Assunto ângulos

3.954 visualizações

Publicada em

Publicada em: Educação
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
3.954
No SlideShare
0
A partir de incorporações
0
Número de incorporações
19
Ações
Compartilhamentos
0
Downloads
110
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Assunto ângulos

  1. 1. Prof.: Roberto Calazans Blog: http://cantinhodocalazans.blogspot.com/ OBS. ÂNGULOS Ângulo é a união de duas semi-retas distintas de mesma origem e não opostas, onde: •O → vértice •OA e OB→lados •Indica-se: •Ângulos Consecutivos Dois ângulos que tem um lado comum entre outros dois lados. Na figura A seguir, os ângulos AÔC e COB sao consecutivos. •Ângulos Adjacentes Dois ângulos que tem um único lado em comum e os lados não comuns são semi retas opostas. Na figura os ângulos AOB e BOC são adjacentes. •Medida de um Ângulo A medida de um ângulo corresponde a abertura entre duas semi – retas, unidas pelo vértice O. Indica-se: AOB = α ou O = α . A unidade de medida de um ângulo corresponde a razão de um grau (10 ). Existem três sistemas que são utilizados para obter a medida de um ângulo. São eles os seguintes: I) Sistema sexagesimal (Unidade: grau) II) Sistema decimal (Unidade: grado) III) Sistema circular (Unidade: radiano) I)SISTEMA SEXAGESIMAL •Unidade: grau (simbologia)  ( º ) 1º 90 1 do ângulo reto •Submúltiplos do grau a) Minuto (simbologia)  ( ’ ) b) Segundo (simbologia)  ( ” ) TEIA DE ENSINO PROFESSOR: ROBERTO CALAZANS DISCIPLINA: MATEMÁTICA ASSUNTO: ÂNGULOS FINALIDADE: CONCURSO EEAR /EsSA ESCOLARIDADE: NÍVEL MÉDIO
  2. 2. 2 •Relação entre grau, minuto e segundo 1º = 60’ = 3600” 1’ = 60” •Transformações • Ângulos Congruentes São dois ângulos de medidas iguais, na mesma unidade. •Ângulos Nulos São ângulos cujos lados coincidem. Na figura , AOB é nulo. • Ângulos rasos São ângulos cujos lados são semi – retas opostas. Na figura AOB é raso. •Ângulo reto É todo ângulo congruente ao seu adjacente. A medida de um ângulo reto é 90°. •Ângulo agudo É todo ângulo cuja medida é menor que um ângulo reto. •Ângulo obtuso É todo ângulo cuja medida é maior que um ângulo reto. •Ângulos Complementares Dois ou mais ângulos cujas medidas somam 90°. Complemento de x 90º - x •Ângulos Suplementares Dois ou mais ângulos cujas medidas somam 180°. Suplemento de x 180º - x •Ângulos Replementares Dois ou mais ângulos cujas medidas somam 360°.
  3. 3. 3 OBS: Replemento de x 360º - x •Ângulos explementares Dois ângulos são explementares, quando o módulo da diferença das suas medidas é igual a 180º. •Ângulos opostos pelo vértice (o.p.v) Duas retas concorrentes determinam dois pares de ângulos opostos pelo vértice. Em ângulos opostos pelo vértice,os lados de um são semi-retas opostas aos lados do outro. RETA TRANSVERSAL Reta transversal a outras retas, é uma reta que tem interseção com as outras retas em pontos diferentes. t  transversal Na figura anterior, a reta t é transversal às retas m e n e estas três retas formam 8 ângulos, sendo que os ângulos 3, 4, 5 e 6 são ângulos internos e os ângulos 1, 2, 7 e 8 são ângulos externos. Cada par destes ângulos, recebe nomes de acordo com a localização em relação à reta transversal e às retas m e n. Ângulos alternos e colaterais ainda podem ser internos ou externos: Ângulos Correspondentes Estão do mesmo lado da reta transversal. Um deles é interno e o outro é externo. 1 e 5 2 e 6 3 e 7 4 e 8 Ângulos Alternos Estão em lados opostos da reta transversal. Ambos são externos ou ambos são internos. 1 e 8 2 e 7 3 e 6 4 e 5 Ângulos Colaterais Estão do mesmo lado da reta transversal. Ambos são externos ou ambos são internos. 1 e 7 2 e 8 3 e 5 4 e 6 Ângulos alternos e colaterais ainda podem ser internos ou externos: ALTERNOS Alternos internos 3 e 6 4 e 5 Alternos externos 1 e 8 2 e 7 COLATERAIS Colaterais internos 3 e 5 4 e 6 Colaterais externos 1 e 7 2 e 8 DUAS RETAS PARALELAS DISTINTAS CORTADAS POR UMA TRANSVERSAL Se as duas retas cortadas pela transversal são paralelas, então:
  4. 4. 4 OBS. •Os ângulos alternos internos são congruentes. c=e e d=f •Os ângulos alternos externos são congruentes. a=g e b=h •Os ângulos colaterais internos são suplementares . d+e=180 0 e c+f=180 0) •Os ângulos colaterais externos são suplementares. a+h=180 0 e b+g=180 0 •Os ângulos correspondentes são congruente. a=e d=h b=f c=g Sendo r // s,temos: • os ângulos agudos são congruentes. •os ângulos obtusos são congruentes. •se um ângulo é agudo e o outro é obtuso, eles são suplementares, ou seja: α + β = 1800 ÂNGULOS DE LADOS RESPECTIVAMENTE PARALELOS. São ângulos cujos lados são paralelos, sendo que tais ângulos podem ser congruentes ou suplementares •CONGRUENTES. Quando ambos os ângulos são agudos, retos ou obtusos. •SUPLEMENTARES Quando ambos os ângulos são retos ou quando um deles for agudo e o outro obtuso. ÂNGULOS DE LADOS RESPECTIVAMENTE PERPENDICULARES Ângulos de lados perpendiculares são ângulos cujos lados são perpendiculares e também podem ser congruentes ou suplementares. •CONGRUENTES Quando os dois ângulos são agudos, retos ou obtusos. •SUPLEMENTARES Quando os dois ângulos são retos ou um dos ângulos é agudo e o outro obtuso.
  5. 5. 5 QUESTÕES PROPOSTAS 01.(EsSA/1977)O ângulo de 20 08'25" equivale a: a)9.180" b)2.825" c)625" d)7.705" Solução: 20 x60 120’ + 08’ 128’ x60 7.680” + 25” 7.705” Resposta:Alternativa D 02.(EsSA/1979)Efetuando 140 28' + 150 47" + 380 56'23", encontramos: a)670 24'10" c)680 24'10" b)680 25'10" d)670 25'10" Solução: Temos: 140 28' + 150 00’ 47" 380 56’ 23" 670 84’ 70” Como 70” = 60” + 10” = 1’ + 10”, vem: 670 85’10” Como 85’ = 60’ + 25’ = 10 + 25’, vem: 680 25’10” Resposta:Alternativa B 03.(EsSA/1981)Sendo A = 330 53'41" e B = 140 12'49", o resultado da operação A – B é: a)190 41'52" c)190 40'52" b)190 41'08" d)190 40'08" Solução: 330 53' 41" - 140 12' 49" Como 53’ = 52’ + 1’ = 52’ + 60”, vem: 330 52’ 101” -140 12’ 49” 190 40’ 52” Resposta:Alternativa C 04.(EEAR/2005)O quádruplo da medida 86°28’36’’ é igual a a) 46°52’24’’. c)345°52’24’’ b)346°54’24’’. d)345°54’24’’ Solução: 86°28’36’’ x4 3440 112’144” Como 144” = 120” + 24” = 2’ + 24” , vem: 3440 112’144” = 3440 114’24” Como 114’ = 60’ + 54’ = 10 + 54’ , vem: 3440 114’24” = 3450 54’24” Resposta:Alternativa D 05.(EsSA/1975)Dividindo o ângulo de 320 em 6 partes iguais, obtemos: a)50 30' b)60 20' c)40 20' d)50 20' Solução: 320 6 20 50 200 x60 120’
  6. 6. 6 00’ Resposta:Alternativa D 06.(EEAR/2006)O valor da expressão (27°38'+18°42'20")●3 − 50°52'38" , na forma mais simplificada possível, é a)139°59'20" . c)88°51'38" . b)138°51'38" . d)88°8'22" . Solução: (27°38'+ 18°42'20")●3 − 50°52'38" I) 27°38'+ 18°42'20" = 450 80’20” = 460 20’20” II) 460 20’20”x3 = 1380 60’60” III) 1380 60’60”- 50°52'38" = 880 08’22” Resposta:Alternativa D 07.(EEAR/2007)Dois ângulos medem 2𝜋 9 rad. e 5𝜋 18 rad. O menor deles, em graus, mede: a)30 b)40 c)50 d)60 Solução: O menor desses dois ângulos é 2𝜋 9 rad.,pois 2𝜋 9 rad. = 4𝜋 18 rad. < 5𝜋 18 rad. Sendo assim , temos: 900 -----------  𝜋 2 rad x ---------- 2𝜋 9 rad. onde x = 900●2𝜋 9 𝜋 2 => x = 20𝜋 𝜋 2 => x = 20● 2 𝜋  x = 400 Resposta:Alternativa B 08.(EEAR/2013)Ao expressar 16𝜋 9 rad. em graus, obtém-se: a)1700 b)2200 c)2800 d)3200 Solução: 900 -----------  𝜋 2 rad x ---------- 16𝜋 9 rad. onde x = 900●16𝜋 9 𝜋 2 => x = 160𝜋 𝜋 2 => x = 160● 2 𝝅  x = 3200 Resposta:Alternativa D 09.O ângulo convexo formado pelos ponteiros das horas e dos minutos às 10 horas e 15 minutos é: a)142° 30' d)141° 30' b)142° 40' e)141° 40' c)142° Solução: 11 12 10 1 2 3 Se em 1 hora = 60 minutos o ponteiro das horas anda 300 , em 15 minutos ele andará: 15𝑚𝑖𝑛 .●300 60𝑚𝑖𝑛 . = 300 4 = 70 30min. Logo, às 10 horas e 15 minutos o ângulo formado pelos ponteiros das horas e dos minutos é : 5●300 – 70 30’ 1500 - 70 30’
  7. 7. 7 1490 60’ - 70 30’ 1420 30’ Resposta:Alternativa A 10.(EEAR/2006)De acordo com a figura, é falsa a afirmação: a)> 1000 c)1250 < <1380 b)<1500 d)1120 < <1450 Solução: Temos: I)x + y = 2x – y => y + y = 2x – x  2y = x II) = 4x – 2y =>  = 4x – x  = 3x III) + x + y = 1800 (●2) 2 + 2x + 2y = 3600 => 2●3x + 2x + x = 3600 6x + 2x + x = 3600 => 9x = 3600 (÷9)  x = 400 Como = 3x, vem:  = 3●400  = 1200 Resposta:Alternativa C 11.(EEAR/2006)Dadas duas semi-retas colineares opostas OA e OB , e um ponto C não pertencente à reta AB, é correto afirmar que os ângulos AÔC e CÔB são a) suplementares e não consecutivos. b) consecutivos e não suplementares. c) não consecutivos e não suplementares. d) consecutivos e suplementares. Solução: Resposta:Alternativa D  12.(EEAR/2009)Dois ângulos são adjacentes se eles forem consecutivos e a)os lados de um forem semi-retas coincidentes com os lados do outro. b)os lados de um forem as semi-retas opostas aos lados do outro. c)não possuírem pontos internos comuns d)possuírem pontos internos comuns. Solução: Dois ângulos são adjacentes quando têm o mesmo vértice, um lado em comum e seus interiores não se interceptam(não têm pontos internos comuns). Resposta:Alternativa C 13.(EEAR/2009)Na figura , AOC é um ângulo raso.O valor de x é a)1330 32’ c) 1340 32’ b) 1330 28’ d) 1340 28’ Solução: Da figura, temos: x + 460 28’ = 1800 . Logo, vem: x + 460 28’ = 1790 60’
  8. 8. 8 x = 1790 60’ - 460 28’  x = 1330 32’ Resposta:Alternativa A 14.(EEAR/2007)Na figura, OC é bissetriz de BOD . Então o ângulo EOC mede a)140° b)130° c)120° d)110° Solução: Como OC é bissetriz do ângulo BOD,temos: Ângulo DOC = Ângulo COB =   Logo, vem: 900 + 2x = 1300 => 2x = 1300 - 900 2x = 400 (÷2)  x = 200 Portanto, o ângulo EOC mede: 900 + 200 1100 Resposta:Alternativa D 15.(EsSA/1976)A metade do complemento de um ângulo é 300 30'. Esse ângulo mede: a)270 b)390 c)290 30' d)290 Solução: Sendo o ângulo em questão igual a x, temos: 900− 𝑥 2 = 300 30’ 900 – x = 2(300 30’) => 900 – x = 600 60’ Como 60’ = 10 , vem: 900 – x = 610 => 900 – 610 = x 290 = x Resposta:Alternativa D 16.(EsSA/2003) O suplemento do ângulo 45º17’27” foi dividido em três partes iguais. A medida de cada parte é: a)22º54’41” d)34º42’33” b)44º54’11” e)11º34’51” c)54º44’33” Solução: O suplemento do ângulo 45º17’27” é igual a: 1800 - 45º17’27” 179º60’ - 45º17’27” 179º59’60” - 45º17’27” 1340 42’33” Dividindo este ângulo por 3, obtemos: 1340 42’33” 3 140 440 54’11” 20 x60 120’ +42’ 162’ 12’ 0’ + 33” 33” 0” Resposta:Alternativa B 17.(EsSA/1978)O suplemento de um ângulo excede o dobro do seu complemento de 30. A medida desse ângulo é: a)600 b)500 c)300 d)450 Solução: Sendo o ângulo igual a x, temos: 1800 – x = 2(900 – x) + 300
  9. 9. 9 1800 – x = 1800 – 2x + 300 - x + 2x = 300  x = 300 Resposta:Alternativa C 18.(EsSA/1982) Se dois ângulos são suplementares e a medida de um deles é triplo da medida do outro, então as medidas dos ângulos são: a)20 e 60 c)30 e 90 b)25 e 75 d)45 e 135 Solução: Sendo x e y as medidas dos ângulos em questão,temos: I)x = 3y II)x + y = 1800 3y + y = 1800 => 4y = 1800 (÷4)  y = 450 Logo, x = 1350 Resposta:Alternativa D 19.(EEAR/2008)A razão entre o complemento e o suplemento de um ângulo é 2 7 . Esse ângulo mede a) 28° b)32° c)43° d)54° Solução: Sendo o ângulo igual a x, temos: 900−𝑥 1800−𝑥 = 2 7 2(1800 – x) = 7(900 – x) 3600 – 2x = 6300 – 7x => -2x + 7x = 6300 - 3600 5x = 2700 (÷5)  x = 540 Resposta:Alternativa D 20.(EEAR/2008)Se OP é bissetriz de AÔB, então o valor de x é a)10° b)12° c)15° d)18° Solução: Como OP é bissetriz do ângulo AOB, temos: 3x – 50 = 2x + 100 3x – 2x = 100 + 50  x = 150 Resposta:Alternativa C 21.(EEAR/2010)A bissetriz de um ângulo AOB forma 600 com o lado OB.Assim,AOB pode ser classificado como a)reto b)raso c)agudo d)obtuso Solução: Como OC é bissetriz o ângulo AOB mede 1200 , portanto ele é obtuso. Resposta:Alternativa D 22.A medida do ângulo formado pelas bissetrizes de dois ângulos adjacentes que medem, respectivamente, 24º30’ e 105º30’ é igual a: a)760 b)650 c)580 d)860 e)590 Solução:
  10. 10. 10 A medida do ângulo formado pelas bissetrizes de dois ângulos adjacentes é igual a semi- soma das medidas dos mesmos.Sendo x o ângulo em questão, temos: x = 24030′ +105030′ 2 => x = 129060′ 2 => x = 1300 2  x = 650 Resposta:Alternativa B 23(EEAR/1997)Dois ângulos adjacentes a e b, medem, respectivamente, 1/5 do seu complemento e 1/9 do seu suplemento.Assim sendo, a medida do ãngulo formado por suas bissetrizes é: a)800 30’ d)240 30’ b)740 30’ e)160 30’ c)350 30’ Solução: Temos: I)a = 900− 𝑎 5 => 5a = 900 – a => 5a + a = 900 6a = 900 (÷6)  a = 150 II) b = 1800− 𝑏 9 => 9b = 1800 – b => 9b + b = 1800 => 10b = 1800 (÷10) b = 180 A medida do ângulo formado pelas bissetrizes de dois ângulos adjacentes é igual a semi- soma das medidas dos mesmos.Sendo  o ângulo em questão, temos:  = 150+180 2 =>  = 330 2 330 2 130 160 30’ 10 x60 60’ 00’   = 160 30' Resposta:Alternativa E 24.(EsSA/1981) Se dois ângulos â e b são opostos pelo vértice, então â e b são necessariamente: a)suplementares b)replementares c)adjacentes d)congruentes Solução: Se dois ângulos são opostos pelo vértice, eles são congruentes. Resposta:Alternativa D 25.O ângulo cujo dobro do seu complemento, mais a metade do suplemento de sua metade é igual a 130º,mede: a)620 13’ 20’’ d)540 18’ 24’’ b)710 23’ 10’’ e)630 13’ 23’’ c)420 53’ 30’’ Solução: Sendo x o ângulo em questão,temos: 2(900 –x) + 1 2 (1800 - 𝑥 2 ) = 1300 (●2) 4(900 –x) + 1800 - 𝑥 2 = 2600 (●2) 8(900 –x) + 3600 - x = 5200 7200 – 8x + 3600 – x = 5200 10800 – 9x = 5200 => 10800 – 5200 = 9x 5600 = 9x => x = 5600 9 5600 9 200 620 13’20” 20 x60 120’ 30’ 3’ x60 180”
  11. 11. 11 00”  x = 620 13’20” Resposta:Alternativa A 26.O triplo do complemento de um ângulo é igual à terça parte do suplemento deste ângulo. Este ângulo mede: a) 7𝜋 16 rad d) 7𝜋 4 rad b) 7𝜋 8 rad e) 5𝜋 8 rad c) 5𝜋 16 rad Solução: Sendo x o ângulo em questão,temos: 3(900 – x) = 1800−𝑥 3 3●3(900 – x) =1800 – x => 9(900 – x) =1800 – x Como 900 = 𝜋 2 radianos e 1800 =  radianos,vem: 9( 𝜋 2 – x) =  – x => 9𝜋 2 – 9x =  – x(●2) x = 2x => 2x + 18x  = x => x = 7𝜋 16 rad Resposta:Alternativa A 27.A soma de dois ângulos explementares é igual a 2350 . A medida do menor desses ângulos é: a)360 11’ d)380 40’ b)260 34’ e)540 48’ c)270 30’ Solução: Dois ângulos são explementares quando a diferença positiva entre as suas medidas é igual a um ângulo raso.Sendo x e y os ângulos em questão, temos: I)x – y = 1800  x = 1800 + y II)x + y = 2350 1800 + y + y = 2350 => 2y = 2350 - 1800 2y = 550 => y = 550 2 550 2 150 270 30’ 10 x60 60’ 00’  y = 270 30’ Como x = 1800 + y,vem: x = 1800 + 270 30’  x = 2070 30’ Resposta:Alternativa C 28.(EsSA/1976)O suplemento do complemento de um ângulo de 30 é: a)60 b)120 c)90 d)110 Solução: O suplemento do complemento de um ângulo x é dado por 900 + x.Sendo assim,temos: 900 + 300 1200 Resposta:Alternativa B 29.(EsSA/1979)O complemento do suplemento de um ângulo de 115 mede: a)650 b)1800 c)350 d)250 Solução:
  12. 12. 12 O complemento do suplemento de um ângulo x é dado por x - 900 .Sendo assim, temos: 1150 - 900 250 Resposta:Alternativa D 30.O ângulo cujo replemento do suplemento do seu complemento é igual a oito vezes o valor do mesmo, mede: a)300 b)400 c)500 d)600 e)650 Solução: O replemento do suplemento do complemento de um ângulo x é dado por 2700 – x.Sendo assim, temos: 2700 – x = 8x 2700 = 8x + x => 2700 = 9x(÷9)  300 = x Resposta:Alternativa A 31.Na figura abaixo a = c = 300 e a + b + c = 1200 .Então x é: a)agudo b)obtuso c)reto d)raso Solução: Temos: a = c = 300 .Logo, a + c = 600 .Como a + b + c = 1200 , podemos concluir que b = 600 .A medida do ângulo x é igual a a + b.Portanto, o ângulo x mede:300 + 600 = 900 Resposta:Alternativa C 32.(EsSA/1988) Na figura x e y são ângulos retos. Então: a)a = 2b d)b = 2a b)a = b e)b < a c)a < b Solução: Da figura ,temos: 900 – a = 900 - b => b = a Resposta:Alternativa B 33.(EEAR/2010)Sejam três ângulos adjacentes AOB, BOC e COD tais que AOB é o triplo de COD, e este é a metade de BOC.Se AOD é um ângulo raso,então a medida de AOB é a)1200 b)900 c)600 d)450 Solução:
  13. 13. 13 Sendo  e q, respectivamente, as medidas dos ângulos AOB,BOC e COD, do enunciado,temos: e  = 𝛽 2    Como AOD é um ângulo raso,vem:  = 1800  = 1800 => 6 = 1800 (÷6) = 300 Como  = 3 , temos:  = 3●300  = 900 Resposta:Alternativa B 34.Na figura abaixo, r // s. O valor de y, é: a)1080 b)1100 c)1070 d)1150 e)1200 Solução: x = 450 + 620  x = 1070 Resposta:Alternativa C 35.Na figura abaixo as retas r e s são paralelas. A medida do ângulo 𝛼 é igual a: a)1000 b)800 c)780 d)650 e)840 Solução: 1300 +  + 1500 = 3600  + 2800 = 3600 =>  = 3600 - 2800  = 800 Resposta:Alternativa B 36.(EEAR/2002)Na figura , BA // EF . A medida X é a)1050 b)1060 c)1070 d)1080 Solução: x + 420 = 960 + 520 => x = 1480 - 420  x = 1060 Resposta:Alternativa B 37.Dada a figura a seguir, determine o valor de 𝛼:
  14. 14. 14 a)600 b)7000 c)800 d)900 e)1000 Solução: Dois ângulos agudos(ou obtusos) de lados respectivamente perpendiculares são congruentes.Sendo assim, temos: 𝛼 2 = 40 =>  = 2●400   = 800 Resposta:Alternativa C 38.Dada a figura a seguir, determine o valor de  : 2 400 a)600 b)700 c)800 d)900 e)1000 Solução: Se dois ângulos, um agudo e o outro obtuso, possuem os lados respectivamente perpendiculares, eles são suplementares.Sendo assim, temos: 400 + 2x = 1800 2x = 1800 – 400 => 2x = 1400 (÷2)  x = 700 Resposta:Alternativa B 39.(EEAR/2007)Na figura, r // s. O valor de x + y é: a)18° b)38° c)42° d)60° Solução: I)Como as retas r e s são paralelas, os ângulos agudos 2x e 5y são congruentes.Logo, temos: 2x = 5y(●3)  6x = 15y II)Como as retas r e s são paralelas, o ângulo agudo 3x – 500 e o ângulo obtuso 2y + 1160 são suplementares.Sendo assim, temos: 3x – 500 + 2y + 1160 = 1800 3x + 2y = 1800 + 500 - 1160 3x + 2y = 1140 (●2) => 6x + 4y = 2280 15y + 4y = 2280 => 19y = 2280 (÷19)  y = 120 Como 6x = 15y,vem: 6x = 15●120 => 6x=1800 (÷6)  x = 300 Portanto,temos: x + y = 120 + 300  x + y = 420 Resposta:Alternativa C 40.(EEAR/2007)Quando uma transversal intercepta duas retas paralelas, formam-se ângulos alternos internos, cujas medidas são expressas por 4x – 20° e 2x + 42°. A medida de um desses ângulos é a)31° b)62° c)104° d)158°
  15. 15. 15 Solução: Os ângulos alternos internos são congruentes.Sendo assim,temos: 4x – 200 = 2x + 420 4x – 2x = 420 + 200 => 2x = 620 (÷2) x = 310 Logo, temos: 4x – 200 = 4●310 – 200 = 1240 – 200 = 1040 Resposta:Alternativa C 41.(EsSA/2.000)Duas retas paralelas , cortadas por uma transversal, determinam dois ângulos alternos externos cujas medidas são a = 2x + 57º e b = 5x + 12º . Calcule , em graus, as medidas de a e b : a)a = 70º e b = 70º d)a = 87º e b = 87º b)a = 60º e b = 60º e)a = 93º e b = 93º c)a = 78º e b = 78º Solução: Os ângulos alternos externos são congruentes.Sendo assim,temos: a = b 2x + 570 = 5x + 120 => 570 - 120 = 5x – 2x 450 = 3x(÷3)  150 = x Como a = 2x + 570 ,vem: a = 2●150 + 570 => a = 300 + 570  a = 870 Logo, b = 870 Resposta:Alternativa D 42.(EEAR/2005)Duas retas r e s, cortadas por uma transversal t, determinam ângulos colaterais internos de medidas 3p + 14° e 5p – 30°. O valor de p, para que as retas r e s sejam paralelas, é a)5°30' b)23°40' c)24°30' d)30°40' Solução: Para que as retas sejam paralelas, os ângulos colaterais internos devem ser suplementares.Sendo assim , temos: 3p + 140 + 5p – 300 = 1800 8p = 1800 - 140 + 300 => 8p = 196 => p = 1960 8 1960 8 360 240 30’ 40 x60 240’ 00’  p = 240 30’ Resposta:Alternativa C 43.(EEAR/2009)Algumas pessoas têm o hábito de “cortar o sete”.No “sete cortado” da figura , o “corte” é paralelo ao traço horizontal acima dele.O valor de x é a)400 b)410 c)420 d)430 Solução: Como o corte é paralelo ao traço, o ângulo agudo x e o ângulo obtuso 3x + 80 são suplementares.Sendo assim, temos: x + 3x + 80 = 1800 4x = 1800 - 80 => 4x = 1720 (÷4)  x = 430 Resposta:Alternativa D
  16. 16. 16 44.(EsSA/1976) Na figura abaixo, as retas r e s são paralelas. Quanto mede o ângulo z se y é o triplo de x? a)600 b)900 c)450 d)300 Solução: Como as retas r e s são paralelas, o ângulo agudo x e o ângulo obtuso y são suplementares. Sendo assim ,temos: x + y = 1800 Do enunciado , sabemos que y = 3x,logo, vem: x + 3x = 1800 => 4x = 1800 (÷4)  x = 450 Como as retas r e s são paralelas, o ângulo agudo x e o ângulo agudo z são congruentes. Portanto, z = x z = 450 Resposta:Alternativa C 45.As retas r e s são interceptadas pela transversal "t", conforme a figura. O valor de x para que r e s sejam, paralelas é: a)200 b)260 c)280 d)300 e)350 Solução: Como as retas r e s são paralelas, o ângulo agudo x + 200 e o ângulo obtuso 4x + 300 são suplementares. Sendo assim ,temos: x + 200 + 4x + 300 = 1800 6x = 1800 – 200 – 300 => 5x = 1300 (÷5)  x = 260 Resposta:Alternativa B 46.Na figura abaixo, r // s. O valor de y, é: a)720 b)180 c)1360 d)1440 e)1800 Solução: Como as retas r e s são paralelas, o ângulo agudo x - 360 e o ângulo agudo 𝑥 4 são congruentes.Sendo assim, temos: x - 360 = 𝑥 4 + 18 0 (●4) 4x – 1440 = x + 720 => 4x – x = 720 + 1440 => 3x = 2160 (÷3)  x = 720 Como as retas r e s são paralelas, o ângulo agudo x - 360 ,ou seja 720 – 360 = 360 e o ângulo obtuso y são suplementares.Sendo assim, temos: y = 1440 Resposta:Alternativa D 47.Considere as retas r, s, t, u, todas num mesmo plano, com r // u. O valor em graus de ( 2x + 3y ) é:
  17. 17. 17 a)640 b)5000 c)5200 d)6600 e)5800 Solução: Como as retas r e u são paralelas, o ângulo obtuso 200 + y e o ângulo obtuso 1200 são congruentes.Sendo assim, temos: 200 + y = 1200 => y = 120 – 20  y = 1000 Na figura, os ângulos x e y são opostos pelo vértice.Logo, eles são congruentes, ou seja, x = y = 1000 .Portanto, temos que 2x + 3y é igual a: 2●1000 + 3● 1000 2000 + 3000 5000 Resposta:Alternativa B 48.(UFGO) Na figura abaixo as retas r e s são paralelas. A medida do ângulo b é igual a: a)1000 b)1200 c)1100 d)1050 e)1300 Solução: Como as retas r e s são paralelas, o ângulo obtuso 4x + 2x e o ângulo obtuso 1200 são congruentes..Sendo assim, temos: 4x + 2x = 1200 => 6x = 1200 (÷6)  x = 200 Logo, o ângulo 4x mede 4●200 = 800 . Como os ângulos 4x, ou seja , 800 e b são colaterais internos eles são suplementares.Logo, b = 1000 . Resposta:Alternativa A “As pessoas vencedoras não são aquelas que nunca falham,e sim, aquelas que nunca desistem.”

×