Polinômios
( ) n
nnn
axaxaxaxP ++++= −−
...2
2
1
10
DefiniçãoDefinição
Soma de monômiosSoma de monômios
naaaa ,...,,, 210
...
( ) n
nnn
axaxaxaxP ++++= −−
...2
2
1
10
Variável Pode assumir valoresPode assumir valores
ComplexosComplexos
na Termo ind...
( ) 78
510 xxxP −=
( ) 5
2
3
53 78
−+−−=
x
xxxP
( ) 2
2
3
54 23
−+−−=
x
ixxxP
Polinômios
São PolinômiosSão Polinômios
( ) 25 2
−+−= xxxxF
( )
12
15
23
−+−
−
=
xxx
xF
( ) 5
4321
234
+−+−=
xxxx
xF
Polinômios
Não são PolinômiosNão são Polinômi...
( ) 254 23
−+−= xxxxP
Valor NuméricoValor Numérico
( ) ?2 =−P
( ) ( ) ( ) ( ) 2225242
23
−−+−−−=−P
( ) ( ) ( ) 2245842 −−−...
( )1P Fornece o valor da soma dosFornece o valor da soma dos
coeficientes do polinômio P(x).coeficientes do polinômio P(x)...
( ) 234
16164 xxxxP ++=
16164 ++=Soma
36=Soma
( ) ( )22
42 xxxP +=
Qual a soma dosQual a soma dos
coeficientes docoeficien...
( ) ( ) ( )[ ]22
14121 +=P
( ) ( )2
421 +=P
( ) ( ) 3661
2
==P Soma dosSoma dos
coeficientecoeficiente
ss
( ) ( )22
42 xxx...
( ) ( )3
52 −= xxP
125−
( ) 125150608 23
−+−= xxxxP
Qual o valor doQual o valor do
termotermo
independente deindependente ...
( ) ( )[ ]3
5020 −=P
( ) ( )3
500 −=P
( ) ( )3
50 −=P
( ) 1250 −=P
TermoTermo
independente deindependente de
xx
Polinômios...
( ) 0=αP
( ) 654
−−= xxxP
( ) ( ) ( ) 62522
4
−−=P
( ) 610162 −−=P
( ) 02 =P
Raiz de um polinômioRaiz de um polinômio
αα é...
( ) ( ) 422
2
+= iiP
( ) 442 2
+= iiP
( ) 02 =iP
( ) ( ) 4142 +−=iP
( ) 0=αP αα é raiz do polinômioé raiz do polinômio
P(x...
( ) 0...000 21
++++= −− nnn
xxxxP
Não se define grauNão se define grau
para um polinômiopara um polinômio
nulonulo
Polinôm...
( ) n
nnn
axaxaxaxP ++++= −−
...2
2
1
10
00 ≠a
( ) nPgr =
Grau de um PolinômioGrau de um Polinômio
Polinômios
( ) 1536 234
+−++= xxxxxP
( ) 124 −= xxP
( ) 12−=xP
( ) 4=Pgr
( ) 1=Pgr
( ) 0=Pgr
Grau de um PolinômioGrau de um Polinômio...
yx2
6
23
yx
x7
( ) 5=Pgr
Observação:Observação:
Monômio de grau 3: (2Monômio de grau 3: (2
+ 1)+ 1)
Monômio de grau 5: (3M...
( )xA
( ) ( )xBxA ≡
IdênticosIdênticos
( )xB
( ) ( ),αα BA = C∈∀α
Identidade polinomialIdentidade polinomial
Polinômios
( ) ( ) ( ) 115204 323452
+−+−++−= xnxxxxmxP
( ) ( ) 1752512 2345
++−+−+= xxxxqxxB
1) Se e1) Se e( ) ( ) ( ) 11524 32352
+...





=−
=−
=−
05
71
124
3
2
q
n
m 1242
=−m
162
=m
4±=m
4=m
713
=−n
83
=n
2=n
05 =−q
5=q
524 ++=++ qnm
11=++ qnm
Polin...
Operações com
Monômios e Polinômios
Adição de MonômiosAdição de Monômios
Devemos efetuar a soma ou subtração dos
coeficientes numéricos entre os monômios
seme...
Multiplicação de
Monômios
O produto de monômios é obtido da seguinte forma:
• em seguida, multiplicam-se as partes literai...
Lembrando...
Um produto de potências de mesma base pode
ser escrito na forma de uma única potência:
conservamos a base e a...
Divisão de Monômios
A divisão de monômios é obtida da seguinte
forma:
• primeiro, dividem-se os coeficientes
numéricos;
• ...
Lembrando...
Um quociente de potências de mesma base
pode ser escrito na forma de uma única
potência: conservamos a base e...
Adição de Polinômios
Efetue a soma algébrica dos monômios semelhantes.
Ex:
(4x2
– 7x + 2) + (3x2
+ 2x + 3) – (2x2
– x + 6)...
Multiplicação de Monômio
por Polinômio
A multiplicação de um monômio por um polinômio
é feita multiplicando-se o monômio p...
A multiplicação de um polinômio por outro
polinômio é feita multiplicando-se cada termo
de um deles pelos termos do outro ...
Divisão de Polinômio por
Monômio
Efetuamos a divisão de um polinômio por um
monômio fazendo a divisão de cada termo do
pol...
Valor Numérico de uma
Após obtida a expressão algébrica, basta substituir
cada incógnita pelo valor estabelecido pelo exer...
Equações polinomiaisEquações polinomiais
0...2
2
1
10 =++++ −−
n
nnn
axaxaxa
( ) 0=αP
Raízes de uma equaçãoRaízes de uma e...
Propriedades:Propriedades:
2) Se b for raiz de P(x) = 0 , então P(x) é divisível por2) Se b for raiz de P(x) = 0 , então P...
4) Se a equação P(x) = 0 possuir k raízes iguais a m4) Se a equação P(x) = 0 possuir k raízes iguais a m
então dizemos que...
Lembre que quando:
a.x³ + bx² + cx + da.x³ + bx² + cx + d
= 0= 05) Se a =5) Se a = ±± 11 ∴∴ não há raízes fracionárias.não...
Há duas raízes nulas
7) Se a + b + c + d = 07) Se a + b + c + d = 0 ∴∴ xx11 = 1 é raiz.= 1 é raiz.
Polinômios
Lembre que q...
Toda equação algébrica P(x) = 0 de grau n ≥ 1Toda equação algébrica P(x) = 0 de grau n ≥ 1
admite, pelo menos, uma raiz co...
11 11 ––44 11 66
11 ––33 -2-2 RestoResto ≠≠ 00∴∴x =1 não éx =1 não é
raiz.raiz.
44
Divisores do termo
independente:
±1, ±2...
Teorema das raízes complexasTeorema das raízes complexas
010144 234
=++−− xxxx 11 −=x
––11 11 ––44 ––11 1414
11 ––55 44 00...
010144 234
=++−− xxxx 11 −=x
01062
=+− xx
12 −=x
acb 42
−=∆
4036 −=∆
4−=∆
a
b
x
2
∆±−
=
2
46 −±
=x
2
26 i
x
±
=
ix ±= 3
ix...
Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF)
18 x3
+ 9x2
- 2x -1 = 0
Polinômios
Divisores do
termo
independente:
±1
Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF)
18 x3
+ 9x2
-...
Divisores do coeficiente da incógnita de maior expoente:
±1, ±2, ±3, ±6, ±9, ±18
PRRF:PRRF: ±1/2, ±1/3, ± 1/6, ±1/9, ±1/18...
Relações de GirardRelações de Girard
02
=++ cbxax
a
b
xx −=+ 21
a
c
xx =⋅ 21
Polinômios
023
=+++ dcxbxax
a
b
xxx −=++ 321
( ) ( ) ( )
a
c
xxxxxx =⋅+⋅+⋅ 323121
a
d
xxx −=⋅⋅ 321
Relações de GirardRelações de Gira...
0...2
2
1
10 =++++ −−
n
nnn
axaxaxa
0
1
321 ...
a
a
xxxx n −=++++
( ) ( ) ( ) ( )
0
2
1413121 ...
a
a
xxxxxxxx nn =⋅++⋅+⋅+...
Teorema do resto (divisor de 1º grau - d = ax + b)Teorema do resto (divisor de 1º grau - d = ax + b)
P(x)P(x) ax + bax + b...
P(x)P(x) ax + bax + b
Q(x)Q(x)
RR
0=R
R
a
b
P =





−
Condição necessária para queCondição necessária para que
P(x)...
(UDESC 2006-1) O resto da divisão do polinômio(UDESC 2006-1) O resto da divisão do polinômio
pelo binômiopelo binômio
Teor...
P(x)P(x) ax + bax + b
Q(x)Q(x)
RR
Grau nGrau n
Grau 1Grau 1
Grau n – 1Grau n – 1
RestoResto
......
......
Coeficientes de ...
( ) 5673 23
++−= xxxxP ( ) 2+−= xxD
22 33 –– 77 66 55
21 =x
33
Polinômios
Dispositivo Briot-RuffiniDispositivo Briot-Ruffi...
22 33
33
×× ++ ==
––11
–– 77 66 55
Polinômios
( ) 5673 23
++−= xxxxP ( ) 2+−= xxD
21 =x
Dispositivo Briot-RuffiniDispositi...
22 33
33
×× ++ ==
––11 44
–– 77 66 55
Polinômios
( ) 5673 23
++−= xxxxP ( ) 2+−= xxD
21 =x
Dispositivo Briot-RuffiniDispos...
22 33
33
×× ++ ==
––11 44 1313
–– 77 66 55
Polinômios
( ) 5673 23
++−= xxxxP ( ) 2+−= xxD
21 =x
Dispositivo Briot-RuffiniD...
22 33
33 ––11 44 1313 RestoResto
Coeficientes doCoeficientes do
polinômio apolinômio a · Q(x)· Q(x)
–– 77 66 55
Polinômios...
22 33 –– 77 66 55
33 ––11 44 1313 RestoResto
Coeficientes doCoeficientes do
polinômio apolinômio a · Q(x)· Q(x)
Grau do po...
Equações polinomiaisEquações polinomiais
0...2
2
1
10 =++++ −−
n
nnn
axaxaxa
( ) 0=αP
Raízes de uma equaçãoRaízes de uma e...
(UDESC 2009 – 2) Seja p um polinômio de grau seis,(UDESC 2009 – 2) Seja p um polinômio de grau seis,
cujos coeficientes de...
(UDESC 2005-1) Sobre todas as raízes da equação(UDESC 2005-1) Sobre todas as raízes da equação
afirma-se que essa equação ...
Teorema das raízes complexasTeorema das raízes complexas
010144 234
=++−− xxxx 11 −=x
––11 11 ––44 ––11 1414
11 ––55 44 00...
01062
=+− xx
acb 42
−=∆
4036 −=∆
4−=∆
a
b
x
2
∆±−
=
2
46 −±
=x
2
26 i
x
±
=
ix ±= 3
ix += 33
ix −= 34
Polinômios
Teorema d...
(UDESC 2009-1) Seja P(x) um polinômio de terceiro grau,(UDESC 2009-1) Seja P(x) um polinômio de terceiro grau,
cujo gráfic...
Professor Antonio Carlos carneiro Barroso
 Colégio estadual Dinah Gonçalves
Graduado em Ciências naturais pela UFBA
Pós gr...
Próximos SlideShares
Carregando em…5
×

Polinomios

4.825 visualizações

Publicada em

Publicada em: Educação
0 comentários
2 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
4.825
No SlideShare
0
A partir de incorporações
0
Número de incorporações
28
Ações
Compartilhamentos
0
Downloads
119
Comentários
0
Gostaram
2
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Polinomios

  1. 1. Polinômios ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 DefiniçãoDefinição Soma de monômiosSoma de monômios naaaa ,...,,, 210 Números ComplexosNúmeros Complexos CoeficientesCoeficientes ...,2,1, −− nnn ExpoentesExpoentes Números NaturaisNúmeros Naturais
  2. 2. ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 Variável Pode assumir valoresPode assumir valores ComplexosComplexos na Termo independente de xTermo independente de x x Polinômios DefiniçãoDefinição Soma de monômiosSoma de monômios
  3. 3. ( ) 78 510 xxxP −= ( ) 5 2 3 53 78 −+−−= x xxxP ( ) 2 2 3 54 23 −+−−= x ixxxP Polinômios São PolinômiosSão Polinômios
  4. 4. ( ) 25 2 −+−= xxxxF ( ) 12 15 23 −+− − = xxx xF ( ) 5 4321 234 +−+−= xxxx xF Polinômios Não são PolinômiosNão são Polinômios
  5. 5. ( ) 254 23 −+−= xxxxP Valor NuméricoValor Numérico ( ) ?2 =−P ( ) ( ) ( ) ( ) 2225242 23 −−+−−−=−P ( ) ( ) ( ) 2245842 −−−−=−P ( ) 2220322 −−−−=−P ( ) 562 −=−P Polinômios
  6. 6. ( )1P Fornece o valor da soma dosFornece o valor da soma dos coeficientes do polinômio P(x).coeficientes do polinômio P(x). ( )0P Fornece o valor do termoFornece o valor do termo independente de x.independente de x. Polinômios Valor NuméricoValor Numérico
  7. 7. ( ) 234 16164 xxxxP ++= 16164 ++=Soma 36=Soma ( ) ( )22 42 xxxP += Qual a soma dosQual a soma dos coeficientes docoeficientes do polinômio P(x).polinômio P(x). Polinômios Valor NuméricoValor Numérico
  8. 8. ( ) ( ) ( )[ ]22 14121 +=P ( ) ( )2 421 +=P ( ) ( ) 3661 2 ==P Soma dosSoma dos coeficientecoeficiente ss ( ) ( )22 42 xxxP += Polinômios Valor NuméricoValor Numérico Qual a soma dosQual a soma dos coeficientes docoeficientes do polinômio P(x).polinômio P(x).
  9. 9. ( ) ( )3 52 −= xxP 125− ( ) 125150608 23 −+−= xxxxP Qual o valor doQual o valor do termotermo independente deindependente de x.x. Termo independenteTermo independente de xde x Polinômios Valor NuméricoValor Numérico
  10. 10. ( ) ( )[ ]3 5020 −=P ( ) ( )3 500 −=P ( ) ( )3 50 −=P ( ) 1250 −=P TermoTermo independente deindependente de xx Polinômios Valor NuméricoValor Numérico ( ) ( )3 52 −= xxP Qual o valor doQual o valor do termotermo independente deindependente de x.x.
  11. 11. ( ) 0=αP ( ) 654 −−= xxxP ( ) ( ) ( ) 62522 4 −−=P ( ) 610162 −−=P ( ) 02 =P Raiz de um polinômioRaiz de um polinômio αα é raiz do polinômioé raiz do polinômio P(x).P(x). 2 é raiz do2 é raiz do polinômiopolinômio P(x)P(x) Polinômios
  12. 12. ( ) ( ) 422 2 += iiP ( ) 442 2 += iiP ( ) 02 =iP ( ) ( ) 4142 +−=iP ( ) 0=αP αα é raiz do polinômioé raiz do polinômio P(x).P(x). ( ) 42 += xxP 2i é raiz do2i é raiz do polinômiopolinômio P(x)P(x) Raiz de um polinômioRaiz de um polinômio Polinômios
  13. 13. ( ) 0...000 21 ++++= −− nnn xxxxP Não se define grauNão se define grau para um polinômiopara um polinômio nulonulo Polinômio NuloPolinômio Nulo Polinômios
  14. 14. ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 00 ≠a ( ) nPgr = Grau de um PolinômioGrau de um Polinômio Polinômios
  15. 15. ( ) 1536 234 +−++= xxxxxP ( ) 124 −= xxP ( ) 12−=xP ( ) 4=Pgr ( ) 1=Pgr ( ) 0=Pgr Grau de um PolinômioGrau de um Polinômio Polinômios
  16. 16. yx2 6 23 yx x7 ( ) 5=Pgr Observação:Observação: Monômio de grau 3: (2Monômio de grau 3: (2 + 1)+ 1) Monômio de grau 5: (3Monômio de grau 5: (3 + 2)+ 2) Monômio de grau 1Monômio de grau 1 ( ) xyxyxxP 76 232 ++= Grau de um PolinômioGrau de um Polinômio Polinômios
  17. 17. ( )xA ( ) ( )xBxA ≡ IdênticosIdênticos ( )xB ( ) ( ),αα BA = C∈∀α Identidade polinomialIdentidade polinomial Polinômios
  18. 18. ( ) ( ) ( ) 115204 323452 +−+−++−= xnxxxxmxP ( ) ( ) 1752512 2345 ++−+−+= xxxxqxxB 1) Se e1) Se e( ) ( ) ( ) 11524 32352 +−+−+−= xnxxxmxP qenm, ( ) ( ) 1752512 2345 ++−+−+= xxxxqxxB são polinômiossão polinômios idênticos, então a soma dos valoresidênticos, então a soma dos valores positivos de é:positivos de é: Polinômios
  19. 19.      =− =− =− 05 71 124 3 2 q n m 1242 =−m 162 =m 4±=m 4=m 713 =−n 83 =n 2=n 05 =−q 5=q 524 ++=++ qnm 11=++ qnm Polinômios
  20. 20. Operações com Monômios e Polinômios
  21. 21. Adição de MonômiosAdição de Monômios Devemos efetuar a soma ou subtração dos coeficientes numéricos entre os monômios semelhantes. Ex: = 12x2 – 2ay3 5x2 – 3ay3 + 7x2 + ay3 5x2 + 7x2 – 3ay3 + ay3 Monômios semelhantes Monômios semelhantes
  22. 22. Multiplicação de Monômios O produto de monômios é obtido da seguinte forma: • em seguida, multiplicam-se as partes literais. Ex: (4ax2 ) . (–13a3 x5 ) = (4) . (–13) . (a1 . a3 ) . (x2 . x5 ) = – 52a4 x7 • primeiro, multiplicam-se os coeficientes numéricos;
  23. 23. Lembrando... Um produto de potências de mesma base pode ser escrito na forma de uma única potência: conservamos a base e adicionamos os expoentes. am .an = am+n Ex: x4 .x9 = x4+9 = x13
  24. 24. Divisão de Monômios A divisão de monômios é obtida da seguinte forma: • primeiro, dividem-se os coeficientes numéricos; • em seguida, dividem-se as partes literais.
  25. 25. Lembrando... Um quociente de potências de mesma base pode ser escrito na forma de uma única potência: conservamos a base e subtraímos os expoentes. am :an = am–n Ex: x12 : x8 = x12–8 = x4 *com a ≠ 0
  26. 26. Adição de Polinômios Efetue a soma algébrica dos monômios semelhantes. Ex: (4x2 – 7x + 2) + (3x2 + 2x + 3) – (2x2 – x + 6) = = 4x2 – 7x + 2 + 3x2 + 2x + 3 – 2x2 + x – 6 = → eliminando os parênteses = 4x2 + 3x2 – 2x2 – 7x + 2x + x + 2 + 3 – 6 = → agrupando os termos semelhantes = 5x2 – 4x – 1 → forma reduzida * Não esqueça da regra de sinais!
  27. 27. Multiplicação de Monômio por Polinômio A multiplicação de um monômio por um polinômio é feita multiplicando-se o monômio por cada termo do polinômio. = 8x5 y3 – 20x3 y7 Ex: 4x2 y3 . (2x3 – 5xy4 ) = = 4x2 y3 . 2x3 + 4x2 y3 . (– 5xy4 ) * Não esqueça da regra de sinais!
  28. 28. A multiplicação de um polinômio por outro polinômio é feita multiplicando-se cada termo de um deles pelos termos do outro e, sempre que possível, reduzindo os termos semelhantes. Ex: (a + b) . (c + d) = ac + ad + bc + bd Multiplicação de Monômio por Polinômio
  29. 29. Divisão de Polinômio por Monômio Efetuamos a divisão de um polinômio por um monômio fazendo a divisão de cada termo do polinômio pelo monômio. Ex: (18x3 – 12x2 + 3x) : (3x) = = (18x3 : 3x) – (12x2 : 3x) + (3x : 3x) = 6x2 – 4x + 1
  30. 30. Valor Numérico de uma Após obtida a expressão algébrica, basta substituir cada incógnita pelo valor estabelecido pelo exercício. Ex: 3x2 – 2x + 7y + 3x – 17y 3x2 + x – 10y Determine o valor numérico da expressão abaixo para x = 2 e y = 3 1º reduzimos os termos semelhantes Expressão Algébrica 2º substituímos os valores de x = 2 e y = 3 3.22 + 2 – 10.3 3.4 + 2 – 30 12 + 2 – 30 = - 16
  31. 31. Equações polinomiaisEquações polinomiais 0...2 2 1 10 =++++ −− n nnn axaxaxa ( ) 0=αP Raízes de uma equaçãoRaízes de uma equação raizé→α Teorema da decomposiçãoTeorema da decomposição ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 ( ) ( ) ( ) ( )nrxrxrxaxP −⋅⋅−⋅−⋅= ...210 Polinômios
  32. 32. Propriedades:Propriedades: 2) Se b for raiz de P(x) = 0 , então P(x) é divisível por2) Se b for raiz de P(x) = 0 , então P(x) é divisível por x - b .x - b . 3) Se o número complexo a + bi for raiz de P(x) = 0 ,3) Se o número complexo a + bi for raiz de P(x) = 0 , então o conjugado a - bi também será raiz .então o conjugado a - bi também será raiz . 1) Toda equação algébrica de grau n possui exatamente1) Toda equação algébrica de grau n possui exatamente n raízes .n raízes . 2x2x44 +x³ + 6x² + 2x – 1 = 0+x³ + 6x² + 2x – 1 = 0 Grau da equação ( Representa o número de raízes)Grau da equação ( Representa o número de raízes) Polinômios
  33. 33. 4) Se a equação P(x) = 0 possuir k raízes iguais a m4) Se a equação P(x) = 0 possuir k raízes iguais a m então dizemos que m é uma raiz de grau deentão dizemos que m é uma raiz de grau de multiplicidade k .multiplicidade k . Exemplo: xExemplo: x22 - 8x + 16 = 0, possui duas raízes reais iguais a 4, (x- 8x + 16 = 0, possui duas raízes reais iguais a 4, (x11 = x= x22 = 4).= 4). Dizemos então que 4 é uma raiz dupla ou de ordem de multiplicidade dois.Dizemos então que 4 é uma raiz dupla ou de ordem de multiplicidade dois. Propriedades:Propriedades: Polinômios
  34. 34. Lembre que quando: a.x³ + bx² + cx + da.x³ + bx² + cx + d = 0= 05) Se a =5) Se a = ±± 11 ∴∴ não há raízes fracionárias.não há raízes fracionárias. 6) Se d = 06) Se d = 0 ∴∴ xx11 = 0 (Lembre a quantidade de= 0 (Lembre a quantidade de raízes nulas é determinada, pelo menorraízes nulas é determinada, pelo menor expoente da incógnita.)expoente da incógnita.) Ex: 2xEx: 2x77 +3x+3x44 + 2x² = 0+ 2x² = 0 Polinômios
  35. 35. Há duas raízes nulas 7) Se a + b + c + d = 07) Se a + b + c + d = 0 ∴∴ xx11 = 1 é raiz.= 1 é raiz. Polinômios Lembre que quando: a.x³ + bx² + cx + da.x³ + bx² + cx + d = 0= 0 5) Se a =5) Se a = ±± 11 ∴∴ não há raízes fracionárias.não há raízes fracionárias. 6) Se d = 06) Se d = 0 ∴∴ xx11 = 0 (Lembre a quantidade de= 0 (Lembre a quantidade de raízes nulas é determinada, pelo menorraízes nulas é determinada, pelo menor expoente da incógnita.)expoente da incógnita.) Ex: 2xEx: 2x77 +3x+3x44 + 2x² = 0+ 2x² = 0
  36. 36. Toda equação algébrica P(x) = 0 de grau n ≥ 1Toda equação algébrica P(x) = 0 de grau n ≥ 1 admite, pelo menos, uma raiz complexa.admite, pelo menos, uma raiz complexa. Teorema das raízes complexas ( PRRI)Teorema das raízes complexas ( PRRI) 06²4³ =++− xxx Polinômios
  37. 37. 11 11 ––44 11 66 11 ––33 -2-2 RestoResto ≠≠ 00∴∴x =1 não éx =1 não é raiz.raiz. 44 Divisores do termo independente: ±1, ±2, ±3, ±6 -1-1 11 ––55 66 Resto = 0Resto = 0 ∴∴ xx11 = -1 é raiz= -1 é raiz00 Grau n – 1Grau n – 1 0652 =+− xx 22 =x 33 =x Toda equação algébrica P(x) = 0 de grau n ≥ 1Toda equação algébrica P(x) = 0 de grau n ≥ 1 admite, pelo menos, uma raiz complexa.admite, pelo menos, uma raiz complexa. Teorema das raízes complexas ( PRRI)Teorema das raízes complexas ( PRRI) 06²4³ =++− xxx Polinômios
  38. 38. Teorema das raízes complexasTeorema das raízes complexas 010144 234 =++−− xxxx 11 −=x ––11 11 ––44 ––11 1414 11 ––55 44 00 RestoResto Grau n – 2Grau n – 2 01062 =+− xx 1010 12 −=x 1010––11 11 ––66 1010 00 RestoResto Polinômios
  39. 39. 010144 234 =++−− xxxx 11 −=x 01062 =+− xx 12 −=x acb 42 −=∆ 4036 −=∆ 4−=∆ a b x 2 ∆±− = 2 46 −± =x 2 26 i x ± = ix ±= 3 ix += 33 ix −= 34 Teorema das raízes complexasTeorema das raízes complexas Polinômios
  40. 40. Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF) 18 x3 + 9x2 - 2x -1 = 0 Polinômios
  41. 41. Divisores do termo independente: ±1 Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF) 18 x3 + 9x2 - 2x -1 = 0 Polinômios
  42. 42. Divisores do coeficiente da incógnita de maior expoente: ±1, ±2, ±3, ±6, ±9, ±18 PRRF:PRRF: ±1/2, ±1/3, ± 1/6, ±1/9, ±1/18 ––1/21/2 1818 99 -2-2 -1-1 1818 00 -2-2 00 RestoResto ∴∴ xx11 = -1/2= -1/2 18x² +0x -2 = 0 x² = 1/9 3/12 −=x 3/13 =x Divisores do termo independente: ±1 Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF) 18 x3 + 9x2 - 2x -1 = 0 Polinômios
  43. 43. Relações de GirardRelações de Girard 02 =++ cbxax a b xx −=+ 21 a c xx =⋅ 21 Polinômios
  44. 44. 023 =+++ dcxbxax a b xxx −=++ 321 ( ) ( ) ( ) a c xxxxxx =⋅+⋅+⋅ 323121 a d xxx −=⋅⋅ 321 Relações de GirardRelações de Girard Polinômios
  45. 45. 0...2 2 1 10 =++++ −− n nnn axaxaxa 0 1 321 ... a a xxxx n −=++++ ( ) ( ) ( ) ( ) 0 2 1413121 ... a a xxxxxxxx nn =⋅++⋅+⋅+⋅ − ( ) ( ) ( ) 0 3 12421321 ... a a xxxxxxxxx nnn −=⋅⋅++⋅⋅+⋅⋅ −− ( ) 0 321 1... a a xxxx nn n ⋅−=⋅⋅⋅⋅ Relações de GirardRelações de Girard Polinômios
  46. 46. Teorema do resto (divisor de 1º grau - d = ax + b)Teorema do resto (divisor de 1º grau - d = ax + b) P(x)P(x) ax + bax + b Q(x)Q(x) RR P(x) = (ax + b)P(x) = (ax + b) · Q(x) + R· Q(x) + R Raiz do divisorRaiz do divisor a b x −=1 ( ) RxQ a b P +⋅=      − 0 R a b P =      − Polinômios
  47. 47. P(x)P(x) ax + bax + b Q(x)Q(x) RR 0=R R a b P =      − Condição necessária para queCondição necessária para que P(x) seja divisível por ax + b.P(x) seja divisível por ax + b. 0=      − a b P Teorema de D’alembertTeorema de D’alembert Polinômios
  48. 48. (UDESC 2006-1) O resto da divisão do polinômio(UDESC 2006-1) O resto da divisão do polinômio pelo binômiopelo binômio Teorema do restoTeorema do resto ( ) 111122 23 −+−= xxxxP ( ) 111122 23 −+−= xxxxP ( ) 5−= xxD é:é: ( ) ( ) ( ) ( ) 1511512525 23 −⋅+⋅−⋅=P ( ) 1511251212525 −⋅+⋅−⋅=P ( ) 1553002505 −+−=P ( ) 3013055 −=P ( ) 45 =P ( ) RP =5 Polinômios
  49. 49. P(x)P(x) ax + bax + b Q(x)Q(x) RR Grau nGrau n Grau 1Grau 1 Grau n – 1Grau n – 1 RestoResto ...... ...... Coeficientes de P(x)Coeficientes de P(x) Raiz doRaiz do divisordivisor a b − Coeficientes doCoeficientes do polinômio apolinômio a · Q(x)· Q(x) RestoResto Dispositivo Briot-RuffiniDispositivo Briot-Ruffini Polinômios
  50. 50. ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 22 33 –– 77 66 55 21 =x 33 Polinômios Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  51. 51. 22 33 33 ×× ++ == ––11 –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  52. 52. 22 33 33 ×× ++ == ––11 44 –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  53. 53. 22 33 33 ×× ++ == ––11 44 1313 –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  54. 54. 22 33 33 ––11 44 1313 RestoResto Coeficientes doCoeficientes do polinômio apolinômio a · Q(x)· Q(x) –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  55. 55. 22 33 –– 77 66 55 33 ––11 44 1313 RestoResto Coeficientes doCoeficientes do polinômio apolinômio a · Q(x)· Q(x) Grau do polinômioGrau do polinômio Q(x) é uma unidadeQ(x) é uma unidade menor que o grau do polinômio P(x)menor que o grau do polinômio P(x) ( )xQaquociente ⋅→ ( ) ( ) 431 2 +−=⋅− xxxQ ( ) 43 2 −+−= xxxQ 13=→ Rresto Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  56. 56. Equações polinomiaisEquações polinomiais 0...2 2 1 10 =++++ −− n nnn axaxaxa ( ) 0=αP Raízes de uma equaçãoRaízes de uma equação raizé→α Teorema da decomposiçãoTeorema da decomposição ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 ( ) ( ) ( ) ( )nrxrxrxaxP −⋅⋅−⋅−⋅= ...210 Polinômios
  57. 57. (UDESC 2009 – 2) Seja p um polinômio de grau seis,(UDESC 2009 – 2) Seja p um polinômio de grau seis, cujos coeficientes de termo de maior grau é igual a 2.cujos coeficientes de termo de maior grau é igual a 2. As raízes deste polinômio são c, 2 e 0, comAs raízes deste polinômio são c, 2 e 0, com multiplicidades 3, 2 e 1 respectivamente.multiplicidades 3, 2 e 1 respectivamente. Considerando p(1) = 16, o valor da raiz c é igual a:Considerando p(1) = 16, o valor da raiz c é igual a: a) –1.a) –1. b) .b) . c) –7.c) –7. d) 7.d) 7. e) 15.e) 15. 3 221− Polinômios
  58. 58. (UDESC 2005-1) Sobre todas as raízes da equação(UDESC 2005-1) Sobre todas as raízes da equação afirma-se que essa equação possui:afirma-se que essa equação possui:04423 =−+− xxx ( ) ( ) 01412 =−⋅+−⋅ xxx 04423 =−+− xxx ( ) ( ) 0142 =−⋅+ xx 042 =+x 01=−x 42 −=x 4−±=x ix 2±= 1=x { }iiS 2,2,1 −= uma raiz real e duas complexas.uma raiz real e duas complexas. Polinômios
  59. 59. Teorema das raízes complexasTeorema das raízes complexas 010144 234 =++−− xxxx 11 −=x ––11 11 ––44 ––11 1414 11 ––55 44 00 RestoResto Grau n – 2Grau n – 2 01062 =+− xx 1010 12 −=x 1010––11 11 ––66 1010 00 RestoResto Polinômios
  60. 60. 01062 =+− xx acb 42 −=∆ 4036 −=∆ 4−=∆ a b x 2 ∆±− = 2 46 −± =x 2 26 i x ± = ix ±= 3 ix += 33 ix −= 34 Polinômios Teorema das raízes complexasTeorema das raízes complexas 010144 234 =++−− xxxx 11 −=x 12 −=x
  61. 61. (UDESC 2009-1) Seja P(x) um polinômio de terceiro grau,(UDESC 2009-1) Seja P(x) um polinômio de terceiro grau, cujo gráfico está representado na figura abaixo:cujo gráfico está representado na figura abaixo: 22 2211––11 xx yy Então o resto da divisão de P(x)Então o resto da divisão de P(x) pelo monômio x + 2 é:pelo monômio x + 2 é: Polinômios
  62. 62. Professor Antonio Carlos carneiro Barroso  Colégio estadual Dinah Gonçalves Graduado em Ciências naturais pela UFBA Pós graduado em Metodologia e Didática de ensino Superior Lecionando Matemática e Biologia http://ensinodematemtica.blogspot.com Salvador-Ba

×