SlideShare uma empresa Scribd logo
MATEMATICA + PLUS RESPONDE
1. Qual a medida do ângulo, cuja metade do seu complemento é dada por 22º 37’ 38’’?
2. CALCULE o valor de x em cada um dos casos a seguir:
A)
B) OD e OE são bissetrizes dos ângulos AOB e BOC.
3. Da medida de um ângulo tira-se a sua teça parte e depois a metade da medida do suplemento do que
restou e obtém-se 60º. Qual a medida do ângulo?
4. Se r//s, determine 
~
na figura
5. Na figura ao lado, tem-se r//s e t//u.
Se os ângulos assinalados têm as medidas indicadas em graus, então  é igual a:
a) 100º
b) 80º
c) 70º
d) 50º
e) 30º
6. Se r//s,  vale:
a) 100º
b) 110º
c) 130º
d) 150º
e) 120º
7. O suplemento do triplo do complemento da metade de um ângulo é igual ao triplo do complemento
desse ângulo. Determine o ângulo.
8. Um paciente está executando exercícios de fortalecimento da musculatura, em que sua perna aplica
tensão sobre uma haste flexível. Contudo, os ângulos de tensão devem ser calculados para não
exceder a limites estabelecidos no processo de recuperação. A medida do ângulo 0, em graus, para a
situação limite da figura é
a. 30°
b. 40°
c. 50°
d. 55°
e. 60°
9) Nos içamentos de estruturas pesadas, é comum o arranjo de roldanas, cabos e guinchos. Nessas
estruturas, deve-se calcular os ângulos para determinação da carga e tanque suportado em cada ponto. Um
engenheiro no içamento de um peso de 3 toneladas para colocação em uma caçamba calculou os ângulos
para içamento e obteve o valor α, em graus, de
a) 40
b 50
c) 60
d) 70
e) 80
PROPOSTOS COM GABARITO
1. A metade do complemento de um ângulo mede 40° 34’ 50”. Qual o ângulo?
2. (UFES) O triplo do complemento de um ângulo é igual à terça parte do suplemento deste ângulo.
Este ângulo mede:
a) 45° d) 78°45'
b) 60° e) 56°15'
c) 48°30'
3. Se r//s, então x̂ valerá:
a) 32°
b) 33°
c) 65°
d) 43°
e) n.d.a.
4. (Mackenzie) Na figura, DE
/
/
AB
. O valor de  é:
a) 80°
b) 40°
c) 20°
d) 15°
e) 30°
5. O triplo da medida do complemento de um ângulo aumentado de 30° é igual à medida do seu
suplemento. Qual a medida desse ângulo?
a) 20° c) 40° e) 60°
b) 30° d) 50°
6. Da medida de um ângulo tira-se a sua terça parte e depois a metade da medida do suplemento do que
restou e obtêm-se 60°. Qual a medida do ângulo?
a) 150° c) 120° e) 100°
b) 110° d) 130°
7. (FGV-SP) Considere as retas r, s, t, u todas num mesmo plano, com r//u. O valor em graus de (2x +
3y) é:
a) 64°
b) 500°
c) 520°
d) 660°
e) 580°
8. (Cesgranrio-89) Na figura, as retas r e r' são paralelas, e a reta s é perpendicular a t. Se o menor
ângulo entre r e s mede 72°, então o ângulo  da figura mede:
a) 36°
b) 32°
c) 24°
d) 20°
e) 18°
9. O valor de  na figura ao lado é:
a) 20°
b) 30°
c) 40°
d) 50°
e) 60°
GABARITO
1 2 3 4 5 6 7 8 9
* D B B E A B E D
*1) 8°50’20”
TIANGULOS
MATEMATICA + PLUS RESPONDE
1. Na figura, sendo AB congruente a AC , AE congruente a AD, calcule a medida do ângulo E
D̂
C ,
dado D
Â
B = 48º.
2. Na figura MP = NP, NQ = NH e Ĥ = 35º. O valor, em graus, de :
é
,
ˆ
ˆ
ˆ 




a) 190
b) 195
c) 205
d) 210
3. Sendo r e s retas paralelas e DE = 2AB, determine x.
4. A soma A + B + C + D + E das medidas dos ângulos:
a) é 60º
b) é 120º
c) é 180º
d) é 360º
e) varia de “estrela” para “estrela”
5. Observe a figura
Com base nos dados dessa figura, pode-se afirmar que o maior segmento é:
a) AB b) AE c) EC d) BC e) ED
6. Determine a medida do ângulo do vértice A do triangulo isósceles ABC, sabendo que os segmento
FA
,
EF
,
DE
,
CD
,
BC
são congruentes.
a) 10º
b) 20º
c) 30º
d) 40º
e) 50º
7. O triangulo ABC ao lado é isósceles de base BC . Determine x.
8. O modelo de freio apresentado na figura é conhecido como cantilever e está ilustrado em sua
posição de repouso' o valor da medida do ângulo α configurado para essa posição é
a) 30º
b) 35º
c) 40º
d) 45º
e) 50º
Um contêiner é levado para uma plataforma por melo de um trilho inclinado e um carro puxado por um
cabo de aço. A figura mostra a base e a estrutura metálica de confecção do carro.
Na construção da estrutura metálica' os valores das medidas dos ângulos e o comprimento das hastes
devem ser determinados para a escolha da espessura do material empregado. Sabendo que o carro de
transporte do
contêiner foi construído para obter o segmento AB paralelo aos trilhos e possui ponto médio M' então o
valor da medida do ângulo α, em graus, é
a) 10o.
b) 11o.
c) 12°
d) 13o
e) 14o
MATEMATICA + PLUS PROPOSTOS COM GABARITO
1. (Mackenzie) No triângulo da figura, a soma das medidas x, y e z pode ser:
a) 25
b) 27
c) 29
d) 31
e) 33
2. (U.C.SALVADOR) No triângulo retângulo ABC, representado na figura abaixo, AH é a altura
relativa à hipotenusa e AM é mediana. Nestas condições, a medida x do ângulo assinalado é:
a) 55°
b) 65°
c) 70°
d) 75°
e) 80°
3. As medidas dos lados de um triângulo são respectivamente iguais a x + 1, 2x – 1 e 4 – x. Um
possível valor para x é:
a) 3
2
b) 2
3
c) 1 d) 2 e) 10
4. (FATEC) Na figura abaixo, r é a bissetriz do ângulo C
B̂
A . Se  = 40° E  = 30°, então
a)  = 0°
b)  = 5°
c)  = 35°
d)  = 15°
e) os dados são insuficientes para a determinação de 
5. (STO. ANDRÉ) O triângulo ABC é isósceles, com AB = AC . Nele, está inscrito um triângulo DEF
eqüilátero. Designando ângulo D
F̂
B por a, o ângulo E
D̂
A por b, e o ângulo FÊC por c, temos:
a) b = 2
c
a 
d) c = 2
b
a 
b) b = 2
c
a 
e) a = 2
c
b 
c) a = 2
c
b 
6. (FUVEST) Na figura, AB = AC, BX = BY e CZ = CY. Se o ângulo A mede 40°, então o ângulo
XYZ mede:
a) 40°
b) 50°
c) 60°
d) 70°
e) 90°
7. (PUC) Na figura abaixo a = 100° e b = 110°. Quanto mede o ângulo x?
a) 30°
b) 50°
c) 80°
d) 100°
e) 150°
8. (Fuvest) No retângulo abaixo, o valor, em graus, de  +  é:
a) 50
b) 90
c) 120
d) 130
e) 220
9. (Fuvest) Na figura, AB = BD = CD. Então:
a) y = 3x
b) y = 2x
c) x + y = 180°
d) x = y
e) x = 3y
10. (ITA) Seja ABC um triângulo isósceles de base BC. Sobre o lado AC deste triângulo considere um
ponto D tal que os segmentos AD, BD e BC são tosos congruentes entre si. A medida do ângulo
BÂC é igual a:
a) 23°
b) 32°
c) 36°
d) 40°
e) 45°
11. (UNIFENAS) Seja ABC um triângulo retângulo em A, cujo ângulo B̂ mede 52°. O ângulo formado
pela altura AH e pela mediana AM relativas à hipotenusa é:
a) 7°
b) 14°
c) 26°
d) 38°
e) 52°
12. (U.F.G.O) Se dois lados de um triângulo medem respectivamente 3 cm e 4 cm, podemos afirmar que
a medida do terceiro lado é:
a) igual a 5 cm d) igual a 1 cm
b) igual a 7 cm e) menor que 7 cm
c) maior que 2 cm
GABARITO
1 2 3 4 5 6 7 8 9 10
E B D B E D A D A C
11 12
B E
PONTOS NOTÁVEIS
1. Num triângulo retângulo ABC. A altura AS forma com a mediana AM um ângulo de 22º. Calcule B
e C.
2. Considerando congruentes os segmentos com “marcas iguais”, determine os valores das incógnitas
nos casos:
a) b)
3. Determine o perímetro do triângulo ARS da figura, onde AC
e
AB
medem 15 cm e 18 cm,
respectivamente, sendo CQ
e
BQ
as bissetrizes dos ângulos Ĉ
e
B̂
do triângulo ABC e RS paralelo a
BC .
4. O circuncentro de um triângulo isósceles é interno ao triângulo e duas mediatrizes formam um
ângulo de 50º. Determine os ângulos desse triângulo.
5. Se P é incentro de um triângulo ABC e C
P̂
B = 25º, determine  .
6. Na figura abaixo, A, B, C são pontos da tangência. Então x vale.
a) 16
3
b) 8
1
c) 32
3
d) 32
1
e) 16
1
7. Na figura, Q é o ponto médio de AB , QP é paralelo a BC . Sendo AC = 30 cm, determine PO .
a) 3 cm
b) 4 cm
c) 5 cm
d) 6 cm
e) 7 cm
8. Na figura ABCD é retângulo, M é o ponto médio de CD e o triângulo ABM é equilátero Sendo AB
= 15, calcule AP .
a) 7
b) 8
c) 9
d) 10
e) 11
9. No triângulo retângulo ABC da figura, a mediana AM forma com a bissetriz BF os ângulos
adjacentes .
M
F̂
B
e
A
F̂
B
Exprima M
F̂
B em função de B̂ .
a) M
F̂
B = B̂
b) M
F̂
B = 2 B̂
c) 2
B̂
M
F̂
B 
d) M
F̂
B = 3 B̂
e) 2
B̂
3
M
F̂
B 
MATEMATICA + PLUS PROPOSTOS COM GABARITO
1. Em um triângulo ABCX, os ângulos A e B medem, respectivamente, 86º e 34º. Determine o ângulo
agudo formado pela mediatriz relativa ao lado BC e pela bissetriz do ângulo C.
a) 60º b) 30º c) 45º d) 75º e) 65º
2. Determine as medidas dos três ângulos obtusos formado pelas mediatrizes de um triângulo
eqüilátero.
a) 30º b) 45º c) 60º d) 90º e) 120º
3. As bissetrizes dos ângulos Ĉ
e
B̂
de um triângulo ABC formam um ângulo de 116º. Determine a
medida do menor ângulo formado pelas alturas relativas aos lados AC
e
AB
desse triângulo.
4. As três bissetrizes de um triângulo ABC se encontram num ponto O. Determine as medidas dos
ângulos C
Ô
B
e
C
Ô
A
,
B
Ô
A
em função dos ângulos Ĉ
e
B̂
,
Â
do triângulo.
5. Se o quadrilátero ABCD é um paralelogramo e M é ponto médio de AB, determine x.
DP = 16
PM = x
6. Sendo I o incentro do triângulo, determine o valor do ângulo BÂC.
7. Na figura, BD é mediana do triângulo retângulo ABC (B̂ = 90°) e BE  AC. Se  = 70°, calcule a
medida de EB̂ D.
8. Se o triângulo ABC é retângulo de hipotenusa BC e AM é mediana, determine x:
a) 20°
b) 40°
c) 10°
d) 50°
e) 15°
GABARITO
1 2 3 4 5 6 7 8
A E * * * * * A
*3) 52°
*4) 2
Â
º
90
C
Ô
B
;
2
B̂
º
90
C
Ô
A
;
2
Ĉ
º
90
B
Ô
A 





*5) x = 8; *6) x = 20°; *7) 50°
QUARILATEROS
1. Se BP
e
AP
são bissetrizes, determine x nos casos:
2. Se ABCD é um paralelogramo. AD = 20 cm, BQ = 12 cm e BP = BQ, determine o perímetro desse
paralelogramo.
3. A bissetriz de um ângulo obtuso do losango faz com um dos lados de um ângulo de 55º. Determine
o valor dos ângulos agudos.
4. As bases MQ e NP de um trapézio medem 42cm e 112 cm respectivamente. Se o ângulo P
Q̂
M é o
dobro do ângulo M
N̂
P , então o lado PQ mede:
a) 154 cm
b) 133 cm
c) 91 cm
d) 77 cm
e) 70 cm
5. Com os dados da figura seguinte, onde ABCD é um quadrado e ABE é um triângulo eqüilátero,
calcule a medida do ângulo BDE.
6. Na figura, ABCD é um quadrado, ADE e ABF são triângulos eqüiláteros. Se os pontos C, A e M são
colineares, então o ângulo M
Â
F mede:
a) 75º
b) 80º
c) 82º e 30º
d) 85º
e) 87º e 30º
7. Considere um quadrilátero ABCD cuja diagonais AC e BD medem, respectivamente, 5 cm e 6 cm.
Se R, S, T e U são os pontos médios dos lados do quadrilátero dado, então o perímetro do
quadrilátero RSTU vale:
a) 22 cm
b) 5,5 cm
c) 8,5 cm
d) 11 cm
e) 13 cm
8. Sendo ABCD um paralelogramo, AP é bissetriz, AB = 7 cm e PC = 3 cm, determine o
perímetro do paralelogramo.
a) 34 cm
b) 14 cm
c) 20 cm
d) 28 cm
e) 26 cm
9. Na figura seguinte, ABCD é um quadrado e BCE é um triângulo eqüilátero. Calcule em graus, a
medida do ângulo D
F̂
B .
a) 100º
b) 105º
c) 110º
d) 115º
e) 120º
MATEMATICA + PLUS PROPOSTOS COM GABARITO
1. ABCD é trapézio de bases CD
e
AB
. Se CP
e
DP
são bissetrizes, determine x e D
Ĉ
B .
2. Na figura, ABCD é um quadrado e CDEF um losango. Se F
Ĉ
E mede 15°, a medida do ângulo AÊF
é:
a) 15°
b) 30°
c) 45°
d) 60°
e) 75°
3. Na figura seguinte, ABCD é um quadrado e BCE é um triângulo eqüilátero. Calcular em graus a
medida do ângulo D
F̂
B
4. Num quadrilátero ABCD, o ângulo Ĉ é igual a 1/3 do ângulo B̂ , o ângulo  mede o quíntuplo do
ângulo Ĉ e o ângulo D̂ vale 45°. Pode–se dizer que  – B̂ vale:
a) 50°
b) 60°
c) 70°
d) 80°
e) 90°
5. Na figura abaixo, ABCD é um quadrado e os triângulos ADE e ABF são eqüiláteros. A medida do
ângulo PÊA é:
6. Com os dados da figura seguinte, onde ABCD é um quarado e ABE é um triângulo eqüilátero,
calcule a medida do ângulo BDE.
7. Num triângulo eqüilátero ABC,de 8 cm de lado, traça-se MN paralelo ao lado BC, de modo que ele
se decomponha num trapézio e num novo triângulo. O valor de MN para o qual o perímetro do
trapézio seja igual ao do triângulo AMN é:
a) 2 cm
b) 3 cm
c) 4 cm
d) 5 cm
e) 6 cm
8. Seja ABCD um trapézio retângulo. O ângulo formado pelas bissetrizes do seu ângulo reto e do
ângulo consecutivo da base maior mede 92º. Os ângulos agudo e obtuso deste trapézio medem
respectivamente:
a) 88º e 92º
b) 86º e 94º
c) 84º e 96º
d) 82º e 98º
e) 79º e 101º
9. Com um arame de 36 m de comprimento construímos um triângulo equilátero e com o mesmo
arame construímos depois um quadrado. Determine a razão entre o lado do triângulo e o lado do
quadrado.
10. Na figura abaixo, ABCD é um quadrado e os triângulos ADE e ABF são equiláteros. A media do
ângulo A
Ê
F é:
GABARITO
1 2 3 4 5 6 7 8 9 10
* D * C * * E B * *
1) x = 140°; 3) 105°; 5) 15° ; 6) 30°; 9) 4/3;
10) 15°
1
14
48
8
1. Se o triângulo ABP é eqüilátero e ABCDE é pentágono regular, determine x nos casos:
a) b)
2. Determine o polígono cujo número de diagonais é quadrado do número de lados.
3. Os lados de um polígono regular de n lados n > 4, são prolongados para formar uma estrela. O
número de graus em cada vértice as estrela é:
a) n
º
360
b) n
º
180
)
4
n
( 

c) n
º
180
)
2
n
( 

d) 180º - n
º
90
e) n
º
180
4. Três polígonos têm o número de lados expressos por números inteiros consecutivos. Sabendo
que o número total de diagonais dos três polígonos é igual a 28, determine o polígono com
maior número de diagonais.
5. A soma dos ângulos internos com a dos ângulos externos de um polígono regular vale 1 800º.
Determine o número de diagonais do polígono.
6. Na figura abaixo, determine a soma das medidas dos ângulos. .
f̂
ê
d̂
ĉ
b̂
â 




1
14
49
9
7. Determine os valores de x e y nos casos:
a) pentágono regular e quadrado
b) hexágono regular e quadrado
8. Determine o número de lados de um polígono convexo, sabendo que de um de seus vértices
partem 25 diagonais.
POLÍGONOS
1. Três polígonos convexos têm, respectivamente n, n + 1 ; n + 2 lados. A soma dos ângulos
internos desse polígono é 1.620º. determine o valor de n.
a) n = 3
b) n = 4
c) n = 5
d) n = 6
e) n= 7
2. A som dos ângulos assinalados vale:
a) 100º
b) 360º
c) 180º
d) 400º
e) 600º
3. Tendo-se, na figura seguinte, um pentágono regular ABCDE onde estão traçados suas
diagonais, calcular, em graus, a medida do ângulo .
a) 20º
b) 28º
c) 30º
d) 36º
e) 40º
1
15
50
0
4. As mediatrizes de dois lados consecutivos de um polígono regular formam um ângulo igual a
20º. Esse polígono é:
a) um octógono regular;
b) um eneágono regular
c) um pentágono regular
d) um icoságono regular
e) n.d.a.
5. São dados dois polígonos regulares. O segundo tem 4 lados a mais que o primeiro e o ângulo
central do primeiro excede a medida do ângulo central do segundo em 45º. O número de lados
do primeiro polígono é:
a) 4
b) 6
c) 8
d) 10
e) 12
6. O número de diagonais de um polígono regular de 2n lados, que não passam pelo centro da
circunferência circunscrita a esse polígono, é dado por:
a) 2n(n – 2)
b) 2n(n – 1)
c) 2n(n – 3)
d) 2
)
5
n
(
n 

e) n.d.a.
7. Nos casos abaixo, determine x, sabendo que os segmentos DP
,
CP
,
BP
,
AP
nas figuras em que
aparecem são bissetrizes.
8. Dois polígonos convexos têm o número de lados expresso pelos números n e n + 4. Determine
o valor de n, sabendo que um dos polígonos tem 34 diagonais mais do que o outro.
9. A figura descreve o movimento de um robô:
Partindo de A, ele sistematicamente avança 2 m e gira 45° para a esquerda. Quando esse robô retornar ao
ponto A, a trajetória percorrida terá sido:
1
15
51
1
a) uma circunferência
b) um hexágono regular
c) um octógono regular
d) um decágono regular
e) um polígono não–regular
10. Aumentando o número de lados de um polígono em 3, seu número de diagonais aumenta em
21. Determine o número de diagonais desse polígono.
a) 13 c) 15 e) 17
b) 14 d) 16
11. Três polígonos convexos têm n, n + 1, n + 2 lados, respectivamente. Sendo 2700° a soma de
toso os ângulos internos dos três polígonos, determine o valor de n.
a) 6
b) 8
c) 10
d) 12
e) 14
12. Um polígono regular possui 30 diagonais que não passam pelo seu centro. Quanto mede cada
ângulo interno dele?
a) 126°
b) 100°
c) 112°
d) 120°
e) 144°
GABARITO
1 2 3 4 5 6 7 8 9 10
b B D e a a * * C B
11 12
A E
*7) X = 60; 8) n = 8
MATEMATICA + PLUS DESAFIA VOCÊ
1
15
52
2
1. Na figura, as retas t1 e t2 são paralelas. CALCULE a medida do ângulo x.

Mais conteúdo relacionado

Mais procurados

Estudo de geometria plana corrigida
Estudo de geometria plana   corrigidaEstudo de geometria plana   corrigida
Estudo de geometria plana corrigida
Oswaldo Stanziola
 
Lei dos senos e cossenos
Lei dos senos e cossenosLei dos senos e cossenos
Lei dos senos e cossenos
Wellington Moreira
 
Geoplana
GeoplanaGeoplana
Geoplana
Robson S
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Secretaria de Estado de Educação do Pará
 
Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337
Alcides Cabral
 
Geometria Plana - Exercícios
Geometria Plana - ExercíciosGeometria Plana - Exercícios
Geometria Plana - Exercícios
Everton Moraes
 
Geo jeca plana
Geo jeca planaGeo jeca plana
Geo jeca plana
Gabriel Angelo Oliveira
 
Mat geometria analitica 003
Mat geometria analitica   003Mat geometria analitica   003
Mat geometria analitica 003
trigono_metrico
 
Exercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOSExercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOS
thieresaulas
 
Mat razao e proporcao
Mat razao e proporcaoMat razao e proporcao
Mat razao e proporcao
comentada
 
Cap 7-ângulos e triângulos
Cap 7-ângulos e triângulosCap 7-ângulos e triângulos
Cap 7-ângulos e triângulos
Felipe Ferreira
 
Gapontos2013
Gapontos2013Gapontos2013
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
KalculosOnline
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
trigono_metrico
 
Trigonometria senos - cossenos e tangentes
Trigonometria   senos - cossenos e tangentesTrigonometria   senos - cossenos e tangentes
Trigonometria senos - cossenos e tangentes
André Luís Nogueira
 
Apostila de geometria plana exercícios resolvidos - crbrasil
Apostila de geometria plana   exercícios resolvidos - crbrasilApostila de geometria plana   exercícios resolvidos - crbrasil
Apostila de geometria plana exercícios resolvidos - crbrasil
Celso do Rozário Brasil Gonçalves
 
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
Vídeo Aulas Apoio
 
Apostila trigonometria
Apostila trigonometriaApostila trigonometria
Apostila trigonometria
aletriak
 
Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01
ProfCalazans
 
Assunto ângulos
Assunto ângulosAssunto ângulos
Assunto ângulos
Teia De Ensino
 

Mais procurados (20)

Estudo de geometria plana corrigida
Estudo de geometria plana   corrigidaEstudo de geometria plana   corrigida
Estudo de geometria plana corrigida
 
Lei dos senos e cossenos
Lei dos senos e cossenosLei dos senos e cossenos
Lei dos senos e cossenos
 
Geoplana
GeoplanaGeoplana
Geoplana
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
 
Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337
 
Geometria Plana - Exercícios
Geometria Plana - ExercíciosGeometria Plana - Exercícios
Geometria Plana - Exercícios
 
Geo jeca plana
Geo jeca planaGeo jeca plana
Geo jeca plana
 
Mat geometria analitica 003
Mat geometria analitica   003Mat geometria analitica   003
Mat geometria analitica 003
 
Exercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOSExercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOS
 
Mat razao e proporcao
Mat razao e proporcaoMat razao e proporcao
Mat razao e proporcao
 
Cap 7-ângulos e triângulos
Cap 7-ângulos e triângulosCap 7-ângulos e triângulos
Cap 7-ângulos e triângulos
 
Gapontos2013
Gapontos2013Gapontos2013
Gapontos2013
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
 
Trigonometria senos - cossenos e tangentes
Trigonometria   senos - cossenos e tangentesTrigonometria   senos - cossenos e tangentes
Trigonometria senos - cossenos e tangentes
 
Apostila de geometria plana exercícios resolvidos - crbrasil
Apostila de geometria plana   exercícios resolvidos - crbrasilApostila de geometria plana   exercícios resolvidos - crbrasil
Apostila de geometria plana exercícios resolvidos - crbrasil
 
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
www.CentroApoio.com - Matemática - Trigonometria - Exercícios Resolvidos - Ap...
 
Apostila trigonometria
Apostila trigonometriaApostila trigonometria
Apostila trigonometria
 
Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01
 
Assunto ângulos
Assunto ângulosAssunto ângulos
Assunto ângulos
 

Semelhante a Apostila mt maurion

Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337
Alcides Cabral
 
2ª lista de geometria
2ª lista de geometria2ª lista de geometria
2ª lista de geometria
Professor Carlinhos
 
Lista de Matemática 01
Lista de Matemática 01Lista de Matemática 01
Lista de Matemática 01
Arthur Prata
 
Lei dos senos e lei dos cossenos
Lei dos senos e lei dos cossenosLei dos senos e lei dos cossenos
Lei dos senos e lei dos cossenos
KalculosOnline
 
M (1)
M (1)M (1)
Lista - Geometria
Lista - GeometriaLista - Geometria
Lista - Geometria
luiz10filho
 
Exercios extras de lei dos senos e cossenos
Exercios extras de lei dos senos e cossenosExercios extras de lei dos senos e cossenos
Exercios extras de lei dos senos e cossenos
Professor Carlinhos
 
Trigonometria - Lei dos senos e cossenos
Trigonometria - Lei dos senos e cossenosTrigonometria - Lei dos senos e cossenos
Trigonometria - Lei dos senos e cossenos
KalculosOnline
 
Áreas 3
Áreas 3Áreas 3
Áreas 3
KalculosOnline
 
Segmentos proporcionais
Segmentos proporcionaisSegmentos proporcionais
Segmentos proporcionais
KalculosOnline
 
Geometria plana - Fundamentos
Geometria plana - FundamentosGeometria plana - Fundamentos
Geometria plana - Fundamentos
KalculosOnline
 
Lista de-exercicio-n-1- geometria-plana--2017-1
Lista de-exercicio-n-1- geometria-plana--2017-1Lista de-exercicio-n-1- geometria-plana--2017-1
Lista de-exercicio-n-1- geometria-plana--2017-1
Robsoncn
 
9ª lista de exercícios de geometria
9ª lista de exercícios de  geometria9ª lista de exercícios de  geometria
9ª lista de exercícios de geometria
Professor Carlinhos
 
D (1)
D (1)D (1)
8º ano geometria
8º ano geometria8º ano geometria
8º ano geometria
Marisa Carnieto Santos
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01
ProfCalazans
 
Matemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifbaMatemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifba
Jakson Raphael Pereira Barbosa
 
5ª lista de geometria
5ª lista de geometria5ª lista de geometria
5ª lista de geometria
Professor Carlinhos
 
Exercciossobreangulosrectas 110628140542-phpapp02
Exercciossobreangulosrectas 110628140542-phpapp02Exercciossobreangulosrectas 110628140542-phpapp02
Exercciossobreangulosrectas 110628140542-phpapp02
Hermes da Silva
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
P Valter De Almeida Gomes
 

Semelhante a Apostila mt maurion (20)

Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337Lista de exercicios_-_geometria_plana010620111337
Lista de exercicios_-_geometria_plana010620111337
 
2ª lista de geometria
2ª lista de geometria2ª lista de geometria
2ª lista de geometria
 
Lista de Matemática 01
Lista de Matemática 01Lista de Matemática 01
Lista de Matemática 01
 
Lei dos senos e lei dos cossenos
Lei dos senos e lei dos cossenosLei dos senos e lei dos cossenos
Lei dos senos e lei dos cossenos
 
M (1)
M (1)M (1)
M (1)
 
Lista - Geometria
Lista - GeometriaLista - Geometria
Lista - Geometria
 
Exercios extras de lei dos senos e cossenos
Exercios extras de lei dos senos e cossenosExercios extras de lei dos senos e cossenos
Exercios extras de lei dos senos e cossenos
 
Trigonometria - Lei dos senos e cossenos
Trigonometria - Lei dos senos e cossenosTrigonometria - Lei dos senos e cossenos
Trigonometria - Lei dos senos e cossenos
 
Áreas 3
Áreas 3Áreas 3
Áreas 3
 
Segmentos proporcionais
Segmentos proporcionaisSegmentos proporcionais
Segmentos proporcionais
 
Geometria plana - Fundamentos
Geometria plana - FundamentosGeometria plana - Fundamentos
Geometria plana - Fundamentos
 
Lista de-exercicio-n-1- geometria-plana--2017-1
Lista de-exercicio-n-1- geometria-plana--2017-1Lista de-exercicio-n-1- geometria-plana--2017-1
Lista de-exercicio-n-1- geometria-plana--2017-1
 
9ª lista de exercícios de geometria
9ª lista de exercícios de  geometria9ª lista de exercícios de  geometria
9ª lista de exercícios de geometria
 
D (1)
D (1)D (1)
D (1)
 
8º ano geometria
8º ano geometria8º ano geometria
8º ano geometria
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01
 
Matemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifbaMatemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifba
 
5ª lista de geometria
5ª lista de geometria5ª lista de geometria
5ª lista de geometria
 
Exercciossobreangulosrectas 110628140542-phpapp02
Exercciossobreangulosrectas 110628140542-phpapp02Exercciossobreangulosrectas 110628140542-phpapp02
Exercciossobreangulosrectas 110628140542-phpapp02
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
 

Último

O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
Falcão Brasil
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
valdeci17
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
Marcelo Botura
 
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Falcão Brasil
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Falcão Brasil
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
Falcão Brasil
 
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdfPortfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Falcão Brasil
 
UFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdfUFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdf
Manuais Formação
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Falcão Brasil
 
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
Estuda.com
 
P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
Ceiça Martins Vital
 
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Falcão Brasil
 
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.pptAnálise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
Falcão Brasil
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
Falcão Brasil
 
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
SheylaAlves6
 
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdfGeotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Falcão Brasil
 
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptxSlides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
LuizHenriquedeAlmeid6
 
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptxSlides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
LuizHenriquedeAlmeid6
 

Último (20)

O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
 
Introdução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdfIntrodução ao filme Divertida Mente 2 em pdf
Introdução ao filme Divertida Mente 2 em pdf
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
 
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
Aviação de Reconhecimento e Ataque na FAB. A Saga dos Guerreiros Polivalentes...
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
 
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdfPortfólio Estratégico da Força Aérea Brasileira (FAB).pdf
Portfólio Estratégico da Força Aérea Brasileira (FAB).pdf
 
UFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdfUFCD_5673_Segurança nos transportes_índice.pdf
UFCD_5673_Segurança nos transportes_índice.pdf
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdfAviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
Aviação de Asas Rotativas. Aos Rotores, o Sabre!.pdf
 
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
17 Coisas que seus alunos deveriam saber sobre TRI para melhorar sua nota no ...
 
P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
 
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
Organograma do Centro Gestor e Operacional do Sistema de Proteção da Amazônia...
 
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.pptAnálise dos resultados do desmatamento obtidos pelo SIAD.ppt
Análise dos resultados do desmatamento obtidos pelo SIAD.ppt
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
 
Festa dos Finalistas .
Festa dos Finalistas                    .Festa dos Finalistas                    .
Festa dos Finalistas .
 
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
28 - Agente de Endemias (40 mapas mentais) - Amostra.pdf
 
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdfGeotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
 
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptxSlides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
Slides Lição 3, Betel, A relevância da Igreja no cumprimento de sua Missão.pptx
 
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptxSlides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
Slides Lição 4, CPAD, O Encontro de Rute com Boaz, 3Tr24.pptx
 

Apostila mt maurion

  • 1. MATEMATICA + PLUS RESPONDE 1. Qual a medida do ângulo, cuja metade do seu complemento é dada por 22º 37’ 38’’? 2. CALCULE o valor de x em cada um dos casos a seguir: A) B) OD e OE são bissetrizes dos ângulos AOB e BOC. 3. Da medida de um ângulo tira-se a sua teça parte e depois a metade da medida do suplemento do que restou e obtém-se 60º. Qual a medida do ângulo? 4. Se r//s, determine  ~ na figura
  • 2. 5. Na figura ao lado, tem-se r//s e t//u. Se os ângulos assinalados têm as medidas indicadas em graus, então  é igual a: a) 100º b) 80º c) 70º d) 50º e) 30º 6. Se r//s,  vale: a) 100º b) 110º c) 130º d) 150º e) 120º 7. O suplemento do triplo do complemento da metade de um ângulo é igual ao triplo do complemento desse ângulo. Determine o ângulo. 8. Um paciente está executando exercícios de fortalecimento da musculatura, em que sua perna aplica tensão sobre uma haste flexível. Contudo, os ângulos de tensão devem ser calculados para não exceder a limites estabelecidos no processo de recuperação. A medida do ângulo 0, em graus, para a situação limite da figura é
  • 3. a. 30° b. 40° c. 50° d. 55° e. 60° 9) Nos içamentos de estruturas pesadas, é comum o arranjo de roldanas, cabos e guinchos. Nessas estruturas, deve-se calcular os ângulos para determinação da carga e tanque suportado em cada ponto. Um engenheiro no içamento de um peso de 3 toneladas para colocação em uma caçamba calculou os ângulos para içamento e obteve o valor α, em graus, de a) 40 b 50 c) 60 d) 70 e) 80
  • 4. PROPOSTOS COM GABARITO 1. A metade do complemento de um ângulo mede 40° 34’ 50”. Qual o ângulo? 2. (UFES) O triplo do complemento de um ângulo é igual à terça parte do suplemento deste ângulo. Este ângulo mede: a) 45° d) 78°45' b) 60° e) 56°15' c) 48°30' 3. Se r//s, então x̂ valerá: a) 32° b) 33° c) 65° d) 43° e) n.d.a. 4. (Mackenzie) Na figura, DE / / AB . O valor de  é: a) 80° b) 40° c) 20° d) 15° e) 30° 5. O triplo da medida do complemento de um ângulo aumentado de 30° é igual à medida do seu suplemento. Qual a medida desse ângulo? a) 20° c) 40° e) 60° b) 30° d) 50° 6. Da medida de um ângulo tira-se a sua terça parte e depois a metade da medida do suplemento do que restou e obtêm-se 60°. Qual a medida do ângulo? a) 150° c) 120° e) 100° b) 110° d) 130° 7. (FGV-SP) Considere as retas r, s, t, u todas num mesmo plano, com r//u. O valor em graus de (2x + 3y) é: a) 64° b) 500° c) 520°
  • 5. d) 660° e) 580° 8. (Cesgranrio-89) Na figura, as retas r e r' são paralelas, e a reta s é perpendicular a t. Se o menor ângulo entre r e s mede 72°, então o ângulo  da figura mede: a) 36° b) 32° c) 24° d) 20° e) 18° 9. O valor de  na figura ao lado é: a) 20° b) 30° c) 40° d) 50° e) 60° GABARITO 1 2 3 4 5 6 7 8 9 * D B B E A B E D *1) 8°50’20”
  • 6. TIANGULOS MATEMATICA + PLUS RESPONDE 1. Na figura, sendo AB congruente a AC , AE congruente a AD, calcule a medida do ângulo E D̂ C , dado D Â B = 48º. 2. Na figura MP = NP, NQ = NH e Ĥ = 35º. O valor, em graus, de : é , ˆ ˆ ˆ      a) 190 b) 195 c) 205 d) 210 3. Sendo r e s retas paralelas e DE = 2AB, determine x. 4. A soma A + B + C + D + E das medidas dos ângulos: a) é 60º b) é 120º c) é 180º d) é 360º e) varia de “estrela” para “estrela”
  • 7. 5. Observe a figura Com base nos dados dessa figura, pode-se afirmar que o maior segmento é: a) AB b) AE c) EC d) BC e) ED 6. Determine a medida do ângulo do vértice A do triangulo isósceles ABC, sabendo que os segmento FA , EF , DE , CD , BC são congruentes. a) 10º b) 20º c) 30º d) 40º e) 50º 7. O triangulo ABC ao lado é isósceles de base BC . Determine x. 8. O modelo de freio apresentado na figura é conhecido como cantilever e está ilustrado em sua posição de repouso' o valor da medida do ângulo α configurado para essa posição é
  • 8. a) 30º b) 35º c) 40º d) 45º e) 50º Um contêiner é levado para uma plataforma por melo de um trilho inclinado e um carro puxado por um cabo de aço. A figura mostra a base e a estrutura metálica de confecção do carro. Na construção da estrutura metálica' os valores das medidas dos ângulos e o comprimento das hastes devem ser determinados para a escolha da espessura do material empregado. Sabendo que o carro de transporte do
  • 9. contêiner foi construído para obter o segmento AB paralelo aos trilhos e possui ponto médio M' então o valor da medida do ângulo α, em graus, é a) 10o. b) 11o. c) 12° d) 13o e) 14o MATEMATICA + PLUS PROPOSTOS COM GABARITO 1. (Mackenzie) No triângulo da figura, a soma das medidas x, y e z pode ser: a) 25 b) 27 c) 29 d) 31 e) 33 2. (U.C.SALVADOR) No triângulo retângulo ABC, representado na figura abaixo, AH é a altura relativa à hipotenusa e AM é mediana. Nestas condições, a medida x do ângulo assinalado é: a) 55° b) 65° c) 70° d) 75° e) 80° 3. As medidas dos lados de um triângulo são respectivamente iguais a x + 1, 2x – 1 e 4 – x. Um possível valor para x é: a) 3 2 b) 2 3 c) 1 d) 2 e) 10 4. (FATEC) Na figura abaixo, r é a bissetriz do ângulo C B̂ A . Se  = 40° E  = 30°, então a)  = 0° b)  = 5° c)  = 35° d)  = 15° e) os dados são insuficientes para a determinação de 
  • 10. 5. (STO. ANDRÉ) O triângulo ABC é isósceles, com AB = AC . Nele, está inscrito um triângulo DEF eqüilátero. Designando ângulo D F̂ B por a, o ângulo E D̂ A por b, e o ângulo FÊC por c, temos: a) b = 2 c a  d) c = 2 b a  b) b = 2 c a  e) a = 2 c b  c) a = 2 c b  6. (FUVEST) Na figura, AB = AC, BX = BY e CZ = CY. Se o ângulo A mede 40°, então o ângulo XYZ mede: a) 40° b) 50° c) 60° d) 70° e) 90° 7. (PUC) Na figura abaixo a = 100° e b = 110°. Quanto mede o ângulo x? a) 30° b) 50° c) 80° d) 100° e) 150° 8. (Fuvest) No retângulo abaixo, o valor, em graus, de  +  é: a) 50 b) 90 c) 120 d) 130 e) 220
  • 11. 9. (Fuvest) Na figura, AB = BD = CD. Então: a) y = 3x b) y = 2x c) x + y = 180° d) x = y e) x = 3y 10. (ITA) Seja ABC um triângulo isósceles de base BC. Sobre o lado AC deste triângulo considere um ponto D tal que os segmentos AD, BD e BC são tosos congruentes entre si. A medida do ângulo BÂC é igual a: a) 23° b) 32° c) 36° d) 40° e) 45° 11. (UNIFENAS) Seja ABC um triângulo retângulo em A, cujo ângulo B̂ mede 52°. O ângulo formado pela altura AH e pela mediana AM relativas à hipotenusa é: a) 7° b) 14° c) 26° d) 38° e) 52° 12. (U.F.G.O) Se dois lados de um triângulo medem respectivamente 3 cm e 4 cm, podemos afirmar que a medida do terceiro lado é: a) igual a 5 cm d) igual a 1 cm b) igual a 7 cm e) menor que 7 cm c) maior que 2 cm GABARITO 1 2 3 4 5 6 7 8 9 10 E B D B E D A D A C 11 12 B E
  • 12. PONTOS NOTÁVEIS 1. Num triângulo retângulo ABC. A altura AS forma com a mediana AM um ângulo de 22º. Calcule B e C. 2. Considerando congruentes os segmentos com “marcas iguais”, determine os valores das incógnitas nos casos: a) b) 3. Determine o perímetro do triângulo ARS da figura, onde AC e AB medem 15 cm e 18 cm, respectivamente, sendo CQ e BQ as bissetrizes dos ângulos Ĉ e B̂ do triângulo ABC e RS paralelo a BC . 4. O circuncentro de um triângulo isósceles é interno ao triângulo e duas mediatrizes formam um ângulo de 50º. Determine os ângulos desse triângulo. 5. Se P é incentro de um triângulo ABC e C P̂ B = 25º, determine  . 6. Na figura abaixo, A, B, C são pontos da tangência. Então x vale. a) 16 3 b) 8 1
  • 13. c) 32 3 d) 32 1 e) 16 1 7. Na figura, Q é o ponto médio de AB , QP é paralelo a BC . Sendo AC = 30 cm, determine PO . a) 3 cm b) 4 cm c) 5 cm d) 6 cm e) 7 cm 8. Na figura ABCD é retângulo, M é o ponto médio de CD e o triângulo ABM é equilátero Sendo AB = 15, calcule AP . a) 7 b) 8 c) 9 d) 10 e) 11 9. No triângulo retângulo ABC da figura, a mediana AM forma com a bissetriz BF os ângulos adjacentes . M F̂ B e A F̂ B Exprima M F̂ B em função de B̂ . a) M F̂ B = B̂ b) M F̂ B = 2 B̂ c) 2 B̂ M F̂ B  d) M F̂ B = 3 B̂ e) 2 B̂ 3 M F̂ B  MATEMATICA + PLUS PROPOSTOS COM GABARITO
  • 14. 1. Em um triângulo ABCX, os ângulos A e B medem, respectivamente, 86º e 34º. Determine o ângulo agudo formado pela mediatriz relativa ao lado BC e pela bissetriz do ângulo C. a) 60º b) 30º c) 45º d) 75º e) 65º 2. Determine as medidas dos três ângulos obtusos formado pelas mediatrizes de um triângulo eqüilátero. a) 30º b) 45º c) 60º d) 90º e) 120º 3. As bissetrizes dos ângulos Ĉ e B̂ de um triângulo ABC formam um ângulo de 116º. Determine a medida do menor ângulo formado pelas alturas relativas aos lados AC e AB desse triângulo. 4. As três bissetrizes de um triângulo ABC se encontram num ponto O. Determine as medidas dos ângulos C Ô B e C Ô A , B Ô A em função dos ângulos Ĉ e B̂ , Â do triângulo. 5. Se o quadrilátero ABCD é um paralelogramo e M é ponto médio de AB, determine x. DP = 16 PM = x 6. Sendo I o incentro do triângulo, determine o valor do ângulo BÂC. 7. Na figura, BD é mediana do triângulo retângulo ABC (B̂ = 90°) e BE  AC. Se  = 70°, calcule a medida de EB̂ D. 8. Se o triângulo ABC é retângulo de hipotenusa BC e AM é mediana, determine x: a) 20°
  • 15. b) 40° c) 10° d) 50° e) 15° GABARITO 1 2 3 4 5 6 7 8 A E * * * * * A *3) 52° *4) 2 Â º 90 C Ô B ; 2 B̂ º 90 C Ô A ; 2 Ĉ º 90 B Ô A       *5) x = 8; *6) x = 20°; *7) 50° QUARILATEROS 1. Se BP e AP são bissetrizes, determine x nos casos: 2. Se ABCD é um paralelogramo. AD = 20 cm, BQ = 12 cm e BP = BQ, determine o perímetro desse paralelogramo. 3. A bissetriz de um ângulo obtuso do losango faz com um dos lados de um ângulo de 55º. Determine o valor dos ângulos agudos. 4. As bases MQ e NP de um trapézio medem 42cm e 112 cm respectivamente. Se o ângulo P Q̂ M é o dobro do ângulo M N̂ P , então o lado PQ mede:
  • 16. a) 154 cm b) 133 cm c) 91 cm d) 77 cm e) 70 cm 5. Com os dados da figura seguinte, onde ABCD é um quadrado e ABE é um triângulo eqüilátero, calcule a medida do ângulo BDE. 6. Na figura, ABCD é um quadrado, ADE e ABF são triângulos eqüiláteros. Se os pontos C, A e M são colineares, então o ângulo M Â F mede: a) 75º b) 80º c) 82º e 30º d) 85º e) 87º e 30º 7. Considere um quadrilátero ABCD cuja diagonais AC e BD medem, respectivamente, 5 cm e 6 cm. Se R, S, T e U são os pontos médios dos lados do quadrilátero dado, então o perímetro do quadrilátero RSTU vale: a) 22 cm b) 5,5 cm c) 8,5 cm d) 11 cm e) 13 cm 8. Sendo ABCD um paralelogramo, AP é bissetriz, AB = 7 cm e PC = 3 cm, determine o perímetro do paralelogramo. a) 34 cm b) 14 cm c) 20 cm d) 28 cm e) 26 cm
  • 17. 9. Na figura seguinte, ABCD é um quadrado e BCE é um triângulo eqüilátero. Calcule em graus, a medida do ângulo D F̂ B . a) 100º b) 105º c) 110º d) 115º e) 120º MATEMATICA + PLUS PROPOSTOS COM GABARITO 1. ABCD é trapézio de bases CD e AB . Se CP e DP são bissetrizes, determine x e D Ĉ B . 2. Na figura, ABCD é um quadrado e CDEF um losango. Se F Ĉ E mede 15°, a medida do ângulo AÊF é: a) 15° b) 30° c) 45° d) 60° e) 75° 3. Na figura seguinte, ABCD é um quadrado e BCE é um triângulo eqüilátero. Calcular em graus a medida do ângulo D F̂ B 4. Num quadrilátero ABCD, o ângulo Ĉ é igual a 1/3 do ângulo B̂ , o ângulo  mede o quíntuplo do ângulo Ĉ e o ângulo D̂ vale 45°. Pode–se dizer que  – B̂ vale: a) 50° b) 60° c) 70° d) 80° e) 90° 5. Na figura abaixo, ABCD é um quadrado e os triângulos ADE e ABF são eqüiláteros. A medida do ângulo PÊA é:
  • 18. 6. Com os dados da figura seguinte, onde ABCD é um quarado e ABE é um triângulo eqüilátero, calcule a medida do ângulo BDE. 7. Num triângulo eqüilátero ABC,de 8 cm de lado, traça-se MN paralelo ao lado BC, de modo que ele se decomponha num trapézio e num novo triângulo. O valor de MN para o qual o perímetro do trapézio seja igual ao do triângulo AMN é: a) 2 cm b) 3 cm c) 4 cm d) 5 cm e) 6 cm 8. Seja ABCD um trapézio retângulo. O ângulo formado pelas bissetrizes do seu ângulo reto e do ângulo consecutivo da base maior mede 92º. Os ângulos agudo e obtuso deste trapézio medem respectivamente: a) 88º e 92º b) 86º e 94º c) 84º e 96º d) 82º e 98º e) 79º e 101º 9. Com um arame de 36 m de comprimento construímos um triângulo equilátero e com o mesmo arame construímos depois um quadrado. Determine a razão entre o lado do triângulo e o lado do quadrado.
  • 19. 10. Na figura abaixo, ABCD é um quadrado e os triângulos ADE e ABF são equiláteros. A media do ângulo A Ê F é: GABARITO 1 2 3 4 5 6 7 8 9 10 * D * C * * E B * * 1) x = 140°; 3) 105°; 5) 15° ; 6) 30°; 9) 4/3; 10) 15°
  • 20. 1 14 48 8 1. Se o triângulo ABP é eqüilátero e ABCDE é pentágono regular, determine x nos casos: a) b) 2. Determine o polígono cujo número de diagonais é quadrado do número de lados. 3. Os lados de um polígono regular de n lados n > 4, são prolongados para formar uma estrela. O número de graus em cada vértice as estrela é: a) n º 360 b) n º 180 ) 4 n (   c) n º 180 ) 2 n (   d) 180º - n º 90 e) n º 180 4. Três polígonos têm o número de lados expressos por números inteiros consecutivos. Sabendo que o número total de diagonais dos três polígonos é igual a 28, determine o polígono com maior número de diagonais. 5. A soma dos ângulos internos com a dos ângulos externos de um polígono regular vale 1 800º. Determine o número de diagonais do polígono. 6. Na figura abaixo, determine a soma das medidas dos ângulos. . f̂ ê d̂ ĉ b̂ â     
  • 21. 1 14 49 9 7. Determine os valores de x e y nos casos: a) pentágono regular e quadrado b) hexágono regular e quadrado 8. Determine o número de lados de um polígono convexo, sabendo que de um de seus vértices partem 25 diagonais. POLÍGONOS 1. Três polígonos convexos têm, respectivamente n, n + 1 ; n + 2 lados. A soma dos ângulos internos desse polígono é 1.620º. determine o valor de n. a) n = 3 b) n = 4 c) n = 5 d) n = 6 e) n= 7 2. A som dos ângulos assinalados vale: a) 100º b) 360º c) 180º d) 400º e) 600º 3. Tendo-se, na figura seguinte, um pentágono regular ABCDE onde estão traçados suas diagonais, calcular, em graus, a medida do ângulo . a) 20º b) 28º c) 30º d) 36º e) 40º
  • 22. 1 15 50 0 4. As mediatrizes de dois lados consecutivos de um polígono regular formam um ângulo igual a 20º. Esse polígono é: a) um octógono regular; b) um eneágono regular c) um pentágono regular d) um icoságono regular e) n.d.a. 5. São dados dois polígonos regulares. O segundo tem 4 lados a mais que o primeiro e o ângulo central do primeiro excede a medida do ângulo central do segundo em 45º. O número de lados do primeiro polígono é: a) 4 b) 6 c) 8 d) 10 e) 12 6. O número de diagonais de um polígono regular de 2n lados, que não passam pelo centro da circunferência circunscrita a esse polígono, é dado por: a) 2n(n – 2) b) 2n(n – 1) c) 2n(n – 3) d) 2 ) 5 n ( n   e) n.d.a. 7. Nos casos abaixo, determine x, sabendo que os segmentos DP , CP , BP , AP nas figuras em que aparecem são bissetrizes. 8. Dois polígonos convexos têm o número de lados expresso pelos números n e n + 4. Determine o valor de n, sabendo que um dos polígonos tem 34 diagonais mais do que o outro. 9. A figura descreve o movimento de um robô: Partindo de A, ele sistematicamente avança 2 m e gira 45° para a esquerda. Quando esse robô retornar ao ponto A, a trajetória percorrida terá sido:
  • 23. 1 15 51 1 a) uma circunferência b) um hexágono regular c) um octógono regular d) um decágono regular e) um polígono não–regular 10. Aumentando o número de lados de um polígono em 3, seu número de diagonais aumenta em 21. Determine o número de diagonais desse polígono. a) 13 c) 15 e) 17 b) 14 d) 16 11. Três polígonos convexos têm n, n + 1, n + 2 lados, respectivamente. Sendo 2700° a soma de toso os ângulos internos dos três polígonos, determine o valor de n. a) 6 b) 8 c) 10 d) 12 e) 14 12. Um polígono regular possui 30 diagonais que não passam pelo seu centro. Quanto mede cada ângulo interno dele? a) 126° b) 100° c) 112° d) 120° e) 144° GABARITO 1 2 3 4 5 6 7 8 9 10 b B D e a a * * C B 11 12 A E *7) X = 60; 8) n = 8 MATEMATICA + PLUS DESAFIA VOCÊ
  • 24. 1 15 52 2 1. Na figura, as retas t1 e t2 são paralelas. CALCULE a medida do ângulo x.