
 
Plano de aula 7º ano - sólidos
Plano de aula   7º ano - sólidosPlano de aula   7º ano - sólidos
Plano de aula 7º ano - sólidosFlavia Menezes
 

Destaque (20)

8 ano - Exercícios - Ângulos
8 ano - Exercícios - Ângulos8 ano - Exercícios - Ângulos
8 ano - Exercícios - Ângulos
 
Atividade de Geometria 6º ano (retas)
Atividade de Geometria 6º ano (retas)Atividade de Geometria 6º ano (retas)
Atividade de Geometria 6º ano (retas)
 
Teste ângulos
Teste ângulosTeste ângulos
Teste ângulos
 
ATIVIDADE 01 - IV BIMESTRE - 8ANO
ATIVIDADE 01 - IV BIMESTRE - 8ANOATIVIDADE 01 - IV BIMESTRE - 8ANO
ATIVIDADE 01 - IV BIMESTRE - 8ANO
 
ATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANO
ATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANOATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANO
ATIVIDADES DE GEOMETRIA - IV BIMESTRE - 9ANO E 3 ANO
 
Reavaliação gab 1etapa_ 8a_numeros_geometria_2011
Reavaliação gab 1etapa_ 8a_numeros_geometria_2011Reavaliação gab 1etapa_ 8a_numeros_geometria_2011
Reavaliação gab 1etapa_ 8a_numeros_geometria_2011
 
2ª prova gab 8ano unid2_geometria_2011
2ª prova gab 8ano unid2_geometria_20112ª prova gab 8ano unid2_geometria_2011
2ª prova gab 8ano unid2_geometria_2011
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exercicios
 
Ângulos internos e ângulos externos de um polígono
Ângulos internos e ângulos externos de um polígonoÂngulos internos e ângulos externos de um polígono
Ângulos internos e ângulos externos de um polígono
 
Uso de tecnologias para ensinar triângulos e seus elementos
Uso de tecnologias para ensinar triângulos e seus elementosUso de tecnologias para ensinar triângulos e seus elementos
Uso de tecnologias para ensinar triângulos e seus elementos
 
Soma das amplitudes dos ângulos internos de um polígono
Soma das amplitudes dos ângulos internos de um polígonoSoma das amplitudes dos ângulos internos de um polígono
Soma das amplitudes dos ângulos internos de um polígono
 
Ângulos triângulos
Ângulos triângulosÂngulos triângulos
Ângulos triângulos
 
Aula com geogebra: classificação dos triângulos - Beatriz Lorena
Aula com geogebra: classificação dos triângulos - Beatriz LorenaAula com geogebra: classificação dos triângulos - Beatriz Lorena
Aula com geogebra: classificação dos triângulos - Beatriz Lorena
 
Angulos e Triângulos
Angulos e TriângulosAngulos e Triângulos
Angulos e Triângulos
 
Ficha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resoluçãoFicha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resolução
 
Triângulos,6ºC Sara
Triângulos,6ºC SaraTriângulos,6ºC Sara
Triângulos,6ºC Sara
 
Triangulos
TriangulosTriangulos
Triangulos
 
Ficha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resoluçãoFicha porto editora sobre triângulos e paralelogramas e resolução
Ficha porto editora sobre triângulos e paralelogramas e resolução
 
Mat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilaterosMat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilateros
 
Plano de aula 7º ano - sólidos
Plano de aula   7º ano - sólidosPlano de aula   7º ano - sólidos
Plano de aula 7º ano - sólidos
 

Semelhante a Determinação de ângulos em triângulos

Doc matematica _1182035541
Doc matematica _1182035541Doc matematica _1182035541
Doc matematica _1182035541Rodrigo Lima
 
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo TrigonométricoBeatriz Góes
 
Ciclo trigonométrico e razões trigonométricas
Ciclo trigonométrico e razões trigonométricasCiclo trigonométrico e razões trigonométricas
Ciclo trigonométrico e razões trigonométricasAulasEnsinoMedio
 
www.AulasEnsinoMedio.com.br - Matemática - Ciclo Trigonométrico
www.AulasEnsinoMedio.com.br - Matemática -  Ciclo Trigonométricowww.AulasEnsinoMedio.com.br - Matemática -  Ciclo Trigonométrico
www.AulasEnsinoMedio.com.br - Matemática - Ciclo TrigonométricoAulasEnsinoMedio
 
Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011thieresaulas
 
Prof.calazans(geom.plana) questões resolvidas(ficha 01)
Prof.calazans(geom.plana)   questões resolvidas(ficha 01)Prof.calazans(geom.plana)   questões resolvidas(ficha 01)
Prof.calazans(geom.plana) questões resolvidas(ficha 01)ProfCalazans
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - ÂngulosClarice Leclaire
 
Angles in a triangle
Angles in a triangleAngles in a triangle
Angles in a trianglejuliesoe
 
Triângulo retângulo1
Triângulo retângulo1Triângulo retângulo1
Triângulo retângulo1rangel freitas
 
Matemática básica
Matemática básicaMatemática básica
Matemática básicaMarcos Ra
 
Retas paralelas cortadas por uma transversal.pdf
Retas paralelas cortadas por uma transversal.pdfRetas paralelas cortadas por uma transversal.pdf
Retas paralelas cortadas por uma transversal.pdfMarcosViniciusLemesL
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAthieresaulas
 
Gabarito retas paralelas108200920268
Gabarito retas paralelas108200920268Gabarito retas paralelas108200920268
Gabarito retas paralelas108200920268leticiademelo11
 

Semelhante a Determinação de ângulos em triângulos (20)

Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Doc matematica _1182035541
Doc matematica _1182035541Doc matematica _1182035541
Doc matematica _1182035541
 
ÂNGULOS
ÂNGULOSÂNGULOS
ÂNGULOS
 
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 
Ciclo trigonométrico e razões trigonométricas
Ciclo trigonométrico e razões trigonométricasCiclo trigonométrico e razões trigonométricas
Ciclo trigonométrico e razões trigonométricas
 
www.AulasEnsinoMedio.com.br - Matemática - Ciclo Trigonométrico
www.AulasEnsinoMedio.com.br - Matemática -  Ciclo Trigonométricowww.AulasEnsinoMedio.com.br - Matemática -  Ciclo Trigonométrico
www.AulasEnsinoMedio.com.br - Matemática - Ciclo Trigonométrico
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
 
10052014
1005201410052014
10052014
 
Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011
 
Teorema de pitágoras
Teorema de pitágorasTeorema de pitágoras
Teorema de pitágoras
 
Td 7 matemática iii
Td 7   matemática iiiTd 7   matemática iii
Td 7 matemática iii
 
Prof.calazans(geom.plana) questões resolvidas(ficha 01)
Prof.calazans(geom.plana)   questões resolvidas(ficha 01)Prof.calazans(geom.plana)   questões resolvidas(ficha 01)
Prof.calazans(geom.plana) questões resolvidas(ficha 01)
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 
Angles in a triangle
Angles in a triangleAngles in a triangle
Angles in a triangle
 
Triângulo retângulo1
Triângulo retângulo1Triângulo retângulo1
Triângulo retângulo1
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Retas paralelas cortadas por uma transversal.pdf
Retas paralelas cortadas por uma transversal.pdfRetas paralelas cortadas por uma transversal.pdf
Retas paralelas cortadas por uma transversal.pdf
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
 
Gabarito retas paralelas108200920268
Gabarito retas paralelas108200920268Gabarito retas paralelas108200920268
Gabarito retas paralelas108200920268
 

Mais de CIEP 456 - E.M. Milcah de Sousa

Mais de CIEP 456 - E.M. Milcah de Sousa (20)

Prova
ProvaProva
Prova
 
Prova saeb 3º ano
Prova saeb 3º anoProva saeb 3º ano
Prova saeb 3º ano
 
Prova saerj 4º bimestre i simulado
Prova saerj 4º bimestre i simuladoProva saerj 4º bimestre i simulado
Prova saerj 4º bimestre i simulado
 
Prova brasil modelo2011
Prova brasil modelo2011Prova brasil modelo2011
Prova brasil modelo2011
 
Simulado i terceiro ano em 3º bimestre
Simulado i terceiro ano em 3º bimestreSimulado i terceiro ano em 3º bimestre
Simulado i terceiro ano em 3º bimestre
 
áGua uso responsável
áGua   uso responsáveláGua   uso responsável
áGua uso responsável
 
Simulado iii 2º bimestre 9º ano
Simulado iii 2º bimestre 9º anoSimulado iii 2º bimestre 9º ano
Simulado iii 2º bimestre 9º ano
 
Simulado ii 2º bimestre 9º ano
Simulado ii 2º bimestre 9º anoSimulado ii 2º bimestre 9º ano
Simulado ii 2º bimestre 9º ano
 
Simulado iv 2º bim. 3º ano
Simulado iv   2º bim. 3º anoSimulado iv   2º bim. 3º ano
Simulado iv 2º bim. 3º ano
 
Simulado i 9º ano -2º bimestre
Simulado i  9º ano -2º bimestreSimulado i  9º ano -2º bimestre
Simulado i 9º ano -2º bimestre
 
Simulado v =2º bim. 3º ano
Simulado v =2º bim. 3º anoSimulado v =2º bim. 3º ano
Simulado v =2º bim. 3º ano
 
Simulado iii saerjinho 3º ano 2º bimestre
Simulado iii saerjinho 3º ano 2º bimestreSimulado iii saerjinho 3º ano 2º bimestre
Simulado iii saerjinho 3º ano 2º bimestre
 
Simulado ii saerjinho 2º bimestre terceiro ano
Simulado ii saerjinho 2º bimestre terceiro anoSimulado ii saerjinho 2º bimestre terceiro ano
Simulado ii saerjinho 2º bimestre terceiro ano
 
Simulado i 2°bim. terceiro ano
Simulado i 2°bim. terceiro anoSimulado i 2°bim. terceiro ano
Simulado i 2°bim. terceiro ano
 
Probabilidades médio iv
Probabilidades médio ivProbabilidades médio iv
Probabilidades médio iv
 
Probabilidade médio iii
Probabilidade médio iiiProbabilidade médio iii
Probabilidade médio iii
 
Simulado ii saerjinho 3º ano 1º bimestre
Simulado ii saerjinho 3º ano 1º bimestreSimulado ii saerjinho 3º ano 1º bimestre
Simulado ii saerjinho 3º ano 1º bimestre
 
1º simulado 3º ano saerjinho
1º simulado 3º ano saerjinho1º simulado 3º ano saerjinho
1º simulado 3º ano saerjinho
 
Números inteiros racionais e reais plano
Números inteiros racionais e reais planoNúmeros inteiros racionais e reais plano
Números inteiros racionais e reais plano
 
Números inteiros racionais e reais para os alunos
Números inteiros racionais e reais para os alunosNúmeros inteiros racionais e reais para os alunos
Números inteiros racionais e reais para os alunos
 

Determinação de ângulos em triângulos

  • 1. 1) Determine x em cada um dos triângulos Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ê + ^f + ^g = 180º 50 + x + 30º = 180 X = 180 -50 -30 X = 100º Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ê + ^f + ^g = 180º x + 90º + 30º = 180º x= 180 -120 x = 60º Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ê + ^f + ^g = 180º 50º + 65 + x = 180º X = 180 -50 -65 X= 180 – 115 X = 65º ê + ^f + ^g = 180º 60º + x + 75º = 180º x= 180 -60 - 75 x = 45º
  • 2. 2) Determine x em cada um dos triângulos: Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ^r + ^s + ^t = 180º X + x +50º + 10º = 180 2x + 60º = 180º 2X = 180º -60º 2x = 120º X = 120º : 2 X = 60º Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ^r + ^s + ^t = 180º 5x + 3x + 4x = 180 12x = 180º X = 180º : 12 x = 15º
  • 3. Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ^r + ^s + ^t = 180º 3X + 2x + 90º = 180 5x + 60º = 180º 5X = 180º -60º 5x = 120º X = 120º :5 X = 24º Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ^r + ^s + ^t = 180º 2X + x +6x = 180 9x = 180º x = 180º : 9 X = 20º
  • 4. Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ^r + ^s + ^t = 180º X +50º+ x +10º +x - 30º = 180 3x + 60º-30 = 180º 3X +30 = 180º 2x = 180º-30 X = 150º : 2 X = 75º Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: ^r + ^s + ^t = 180º 2X + x +x + 20º = 180º 4x + 20º = 180º 4X = 180º -20º 4x = 160º X = 160º : 4 X = 40º
  • 5. 3) Determine a medida dos ângulos x, y e z. Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. *Porém, no triângulo ABC temos o ângulo A onde a informação não está clara, pois o ângulo â está dividido em duas partes chamadas de ângulo ^x e ângulo ^y. **Assim chamando o ângulo de 90º de ^d, Temos o triângulo ABD, onde o ângulo ^d é 90º, no triângulo ABD e ADC Solução de x, em ABD: ^x + 60º + 90º = 180º X + 150º = 180º X = 180º - 150º X = 30º Determinando y em ABC: Y + 90º + 45º = 180º Y = 180º - 135º Y = 45º Solução: Sabemos que a soma dos ângulos internos de qualquer triângulo é 180º. Logo, somando: No triãngulo ABC, está fácil determinar o valor do ângulo ^x. ^a+ ^b + ^c = 180º x + 35º+ 105º = 180 x + 140º = 180º X = 180º -140º x = 40º Porém, no triângulo CDE, temos os ângulo ^z e ^y por determiar. Lembrando que ^z é um ângulo OPV( Oposto Pelo Vértice) com o ângulo de 105º, ficou fácil determinar z, o valor de z = 105º. Agora, no triângulo CDE, só falta o valor de y ^z + ^y + 50º = 180º 105º + y + 50º = 180º Y = 180º - 155º Y = 25º D
  • 6. Solução: Em ACD temos: ^c + 40º + 30º = 180º ^c = 180º - 70º ^c = 110º Logo, se ^c = 110º, sabemos que ^x = 70º Pois ^x + c^= 180º, ângulo raso. Assim em ABC temos: ^x + ^y + 55 = 180º 70º + y + 55 = 180º Y = 180º – 125º Y = 55º