Funções 1

348 visualizações

Publicada em

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
348
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
14
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Funções 1

  1. 1. Teoria Funções 1Revisão – FunçõesRevisão – Transformações de funções Transformação f (x ) + k ↑k >0 ↓ k < 0 translação vertical f (x + k ) →k <0 ←k >0 translação horizontal kf ( x ) վ k > 1 estica, 0 < k < 1 encolhe f (kx ) ↔ k > 1 encolhe, 0 < k < 1 estica − f (x ) Simetria relativamente a OX f (− x ) Simetria relativamente a OY | f (x ) | Função positiva f (| x |) f (| x |)Revisão – Paridade, Injectividade, InversaFunção par: f (− x ) = f ( x )Função ímpar: − f ( x ) = f (− x )Injectividade: f ( x1 ) = f ( x 2 ) ⇒ x1 = x 2Função Inversa: injectiva não injectiva
  2. 2. TeoriaFunções Função Exponencial x Função Logarítmica Inversa f (x ) = a x f ( x ) = log a x 1 1 1 1f (x ) = a x , a > 1 f (x ) = a x , 0 < a < 1 f ( x ) = log a x, a > 1 f ( x ) = log a x, 0 < a < 1Fórmulas: Fórmulas: an log a 1 = 0 log a a = 1 an ⋅ am = an+m m = an−m a log a x = x a n an  a  a n ⋅ b n = (a ⋅ b ) =  log a ( A ⋅ B ) = log a A + log a B n bn  b  1 m  A a−n = log a   = log a A − log a B an n a = an m B (a ) n m = a n⋅m a0 = 1 log a x k = k ⋅ log a x log a x = log b x log b a a >1 a >1 lim f ( x ) = +∞ lim f ( x ) = 0 + lim f ( x ) = +∞ lim f (x ) = 0 + x → +∞ x → −∞ x → +∞ x →1+ lim f ( x ) = 1+ lim f ( x ) = 1− lim f ( x ) = 0− lim f ( x ) = −∞ x→0+ x →0 − x →1− x →0 + 1 1
  3. 3. TeoriaFunçõesEquações e Inequações com exponenciais e logaritmos Ex: 2 x = 3 ⇔ log 2 2 x = log 2 3 ⇔ x ⋅ log 2 2 = log 2 3 ⇔ x = log 2 3 a [... x...] = ∆ ⇔ [...x...] = log a ∆ Ex: log 2 x = 3 ⇔ 2log 2 x = 23 ⇔ x = 23 log a [...x...] = ∆ ⇔ [...x...] = a ∆ Nota: Para resolver inequações com exponenciais e logaritmos verificam-se as regras acima indicadas. No entanto é necessário ter atenção à base do logaritmo ou do exponencial em causa, uma vez que se esta for menor que 1 teremos de trocar o sinal da inequação.DomíniosAo estudar a função Logarítmica aprendemos uma nova condição deDomínio que se junta às já conhecidas do 10.º e 11.º ano.denominadores raízes índice par logaritmos tangente log a (D ) tg (D ) ... par D D π D≠0 D≥0 D>0 D≠ + k ⋅π 2Exemplo: Calcula o Domínio da seguinte função. log 2 (3 x − 1) − x + 5 f ( x ) = tg (2 x ) + x−3
  4. 4. Prática 1. Teste Intermédio – 15/03/20102. 2.1. 2.2. Teste Intermédio – 15/03/2010
  5. 5. 3. Teste Intermédio – 27/05/20094. Teste Intermédio – 11/03/20095. Teste Intermédio – 29/04/20086. 6.1. 6.2. Teste Intermédio – 29/04/2008
  6. 6. 7. 7.1. 7.2. Teste Intermédio – 11/03/2009

×