Geometria
  Plana
História da Geometria
       Egito
A geometria na vida cotidiana


• Papiro de Ahmes;
• Como se deu a elaborada as primeiras
regras para obtenção das áreas de um
triangulo e trapézio;
• Pontos fracos da geometria egípcia;
• Legado de maior valor da geometria egípcia.
Grécia

• Grécia do séc. 7 a.C. - geometria como ciência
  dedutiva
• Geometria grega - régua e compasso
• Gregos herdam dos egípcios
• Criaram leis e regras acerca do espaço
Grécia e a Geometria
• Mais antigas Histórias da Matemática
  - Eudemos de Rodes, por volta de 320 aC.,
  aluno de Aristóteles

• Primeiro registro: Comentário ao primeiro
  livro de Os Elementos de Euclides - Proclus
  Diadchus (410-485 dC). É tudo o que sabemos
  sobre Tales e Pitágoras
Grécia e a Geometria
• Tales de Mileto (624 - 546 a.C.)
  - introdutor da geometria na Grécia

• Pitágoras de Samos (572 - 497 a.C.)
  - esfericidade Terra, Lua, outros corpos
  celestes
  - céu = cosmos
  - “Teorema de Pitágoras”
Grécia e a Geometria
• Platão (427 – 347 a.C)
  - Escreve “Timeu”, 5 figuras cósmicas perfeitas

• Aristóteles de Estagira (384-322 a.C.)
  - explicou fases da Lua e eclipses
  - Universo e esférico e finito
  - Esfericidade da Terra

• Heraclides de Pontus (388-315 a.C.)
     - propôs Terra gira diariamente sobre seu
  próprio eixo
Grécia e a Geometria
• Euclides (360 – 295 a.C.)
  - Criador da famosa geometria euclidiana
     - “Os Elementos” – dividida em 13 volumes (5 de
  geometria plana, 3 de geometria no espaço)

• Aristarco de Samos (310-230 a.C.)
  - 1° Terra se movia em volta do Sol,
  antecipando Copérnico em quase 2000 anos
  - distâncias relativas do Sol, Lua à Terra
  - tamanhos relativos da Terra, Sol e Lua
Grécia e a Geometria
•Eratóstenes de Cirênia (276-194 a.C.)
  - primeiro a medir o diâmetro da Terra

     - Siena e Alexandria - ângulo 7 graus
circunferência da Terra = 1% do valor correto
• Hiparco de Nicéia (160 - 125 a.C.)
  - catalogo com posição no céu de 850 estrelas;
  - razão tamanho sombra Terra x tamanho Lua: 8/3;
  - Lua 59 vezes o raio da Terra de distância (correto 60);
  - duração do ano com margem de erro de 6 minutos;

               • Ptolomeu (85 d.C. - 165 d.C.)
                       - último astrônomo importante da
               antiguidade;
                   - compilou o Almagesto, maior fonte de
               conhecimento sobre a astronomia na Grécia
PRINCIPAIS PROBLEMAS COM
GEOMETRIA PLANA: POR QUE
   ENSINAR GEOMETRIA?
• É através da geometria que o homem lida com
  sua realidade concreta, interage com seu
  meio e estabelece relações com o mundo.

• Desenvolver capacidade de abstração, de
  generalização e a possibilidade de projeção.

• A geometria exige do aluno uma maneira
  específica de raciocinar (LORENZATO, 1995).
Por que ensinar Geometria?
• Ser bom conhecedor de Aritmética ou de
  Álgebra não é suficiente para resolver
  problemas de Geometria (LORENZATO, 1995).
• EXEMPLO 1: Compare as áreas dos retângulos
  escurecidos.




                             Figura 1
                 Adaptado de (LORENZATO, 1995).
Por que ensinar Geometria?

• EXEMPLO 2: Quantos triângulos você vê?



                              Figura 2
                  Adaptado de (LORENZATO, 1995).




• Em ambos exemplos não há presença de
  números ou medidas.
Por que ensinar Geometria?
• A Geometria demanda uma leitura diferente
  da Aritmética ou da Álgebra, na medida em
  que para resolver o problema é preciso ter
  “percepção geométrica, raciocínio geométrico
  e linguagem geométrica, fatores estes
  essenciais    na    relação      real/forma”
  (LORENZATO, 1995, p.5).
Por que ensinar Geometria?
• A Geometria pode auxiliar na compreensão de
  outras formas de raciocínio matemático.

• Exemplo de problema: entre coelhos e galinhas
  tenho 7 cabeças e 20 pés, no total. Quantos
  coelhos e quantas galinhas possuo?
Por que ensinar Geometria?
• Solução Aritmética:
• Equação dos pés:
       2 × galinhas + 4 × coelhos = 20
• Equação das cabeças:
       1 × galinhas + 1 × coelhos = 7

Resultado: tenho 3 coelhos e 4 galinhas.
Por que ensinar Geometria?
• Solução Geométrica:




•   “Cada bicho tem sua casinha...são 7”
•   “2 pernas para cada bicho...sobraram”
•   “6 pernas...tem que ser dos coelhos“
•   “2 pernas mais para cada casinha”
•   “São 3 coelhos e 4 galinhas” (LORENZATO, 1995).
Por que ensinar Geometria?
• “Apresentação da Geometria como elemento
  fortemente presente no meio ambiente da criança;
  portanto, o conhecimento geométrico escolar inicial
  é natural e familiar”.
• “As formas são reproduzidas e investigadas,
  independentemente       de    serem     bi      ou
  tridimensionais”.
• “Transformação de formas, por divisão, ou por
  combinação de artefatos”.
• “Favorecer o desenvolvimento do senso espacial da
  criança” (LORENZATO, 1995).
A GEOMETRIA NO ENSINO FUNDAMENTAL:
     CONTEÚDO E MODOS DE ENSINO
        ORIENTAÇÕES DO PCN.
 
No  ensino  da  Matemática,  destacam-se  dois  aspectos 
básicos:  um  consiste  em  relacionar  observações  do 
mundo  real  com  representações  (esquemas,  tabelas, 
figuras);  outro  consiste  em  relacionar  essas 
representações  com  princípios  e  conceitos  matemáticos. 
Nesse processo, a comunicação tem grande importância e 
deve  ser  estimulada,  levando-se  o  aluno  a  “falar”  e  a 
“escrever”  sobre  Matemática,  a  trabalhar  com 
representações  gráficas,  desenhos,  construções,  a 
aprender como organizar e tratar dados. (p.18)

(...) o ponto de partida da atividade matemática não é a 
definição, mas o problema. (p32)
Década de 60/70 – A matemática moderna

Década de 80 – doc. “Agenda para Ação” - Etnomatemática

• importância do desempenho de um papel ativo do aluno na
construção do seu conhecimento;
• ênfase na resolução de problemas, na exploração da Matemática a
partir dos problemas vividos no cotidiano e encontrados nas várias
disciplinas;
• importância de se trabalhar com um amplo espectro de conteúdos,
incluindo-se, já no ensino fundamental, elementos de estatística,
probabilidade e combinatória, para atender à demanda social que
indica a necessidade de abordar esses assuntos;
• necessidade de levar os alunos a compreenderem a importância do
uso da tecnologia e a acompanharem sua permanente renovação.
(p.21)
Temas Transversais
•Meio Ambiente - recursos naturais, desperdício — terá
ferramentas essenciais em conceitos (médias, áreas, volumes);

•Saúde - desenvolvimento físico (altura, peso, musculatura);

•educação do consumidor            (medidas, porcentagem, sistema
monetário).

Trabalho coletivo
Jogo: “é uma atividade natural no desenvolvimento dos processos psicológicos
básicos; supõe um “fazer sem obrigação externa e imposta”, embora demande
exigências, normas e controle”.
Blocos de conteúdos
•   Números e Operações;
•   Espaço e Forma;
•   Grandezas e Medidas;
•   Tratamento da Informação;
ESPAÇO E FORMA
         Os conceitos geométricos constituem parte importante do currículo de
Matemática no ensino fundamental, porque, por meio deles, o aluno desenvolve
um tipo especial de pensamento que lhe permite compreender, descrever e
representar, de forma organizada, o mundo em que vive.
         A Geometria é um campo fértil para se trabalhar com situações-problema
e é um tema pelo qual os alunos costumam se interessar naturalmente. O trabalho
com noções geométricas contribui para a aprendizagem de números e medidas,
pois estimula a criança a observar, perceber semelhanças e diferenças, identificar
regularidades e vice-versa.
         Além disso, se esse trabalho for feito a partir da exploração dos objetos
do mundo físico, de obras de arte, pinturas, desenhos, esculturas e artesanato, ele
permitirá ao aluno estabelecer conexões entre a Matemática e outras áreas do
conhecimento. (p.39)
• Localização de pessoas ou objetos no espaço, com base
  em diferentes pontos de referência e algumas
  indicações de posição.
• Movimentação de pessoas ou objetos no espaço, com
 base em diferentes pontos de referência e algumas
 indicações de direção e sentido.
• Descrição da localização e movimentação de pessoas ou
 objetos no espaço, usando sua própria terminologia.
• Dimensionamento de espaços, percebendo relações de
 tamanho e forma.
• Interpretação e representação de posição e de
 movimentação no espaço a partir da análise de
 maquetes, esboços, croquis e itinerários.
• Observação de formas geométricas presentes em
  elementos naturais e nos objetos criados pelo homem
  e de suas características: arredondadas ou não,
  simétricas ou não, etc.
• Estabelecimento de comparações entre objetos do
  espaço físico e objetos geométricos — esféricos,
  cilíndricos, cônicos, cúbicos, piramidais, prismáticos —
  sem uso obrigatório de nomenclatura.
• Percepção de semelhanças e diferenças entre cubos e
  quadrados, paralelepípedos e retângulos, pirâmides e
  triângulos, esferas e círculos.
• Construção e representação de formas geométricas.
ATIVIDADES LÚDICAS
COM GEOMETRIA PLANA
Atividade pode ser realizada com:

•1º, 2º e 3º do ciclo I.

Material utilizado:
•Tesoura sem ponta;
•Papel sulfite;
•Lápis de cor ou giz de cera;
•Cola;

Objetivos:
•Reconhecer as formas geométricas (triângulo, quadrado, séculos e
retângulo);
•Delimitar seu espaço e diferenciar as diferentes dimensões das
formas geométricas;
•Estabelecer paralelo com o cotidiano.
• Atividade pode ser realizada com:
• 3º e 4º do ciclo I.
• Material utilizado:
• Lápis de cor ou giz de cera;
• Pode-se utilizar o Paint Brush ou outro software para colorir o
  desenho;
• Objetivos:
• Reconhecer as formas geométricas mais simples (triângulo,
  quadrado, séculos e retângulo) e as mais complexas
  (losângulo, pentágono, paralelograma e trapézio)
• Delimitar seu espaço e diferenciar as diferentes dimensões
  das formas geométricas;
Atividade – Apreciação do espaço
                urbano
• Verificar no espaço urbano diferentes formas
  geométricas.
Atividade 1 – Apreciação do espaço
              urbano
Atividade – Apreciação do espaço
             urbano
Atividade – A natureza por trás das
     formas geométricas - Catenária
• Compreender na natureza como elemento inspirador.
Atividade 2 – A natureza por trás das
  formas geométricas - Catenária




 Missouri - Estados Unidos: Homenagem ao
 presidente Thomas Jefferson
Atividade – A natureza por trás das
 formas geométricas - Catenária
Atividade – Combinação de Formas
               geométricas
• Compor material didático através das diferentes formas
geométricas.
Bibliografia
• LORENZATO, S. Por que não ensinar Geometria?,
  Educação em Revista –Sociedade Brasileira de
  Educação Matemática – SBM, ano 3, n. 4, p. 4 –
  13, 1o sem. 1995.
• PCN – Parâmetros Curriculares Nacionais –
  Matemática – Ciclo I
• SCHMTZ, Carmen e outros. Geometria de 1a a 4a
  série uma brincadeira séria. R.S. Ed.
  Unisinos.1994.

Grécia e a geometria

  • 1.
  • 2.
  • 3.
    A geometria navida cotidiana • Papiro de Ahmes; • Como se deu a elaborada as primeiras regras para obtenção das áreas de um triangulo e trapézio; • Pontos fracos da geometria egípcia; • Legado de maior valor da geometria egípcia.
  • 4.
    Grécia • Grécia doséc. 7 a.C. - geometria como ciência dedutiva • Geometria grega - régua e compasso • Gregos herdam dos egípcios • Criaram leis e regras acerca do espaço
  • 5.
    Grécia e aGeometria • Mais antigas Histórias da Matemática - Eudemos de Rodes, por volta de 320 aC., aluno de Aristóteles • Primeiro registro: Comentário ao primeiro livro de Os Elementos de Euclides - Proclus Diadchus (410-485 dC). É tudo o que sabemos sobre Tales e Pitágoras
  • 6.
    Grécia e aGeometria • Tales de Mileto (624 - 546 a.C.) - introdutor da geometria na Grécia • Pitágoras de Samos (572 - 497 a.C.) - esfericidade Terra, Lua, outros corpos celestes - céu = cosmos - “Teorema de Pitágoras”
  • 7.
    Grécia e aGeometria • Platão (427 – 347 a.C) - Escreve “Timeu”, 5 figuras cósmicas perfeitas • Aristóteles de Estagira (384-322 a.C.) - explicou fases da Lua e eclipses - Universo e esférico e finito - Esfericidade da Terra • Heraclides de Pontus (388-315 a.C.) - propôs Terra gira diariamente sobre seu próprio eixo
  • 8.
    Grécia e aGeometria • Euclides (360 – 295 a.C.) - Criador da famosa geometria euclidiana - “Os Elementos” – dividida em 13 volumes (5 de geometria plana, 3 de geometria no espaço) • Aristarco de Samos (310-230 a.C.) - 1° Terra se movia em volta do Sol, antecipando Copérnico em quase 2000 anos - distâncias relativas do Sol, Lua à Terra - tamanhos relativos da Terra, Sol e Lua
  • 9.
    Grécia e aGeometria •Eratóstenes de Cirênia (276-194 a.C.) - primeiro a medir o diâmetro da Terra - Siena e Alexandria - ângulo 7 graus circunferência da Terra = 1% do valor correto
  • 10.
    • Hiparco deNicéia (160 - 125 a.C.) - catalogo com posição no céu de 850 estrelas; - razão tamanho sombra Terra x tamanho Lua: 8/3; - Lua 59 vezes o raio da Terra de distância (correto 60); - duração do ano com margem de erro de 6 minutos; • Ptolomeu (85 d.C. - 165 d.C.) - último astrônomo importante da antiguidade; - compilou o Almagesto, maior fonte de conhecimento sobre a astronomia na Grécia
  • 11.
    PRINCIPAIS PROBLEMAS COM GEOMETRIAPLANA: POR QUE ENSINAR GEOMETRIA?
  • 12.
    • É atravésda geometria que o homem lida com sua realidade concreta, interage com seu meio e estabelece relações com o mundo. • Desenvolver capacidade de abstração, de generalização e a possibilidade de projeção. • A geometria exige do aluno uma maneira específica de raciocinar (LORENZATO, 1995).
  • 13.
    Por que ensinarGeometria? • Ser bom conhecedor de Aritmética ou de Álgebra não é suficiente para resolver problemas de Geometria (LORENZATO, 1995). • EXEMPLO 1: Compare as áreas dos retângulos escurecidos. Figura 1 Adaptado de (LORENZATO, 1995).
  • 14.
    Por que ensinarGeometria? • EXEMPLO 2: Quantos triângulos você vê? Figura 2 Adaptado de (LORENZATO, 1995). • Em ambos exemplos não há presença de números ou medidas.
  • 15.
    Por que ensinarGeometria? • A Geometria demanda uma leitura diferente da Aritmética ou da Álgebra, na medida em que para resolver o problema é preciso ter “percepção geométrica, raciocínio geométrico e linguagem geométrica, fatores estes essenciais na relação real/forma” (LORENZATO, 1995, p.5).
  • 16.
    Por que ensinarGeometria? • A Geometria pode auxiliar na compreensão de outras formas de raciocínio matemático. • Exemplo de problema: entre coelhos e galinhas tenho 7 cabeças e 20 pés, no total. Quantos coelhos e quantas galinhas possuo?
  • 17.
    Por que ensinarGeometria? • Solução Aritmética: • Equação dos pés: 2 × galinhas + 4 × coelhos = 20 • Equação das cabeças: 1 × galinhas + 1 × coelhos = 7 Resultado: tenho 3 coelhos e 4 galinhas.
  • 18.
    Por que ensinarGeometria? • Solução Geométrica: • “Cada bicho tem sua casinha...são 7” • “2 pernas para cada bicho...sobraram” • “6 pernas...tem que ser dos coelhos“ • “2 pernas mais para cada casinha” • “São 3 coelhos e 4 galinhas” (LORENZATO, 1995).
  • 19.
    Por que ensinarGeometria? • “Apresentação da Geometria como elemento fortemente presente no meio ambiente da criança; portanto, o conhecimento geométrico escolar inicial é natural e familiar”. • “As formas são reproduzidas e investigadas, independentemente de serem bi ou tridimensionais”. • “Transformação de formas, por divisão, ou por combinação de artefatos”. • “Favorecer o desenvolvimento do senso espacial da criança” (LORENZATO, 1995).
  • 20.
    A GEOMETRIA NOENSINO FUNDAMENTAL: CONTEÚDO E MODOS DE ENSINO ORIENTAÇÕES DO PCN.
  • 21.
      No  ensino  da Matemática,  destacam-se  dois  aspectos  básicos:  um  consiste  em  relacionar  observações  do  mundo  real  com  representações  (esquemas,  tabelas,  figuras);  outro  consiste  em  relacionar  essas  representações  com  princípios  e  conceitos  matemáticos.  Nesse processo, a comunicação tem grande importância e  deve  ser  estimulada,  levando-se  o  aluno  a  “falar”  e  a  “escrever”  sobre  Matemática,  a  trabalhar  com  representações  gráficas,  desenhos,  construções,  a  aprender como organizar e tratar dados. (p.18) (...) o ponto de partida da atividade matemática não é a  definição, mas o problema. (p32)
  • 22.
    Década de 60/70– A matemática moderna Década de 80 – doc. “Agenda para Ação” - Etnomatemática • importância do desempenho de um papel ativo do aluno na construção do seu conhecimento; • ênfase na resolução de problemas, na exploração da Matemática a partir dos problemas vividos no cotidiano e encontrados nas várias disciplinas; • importância de se trabalhar com um amplo espectro de conteúdos, incluindo-se, já no ensino fundamental, elementos de estatística, probabilidade e combinatória, para atender à demanda social que indica a necessidade de abordar esses assuntos; • necessidade de levar os alunos a compreenderem a importância do uso da tecnologia e a acompanharem sua permanente renovação. (p.21)
  • 23.
    Temas Transversais •Meio Ambiente- recursos naturais, desperdício — terá ferramentas essenciais em conceitos (médias, áreas, volumes); •Saúde - desenvolvimento físico (altura, peso, musculatura); •educação do consumidor (medidas, porcentagem, sistema monetário). Trabalho coletivo Jogo: “é uma atividade natural no desenvolvimento dos processos psicológicos básicos; supõe um “fazer sem obrigação externa e imposta”, embora demande exigências, normas e controle”.
  • 24.
    Blocos de conteúdos • Números e Operações; • Espaço e Forma; • Grandezas e Medidas; • Tratamento da Informação;
  • 25.
    ESPAÇO E FORMA Os conceitos geométricos constituem parte importante do currículo de Matemática no ensino fundamental, porque, por meio deles, o aluno desenvolve um tipo especial de pensamento que lhe permite compreender, descrever e representar, de forma organizada, o mundo em que vive. A Geometria é um campo fértil para se trabalhar com situações-problema e é um tema pelo qual os alunos costumam se interessar naturalmente. O trabalho com noções geométricas contribui para a aprendizagem de números e medidas, pois estimula a criança a observar, perceber semelhanças e diferenças, identificar regularidades e vice-versa. Além disso, se esse trabalho for feito a partir da exploração dos objetos do mundo físico, de obras de arte, pinturas, desenhos, esculturas e artesanato, ele permitirá ao aluno estabelecer conexões entre a Matemática e outras áreas do conhecimento. (p.39)
  • 26.
    • Localização depessoas ou objetos no espaço, com base em diferentes pontos de referência e algumas indicações de posição. • Movimentação de pessoas ou objetos no espaço, com base em diferentes pontos de referência e algumas indicações de direção e sentido. • Descrição da localização e movimentação de pessoas ou objetos no espaço, usando sua própria terminologia. • Dimensionamento de espaços, percebendo relações de tamanho e forma. • Interpretação e representação de posição e de movimentação no espaço a partir da análise de maquetes, esboços, croquis e itinerários.
  • 27.
    • Observação deformas geométricas presentes em elementos naturais e nos objetos criados pelo homem e de suas características: arredondadas ou não, simétricas ou não, etc. • Estabelecimento de comparações entre objetos do espaço físico e objetos geométricos — esféricos, cilíndricos, cônicos, cúbicos, piramidais, prismáticos — sem uso obrigatório de nomenclatura. • Percepção de semelhanças e diferenças entre cubos e quadrados, paralelepípedos e retângulos, pirâmides e triângulos, esferas e círculos. • Construção e representação de formas geométricas.
  • 28.
  • 29.
    Atividade pode serrealizada com: •1º, 2º e 3º do ciclo I. Material utilizado: •Tesoura sem ponta; •Papel sulfite; •Lápis de cor ou giz de cera; •Cola; Objetivos: •Reconhecer as formas geométricas (triângulo, quadrado, séculos e retângulo); •Delimitar seu espaço e diferenciar as diferentes dimensões das formas geométricas; •Estabelecer paralelo com o cotidiano.
  • 33.
    • Atividade podeser realizada com: • 3º e 4º do ciclo I. • Material utilizado: • Lápis de cor ou giz de cera; • Pode-se utilizar o Paint Brush ou outro software para colorir o desenho; • Objetivos: • Reconhecer as formas geométricas mais simples (triângulo, quadrado, séculos e retângulo) e as mais complexas (losângulo, pentágono, paralelograma e trapézio) • Delimitar seu espaço e diferenciar as diferentes dimensões das formas geométricas;
  • 36.
    Atividade – Apreciaçãodo espaço urbano • Verificar no espaço urbano diferentes formas geométricas.
  • 37.
    Atividade 1 –Apreciação do espaço urbano
  • 38.
    Atividade – Apreciaçãodo espaço urbano
  • 39.
    Atividade – Anatureza por trás das formas geométricas - Catenária • Compreender na natureza como elemento inspirador.
  • 40.
    Atividade 2 –A natureza por trás das formas geométricas - Catenária Missouri - Estados Unidos: Homenagem ao presidente Thomas Jefferson
  • 41.
    Atividade – Anatureza por trás das formas geométricas - Catenária
  • 42.
    Atividade – Combinaçãode Formas geométricas • Compor material didático através das diferentes formas geométricas.
  • 43.
    Bibliografia • LORENZATO, S.Por que não ensinar Geometria?, Educação em Revista –Sociedade Brasileira de Educação Matemática – SBM, ano 3, n. 4, p. 4 – 13, 1o sem. 1995. • PCN – Parâmetros Curriculares Nacionais – Matemática – Ciclo I • SCHMTZ, Carmen e outros. Geometria de 1a a 4a série uma brincadeira séria. R.S. Ed. Unisinos.1994.

Notas do Editor

  • #7 Tales - O grande impulsionador da geometria na Grécia, trazidos do Egito. Das suas principais proposições destaca-se a demonstração da altura da pirâmide através da sua sombra
  • #8 Platão - Profundo admirador de proporção e geometria. Escreve o “Timeu” em 400 a.C. explicando a origem do universo através de 5 figuras cósmicas perfeitas (Ar – octaedro, Fogo – tetraedro, Universo – dodecaedro, Terra – cubo, Água – icosaedro) Aristóteles de Estagira - explicou que as fases da Lua,também, os eclipses. Afirmava que o Universo e esferico e finito. Aristoteles argumentou a favor da esfericidade da Terra, ja que a sombra da Terra na Lua durante um eclipse lunar e sempre arredondada. Heraclides de Pontus - propôs que a Terra gira diariamente sobre seu próprio eixo
  • #9 Euclides – Criador da famosa geometria euclidiana, demonstra nela postulados como “Todos os ângulos rectos são iguais”; “Juntando igual com igual os totais são iguais”; “O todo é maior do que a parte”, etc. Faz das obras mais importantes na história da geometria “Os Elementos” – dividida em 13 volumes (5 de geometria plana, 3 de geometria no espaço)  Aristarco de Samos - primeiro a propor a Terra se movia em volta do Sol, antecipando Copérnico em quase 2000 anos. Entre outras coisas, desenvolveu um método para determinar as distâncias relativas do Sol e da Lua à Terra e mediu os tamanhos relativos da Terra, do Sol e da Lua.
  • #10 Ele notou que, na cidade egipcia de Siena (atualmente chamada de Aswan), no primeiro dia do verao, ao meio-dia, a luz solar atingia o fundo de um grande poco, ou seja, o Sol estava incidindo perpendicularmente a Terra em Siena. Ja em Alexandria, situada ao norte de Siena, isso nao ocorria; medindo o tamanho da sombra de um bastao na vertical, Eratostenes observou que em Alexandria, no mesmo dia e hora, o Sol estava aproximadamente sete graus mais ao sul. A distancia entre Alexandria e Siena era conhecida como de 5000 estadios. Um estadio era uma unidade de distancia usada na Grecia antiga. Um camelo atravessa 100 estadios em um dia, e viaja a cerca de 16 km/dia. Como 7 graus corresponde a 1/50 de um circulo (360 graus), Alexandria deveria estar a 1/50 da circunferencia da Terra ao norte de Siena e a circunferencia da Terra deveria ser 50×5000 estadios. Infelizmente, nao e possivel se ter certeza do valor do estadio usado por Eratostenes, ja que os gregos usavam diferentes tipos de estadios. Se ele utilizou um estádio equivalente a 1/6 km, o valor esta a 1% do valor correto de 40000 km.
  • #11 Hiparco de Nicéia - compilou um catalogo com a posicao no ceu e a magnitude de 850 estrelas. também deduziu o valor correto de 8/3 para a razão entre o tamanho da sombra da Terra e o tamanho da Lua e também que a Lua estava a 59 vezes o raio da Terra de distância; o valor correto é 60. Ele determinou a duração do ano com uma margem de erro de 6 minutos. Ptolomeu - último astrônomo importante da antiguidade que compilou uma série de treze volumes sobre astronomia, conhecida como o Almagesto, que é a maior fonte de conhecimento sobre a astronomia na Grécia.