SlideShare uma empresa Scribd logo
Orientadora: Raquel Caparroz 
Cicconi Ramos- 3º ano- Bertioga
Deleite
situações problema
situações problema
situações problema
situações problema
situações problema
situações problema
situações problema
situações problema
Prof. Samantha Prof. Débora 
Prof. Lígia Prof. Sueli
Prof. Gilvânea 
Prof. Rosana 
Prof. Ana Paula Prof. Marisa
Retomando a aula anterior...
Resolver problemas... 
...não é apenas uma meta da aprendizagem 
matemática, mas também um modo importante de 
fazê-la. A resolução de problemas é uma parte 
integrante de toda a aprendizagem matemática e, 
portanto, não deve ser apenas uma parte isolada 
do programa de matemática. 
Em outras palavras, os estudantes devem resolver 
problemas não para aplicar matemática, mas para 
aprender nova matemática. 
(Van de Walle, 2009)
Problema 
É definido aqui como qualquer tarefa ou 
atividade na qual os estudantes não tenham 
nenhum método ou regra já receitados ou 
memorizados e nem haja uma percepção por 
parte dos estudantes de que haja um método 
“correto” específico de solução. 
(Hiebert et al., 1997)
Problema 
Em geral considera-se problema como uma 
situação que apresenta dificuldades para as 
quais não há uma solução evidente. 
(Itacarambi, 1998)
 O ponto de partida da 
atividade matemática não 
é a definição, mas o 
problema. No processo de 
ensino e aprendizagem, 
conceitos, ideias e 
métodos matemáticos 
devem ser abordados 
mediante a exploração de 
problemas, ou seja, de 
situações em que os 
alunos precisem 
desenvolver algum tipo de 
estratégia para resolvê-las; 
 O problema certamente 
não é um exercício em 
que o aluno aplica, de 
forma quase mecânica, 
uma fórmula ou um 
processo operatório. Só há 
problema se o aluno for 
levado a interpretar o 
enunciado da questão que 
lhe é posta e a estruturar 
a situação que lhe é 
apresentada;
situações problema
 Concentra a atenção dos alunos sobre as 
ideias e em dar sentido às mesmas. 
 Desenvolve nos alunos a convicção de que 
eles são capazes de fazer matemática e de 
que a matemática faz sentido.
John A. Van de Walle
 A releitura de um problema não melhora 
muito, mas fazer os estudantes recontarem o 
problema em suas próprias palavras lhes 
obriga a pensar exatamente sobre o que o 
problema está perguntando.
 É interessante desenvolver uma abordagem 
por etapas em que primeiro os alunos 
trabalhem sozinhos (refletem) e depois 
conversam e trocam ideias com um parceiro. 
 Apresenta o modelo: “pensar e escrever, 
conversar em dupla e compartilhar”. 
Acrescentando que os alunos devem, primeiro, 
escrever suas soluções para o problema antes 
de formar uma dupla com um parceiro. Com o 
trabalho escrito para compartilhar, os dois 
têm algo sobre o que falar.
 Deixe os alunos caminharem por si mesmos. 
 Deixar caminhar também significa permitir que 
eles cometam erros. Quando você observa um erro 
ou pensamento incorreto, não o corrija 
imediatamente. 
 Se você corrigir todo pensamento incorreto, você 
terá menos debates, reduzirá a segurança dos 
alunos em seu próprio pensamento e terá menos 
ideias para uma discussão rica e proveitosa. 
 Não obrigue o uso de seus métodos ou os de outros 
alunos na classe.
 Encoraje o diálogo entre alunos em vez de 
conversações entre alunos e professor que 
excluam a turma. “Joana, você pode 
responder a pergunta de Laura?”. 
 Chame os alunos para apresentar suas ideias 
e, primeiro, as crianças que tendem a ser 
tímidas ou ainda não tenham a habilidade de 
se expressar muito bem.
 Encoraje os estudantes a fazer perguntas: 
“Alguém quer fazer uma pergunta para o 
Antônio?” 
 Demonstre aos alunos que é normal ficar 
confuso e que perguntar questões de 
esclarecimentos é apropriado.
EVITE FRASES 
COMO: 
 É fácil! 
 Deixe-me ajudá-lo! 
 Ok! Está correto! 
 Bom trabalho! 
 Excelente trabalho! 
. 
PREFIRA: 
 O que você acha que o 
problema está 
perguntando? 
 Que ideias você já 
tentou até agora? 
 Você tem alguma ideia 
sobre qual deve ser a 
resposta? 
 Porque você pensa 
assim? 
 Por favor me explique 
como você descobriu 
isso...”
DIFERENTES FORMAS DE RESOLVER 
PROBLEMAS 
A exigência precoce pelo algoritmo na 
resolução de problemas pode criar dificuldades 
para os alunos, quer na compreensão do que o 
problema pede, quer na elaboração adequada 
de uma estratégia para a sua resolução.
 Oralmente 
 Desenho 
 Convencional utilizando a linguagem 
matemática
 Promover a discussão das diferentes 
estratégias; 
 Painel de soluções - possibilita à classe 
conhecer os diferentes caminhos 
encontrados para resolver uma mesma 
situação;
 Formular e resolver os problemas 
propostos para cada grupo para posterior 
socialização.
AVANÇANDO A PARTIR DOS ERROS 
 Garantir que haja um clima de respeito e 
confiança em sala de aula para que as crianças 
sintam-se à vontade para lidar com o erro. 
 Discutir com o grupo por que a solução está 
errada é uma das formas de trabalho que 
contribui muito para que a criança reveja suas 
estratégias, localize seu erro e reorganize os 
dados em busca de uma solução correta.
 ERROS FREQUENTES: o professor pode 
selecionar alguns deles e montar uma folha 
para que as crianças descubram onde está o 
erro e tentem corrigí-lo através da discussão 
com os colegas. 
 Sugerir que a classe crie um novo problema 
que possa ser resolvido por aquela estratégia e 
comparar os dois: o original com solução 
inadequada e o criado para se adaptar àquela 
resolução.
 ( Guérios e Ligeski- 2013) 
 Ausência de compreensão ou compreensão 
inadequada na leitura 
 Ausência ou equívoco de compreensão 
matemática
É uma coleção organizada de problemas colocadas 
em uma caixa ou fichário. Pode trazer a resposta 
no verso possibilitando a autocorreção.
 Elaborar estratégias de confecção e 
utilização da Problemateca na sua sala. 
 As crianças confeccionarão? 
 Os problemas virão prontos? 
 As crianças confeccionarão? 
 Em que momento será utilizado? 
 Que tipos de problemas serão selecionados? 
 Como acontecerá a correção? 
 Farão individualmente, em duplas?
 Reúnam o grupo de suas escolas para escolha 
de uma data do Dia da Matemática e entrem 
em contato com a coordenadora Solange 
para verificar possibilidade da mesma. 
 Lembro que esta atividade com as crianças 
faz parte da carga horária do curso e não 
pode deixar de ser realizada.
situações problema
 BRASIL. Secretaria de Educação Fundamental. 
Parâmetros curriculares nacionais : matemática / 
Secretaria de Educação Fundamental. – Brasília : 
MEC/SEF, 1997. 
 ITACARAMBI, Ruth Ribas (org). Resolução de problemas: 
construção de uma metodologia. São Paulo: editora 
Livraria da Física, 2010. 
 SMOLE, Kátia Stocco; DINIZ, Maria Ignez (org.). Ler, 
escrever e resolver problemas: habilidades básicas para 
aprender matemática. Porto Alegre: Artmed, 2001. 
 WALLE, John A. Van de. Tradução: Paulo Henrique 
Colonesi. Matemática no Ensino Fundamental: formação 
de professores e aplicação em sala de aula. 6ª ed. Porto 
Alegre: Artmed, 2009.

Mais conteúdo relacionado

Mais procurados

Projeto interdisciplinar: Traçando saberes entre Português e Matemática. (20...
Projeto interdisciplinar: Traçando saberes entre Português e Matemática.  (20...Projeto interdisciplinar: Traçando saberes entre Português e Matemática.  (20...
Projeto interdisciplinar: Traçando saberes entre Português e Matemática. (20...
Mary Alvarenga
 
Modelo de Projeto de Pesquisa
Modelo de Projeto de PesquisaModelo de Projeto de Pesquisa
Modelo de Projeto de Pesquisa
José Antonio Ferreira da Silva
 
Slide projeto de pesquisa
Slide projeto de pesquisaSlide projeto de pesquisa
Slide projeto de pesquisa
rivanialeao
 
Conhecendo a didática
Conhecendo a didáticaConhecendo a didática
2ª formação - Matemática
2ª formação - Matemática2ª formação - Matemática
2ª formação - Matemática
PNAIC UFSCar
 
Rotina escolar
Rotina escolarRotina escolar
Rotina escolar
Anaí Peña
 
Gestão da Sala de Aula
Gestão da Sala de Aula Gestão da Sala de Aula
Gestão da Sala de Aula
Grasiela Dourado
 
Trabalhando Ciências da Natureza nos Anos Iniciais
Trabalhando Ciências da Natureza nos Anos IniciaisTrabalhando Ciências da Natureza nos Anos Iniciais
Trabalhando Ciências da Natureza nos Anos Iniciais
luciany-nascimento
 
Oficina de grandezas e medidas
Oficina de grandezas e medidasOficina de grandezas e medidas
Oficina de grandezas e medidas
Naysa Taboada
 
Aula 9. modelo de plano de aula
Aula 9. modelo de plano de aulaAula 9. modelo de plano de aula
Aula 9. modelo de plano de aula
Karlla Costa
 
Plano de ação 2011
Plano de ação 2011Plano de ação 2011
Plano de ação 2011
GERALDOGOMESDEBARROS
 
ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL
ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL
ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL
Arivaldom
 
Resumo
ResumoResumo
Apresentação projeto indisciplina
Apresentação projeto indisciplinaApresentação projeto indisciplina
Apresentação projeto indisciplina
bernadetefischerkrauze
 
Estágio Educação Infantil
Estágio Educação InfantilEstágio Educação Infantil
Estágio Educação Infantil
Luúh Reis
 
Práticas de Leitura e Práticas de Produção de texto
Práticas de Leitura e Práticas de Produção de textoPráticas de Leitura e Práticas de Produção de texto
Práticas de Leitura e Práticas de Produção de texto
Fernanda Tulio
 
Conselho de classe
Conselho de classeConselho de classe
Conselho de classe
Vadeilza Castilho
 
Projeto reforço escolar
Projeto reforço escolarProjeto reforço escolar
Projeto reforço escolar
CLEAN LOURENÇO
 
Relatorio estagio educação infantil
Relatorio estagio educação infantil Relatorio estagio educação infantil
Relatorio estagio educação infantil
filicianunes
 
Seminário do estágio
Seminário do estágioSeminário do estágio
Seminário do estágio
familiaestagio
 

Mais procurados (20)

Projeto interdisciplinar: Traçando saberes entre Português e Matemática. (20...
Projeto interdisciplinar: Traçando saberes entre Português e Matemática.  (20...Projeto interdisciplinar: Traçando saberes entre Português e Matemática.  (20...
Projeto interdisciplinar: Traçando saberes entre Português e Matemática. (20...
 
Modelo de Projeto de Pesquisa
Modelo de Projeto de PesquisaModelo de Projeto de Pesquisa
Modelo de Projeto de Pesquisa
 
Slide projeto de pesquisa
Slide projeto de pesquisaSlide projeto de pesquisa
Slide projeto de pesquisa
 
Conhecendo a didática
Conhecendo a didáticaConhecendo a didática
Conhecendo a didática
 
2ª formação - Matemática
2ª formação - Matemática2ª formação - Matemática
2ª formação - Matemática
 
Rotina escolar
Rotina escolarRotina escolar
Rotina escolar
 
Gestão da Sala de Aula
Gestão da Sala de Aula Gestão da Sala de Aula
Gestão da Sala de Aula
 
Trabalhando Ciências da Natureza nos Anos Iniciais
Trabalhando Ciências da Natureza nos Anos IniciaisTrabalhando Ciências da Natureza nos Anos Iniciais
Trabalhando Ciências da Natureza nos Anos Iniciais
 
Oficina de grandezas e medidas
Oficina de grandezas e medidasOficina de grandezas e medidas
Oficina de grandezas e medidas
 
Aula 9. modelo de plano de aula
Aula 9. modelo de plano de aulaAula 9. modelo de plano de aula
Aula 9. modelo de plano de aula
 
Plano de ação 2011
Plano de ação 2011Plano de ação 2011
Plano de ação 2011
 
ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL
ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL
ESTÁGIO SUPERVISIONADO NA EDUCAÇÃO INFANTIL
 
Resumo
ResumoResumo
Resumo
 
Apresentação projeto indisciplina
Apresentação projeto indisciplinaApresentação projeto indisciplina
Apresentação projeto indisciplina
 
Estágio Educação Infantil
Estágio Educação InfantilEstágio Educação Infantil
Estágio Educação Infantil
 
Práticas de Leitura e Práticas de Produção de texto
Práticas de Leitura e Práticas de Produção de textoPráticas de Leitura e Práticas de Produção de texto
Práticas de Leitura e Práticas de Produção de texto
 
Conselho de classe
Conselho de classeConselho de classe
Conselho de classe
 
Projeto reforço escolar
Projeto reforço escolarProjeto reforço escolar
Projeto reforço escolar
 
Relatorio estagio educação infantil
Relatorio estagio educação infantil Relatorio estagio educação infantil
Relatorio estagio educação infantil
 
Seminário do estágio
Seminário do estágioSeminário do estágio
Seminário do estágio
 

Destaque

Problemas matemáticos
Problemas matemáticosProblemas matemáticos
Problemas matemáticos
Simone Dias
 
Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemas
Glaucia_Vieira
 
ResoluçãO De Problemas
ResoluçãO De ProblemasResoluçãO De Problemas
ResoluçãO De Problemas
Rodrigo Schneider
 
Campo aditivo resolucao de problemas
Campo aditivo resolucao de problemasCampo aditivo resolucao de problemas
Campo aditivo resolucao de problemas
Denise Oliveira
 
Campo aditivo
Campo aditivoCampo aditivo
Campo aditivo
Aline Manzini
 
Conexões matemáticas situações problema
Conexões matemáticas   situações problemaConexões matemáticas   situações problema
Conexões matemáticas situações problema
Aprender com prazer
 
Slide projeto edna mendes
Slide projeto edna mendesSlide projeto edna mendes
Slide projeto edna mendes
Sylvia Regina Camassutti
 
Projeto evaine slide
Projeto evaine slideProjeto evaine slide
Projeto evaine slide
evainevieira
 
PACTO 2012 - PROPOSTA DIDATICA
PACTO 2012 - PROPOSTA DIDATICAPACTO 2012 - PROPOSTA DIDATICA
PACTO 2012 - PROPOSTA DIDATICA
Bruna Braga
 
Slide projeto edna mendes
Slide projeto edna mendesSlide projeto edna mendes
Slide projeto edna mendes
Sylvia Regina Camassutti
 
PNAIC - Unidade III texto 1
PNAIC - Unidade III   texto 1PNAIC - Unidade III   texto 1
PNAIC - Unidade III texto 1
ElieneDias
 
Jogos pedagógicos slides
Jogos pedagógicos slidesJogos pedagógicos slides
Jogos pedagógicos slides
selmabezerradesouza
 
Recriando o recreio de brincar
Recriando o recreio de brincarRecriando o recreio de brincar
Recriando o recreio de brincar
Claudia Tedesco da Rocha
 
Pnaic ludicidade
Pnaic ludicidadePnaic ludicidade
Pnaic ludicidade
Claudio Pessoa
 
A IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTIL
A IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTILA IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTIL
A IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTIL
cefaprodematupa
 
PNAIC - Ano 1 unidade 3
PNAIC - Ano 1   unidade 3PNAIC - Ano 1   unidade 3
PNAIC - Ano 1 unidade 3
ElieneDias
 
Sugestões atividades oralidade
Sugestões atividades oralidadeSugestões atividades oralidade
Sugestões atividades oralidade
Dyone Andrade
 
Jogos no Ciclo da alfabetização
Jogos no Ciclo da alfabetizaçãoJogos no Ciclo da alfabetização
Jogos no Ciclo da alfabetização
Denise Oliveira
 
SISTEMA DE ESCRITA ALFABÉTICA - SEA
SISTEMA DE ESCRITA ALFABÉTICA - SEA SISTEMA DE ESCRITA ALFABÉTICA - SEA
SISTEMA DE ESCRITA ALFABÉTICA - SEA
Claudio Pessoa
 
Caderno 4 PNAIC - Situações-Problema
Caderno 4 PNAIC - Situações-ProblemaCaderno 4 PNAIC - Situações-Problema
Caderno 4 PNAIC - Situações-Problema
Rosilane
 

Destaque (20)

Problemas matemáticos
Problemas matemáticosProblemas matemáticos
Problemas matemáticos
 
Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemas
 
ResoluçãO De Problemas
ResoluçãO De ProblemasResoluçãO De Problemas
ResoluçãO De Problemas
 
Campo aditivo resolucao de problemas
Campo aditivo resolucao de problemasCampo aditivo resolucao de problemas
Campo aditivo resolucao de problemas
 
Campo aditivo
Campo aditivoCampo aditivo
Campo aditivo
 
Conexões matemáticas situações problema
Conexões matemáticas   situações problemaConexões matemáticas   situações problema
Conexões matemáticas situações problema
 
Slide projeto edna mendes
Slide projeto edna mendesSlide projeto edna mendes
Slide projeto edna mendes
 
Projeto evaine slide
Projeto evaine slideProjeto evaine slide
Projeto evaine slide
 
PACTO 2012 - PROPOSTA DIDATICA
PACTO 2012 - PROPOSTA DIDATICAPACTO 2012 - PROPOSTA DIDATICA
PACTO 2012 - PROPOSTA DIDATICA
 
Slide projeto edna mendes
Slide projeto edna mendesSlide projeto edna mendes
Slide projeto edna mendes
 
PNAIC - Unidade III texto 1
PNAIC - Unidade III   texto 1PNAIC - Unidade III   texto 1
PNAIC - Unidade III texto 1
 
Jogos pedagógicos slides
Jogos pedagógicos slidesJogos pedagógicos slides
Jogos pedagógicos slides
 
Recriando o recreio de brincar
Recriando o recreio de brincarRecriando o recreio de brincar
Recriando o recreio de brincar
 
Pnaic ludicidade
Pnaic ludicidadePnaic ludicidade
Pnaic ludicidade
 
A IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTIL
A IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTILA IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTIL
A IMPORTÂNCIA DOS JOGOS E BRINCADEIRAS NA EDUCAÇÃO INFANTIL
 
PNAIC - Ano 1 unidade 3
PNAIC - Ano 1   unidade 3PNAIC - Ano 1   unidade 3
PNAIC - Ano 1 unidade 3
 
Sugestões atividades oralidade
Sugestões atividades oralidadeSugestões atividades oralidade
Sugestões atividades oralidade
 
Jogos no Ciclo da alfabetização
Jogos no Ciclo da alfabetizaçãoJogos no Ciclo da alfabetização
Jogos no Ciclo da alfabetização
 
SISTEMA DE ESCRITA ALFABÉTICA - SEA
SISTEMA DE ESCRITA ALFABÉTICA - SEA SISTEMA DE ESCRITA ALFABÉTICA - SEA
SISTEMA DE ESCRITA ALFABÉTICA - SEA
 
Caderno 4 PNAIC - Situações-Problema
Caderno 4 PNAIC - Situações-ProblemaCaderno 4 PNAIC - Situações-Problema
Caderno 4 PNAIC - Situações-Problema
 

Semelhante a situações problema

Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemas
Aline Manzini
 
Oficina 16 desafios
Oficina 16 desafiosOficina 16 desafios
Oficina 16 desafios
Professora Cida
 
Metodologia
MetodologiaMetodologia
A resolução de problemas na educação matemática
A resolução de problemas na educação matemáticaA resolução de problemas na educação matemática
A resolução de problemas na educação matemática
Alessandro Emiliano de Araujo
 
PNAIC - MATEMÁTICA - 2014 Caderno 8 Parte - 2 Resolução de Problemas
PNAIC - MATEMÁTICA - 2014 Caderno 8  Parte -  2 Resolução de ProblemasPNAIC - MATEMÁTICA - 2014 Caderno 8  Parte -  2 Resolução de Problemas
PNAIC - MATEMÁTICA - 2014 Caderno 8 Parte - 2 Resolução de Problemas
Felipe Silva
 
FORMAÇÃO DE MATEMÁTICA PCA - Brejinho PE
FORMAÇÃO DE MATEMÁTICA PCA - Brejinho PEFORMAÇÃO DE MATEMÁTICA PCA - Brejinho PE
FORMAÇÃO DE MATEMÁTICA PCA - Brejinho PE
MartaKerlyxEvilinMay
 
Caderno 8
Caderno 8Caderno 8
Caderno 8
weleslima
 
Ler interpretar-e-resolver-problemas
Ler interpretar-e-resolver-problemasLer interpretar-e-resolver-problemas
Ler interpretar-e-resolver-problemas
Ednalva Coelho
 
Resolução de problemas e problemoteca
Resolução de problemas e problemotecaResolução de problemas e problemoteca
Resolução de problemas e problemoteca
Joelma Santos
 
Polya-21Out.ppt
Polya-21Out.pptPolya-21Out.ppt
Polya-21Out.ppt
Ana Esteves
 
Pauta
PautaPauta
PNAIC - MATEMÁTICA - Operações na resolução problemas
PNAIC - MATEMÁTICA - Operações na resolução problemasPNAIC - MATEMÁTICA - Operações na resolução problemas
PNAIC - MATEMÁTICA - Operações na resolução problemas
ElieneDias
 
Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...
Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...
Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...
AbnerJunior5
 
Ariana bezerradesousa
Ariana bezerradesousaAriana bezerradesousa
Ariana bezerradesousa
Ariana bezerradesousaAriana bezerradesousa
Síntese caderno4 pnaic
Síntese caderno4 pnaicSíntese caderno4 pnaic
Síntese caderno4 pnaic
Fatima Lima
 
Aprender e ensinar Matemática no Ensino Fundamental
Aprender e  ensinar Matemática no Ensino FundamentalAprender e  ensinar Matemática no Ensino Fundamental
Aprender e ensinar Matemática no Ensino Fundamental
valdivina
 
Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemas
UNIVERSIDADE ESTADUAL DE GOIÁS
 
A resolução de problemas como estrategia didática
A resolução de problemas como estrategia didáticaA resolução de problemas como estrategia didática
A resolução de problemas como estrategia didática
Claudelane Paes
 
PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA - CADERNO 8 SABERES MATEMÁT...
PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA -  CADERNO 8 SABERES MATEMÁT...PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA -  CADERNO 8 SABERES MATEMÁT...
PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA - CADERNO 8 SABERES MATEMÁT...
Lucineia De Sá
 

Semelhante a situações problema (20)

Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemas
 
Oficina 16 desafios
Oficina 16 desafiosOficina 16 desafios
Oficina 16 desafios
 
Metodologia
MetodologiaMetodologia
Metodologia
 
A resolução de problemas na educação matemática
A resolução de problemas na educação matemáticaA resolução de problemas na educação matemática
A resolução de problemas na educação matemática
 
PNAIC - MATEMÁTICA - 2014 Caderno 8 Parte - 2 Resolução de Problemas
PNAIC - MATEMÁTICA - 2014 Caderno 8  Parte -  2 Resolução de ProblemasPNAIC - MATEMÁTICA - 2014 Caderno 8  Parte -  2 Resolução de Problemas
PNAIC - MATEMÁTICA - 2014 Caderno 8 Parte - 2 Resolução de Problemas
 
FORMAÇÃO DE MATEMÁTICA PCA - Brejinho PE
FORMAÇÃO DE MATEMÁTICA PCA - Brejinho PEFORMAÇÃO DE MATEMÁTICA PCA - Brejinho PE
FORMAÇÃO DE MATEMÁTICA PCA - Brejinho PE
 
Caderno 8
Caderno 8Caderno 8
Caderno 8
 
Ler interpretar-e-resolver-problemas
Ler interpretar-e-resolver-problemasLer interpretar-e-resolver-problemas
Ler interpretar-e-resolver-problemas
 
Resolução de problemas e problemoteca
Resolução de problemas e problemotecaResolução de problemas e problemoteca
Resolução de problemas e problemoteca
 
Polya-21Out.ppt
Polya-21Out.pptPolya-21Out.ppt
Polya-21Out.ppt
 
Pauta
PautaPauta
Pauta
 
PNAIC - MATEMÁTICA - Operações na resolução problemas
PNAIC - MATEMÁTICA - Operações na resolução problemasPNAIC - MATEMÁTICA - Operações na resolução problemas
PNAIC - MATEMÁTICA - Operações na resolução problemas
 
Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...
Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...
Green and Yellow Simple and Basic Problem Solving Math Creative Presentation ...
 
Ariana bezerradesousa
Ariana bezerradesousaAriana bezerradesousa
Ariana bezerradesousa
 
Ariana bezerradesousa
Ariana bezerradesousaAriana bezerradesousa
Ariana bezerradesousa
 
Síntese caderno4 pnaic
Síntese caderno4 pnaicSíntese caderno4 pnaic
Síntese caderno4 pnaic
 
Aprender e ensinar Matemática no Ensino Fundamental
Aprender e  ensinar Matemática no Ensino FundamentalAprender e  ensinar Matemática no Ensino Fundamental
Aprender e ensinar Matemática no Ensino Fundamental
 
Resolução de problemas
Resolução de problemasResolução de problemas
Resolução de problemas
 
A resolução de problemas como estrategia didática
A resolução de problemas como estrategia didáticaA resolução de problemas como estrategia didática
A resolução de problemas como estrategia didática
 
PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA - CADERNO 8 SABERES MATEMÁT...
PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA -  CADERNO 8 SABERES MATEMÁT...PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA -  CADERNO 8 SABERES MATEMÁT...
PACTO NACIONAL PELA ALFABETIZAÇÃO NA IDADE CERTA - CADERNO 8 SABERES MATEMÁT...
 

Mais de Raquel Caparroz

caderno 8 pnaic matemática
caderno 8 pnaic matemáticacaderno 8 pnaic matemática
caderno 8 pnaic matemática
Raquel Caparroz
 
Virtual Educação estatística caderno 7
Virtual Educação estatística caderno 7Virtual Educação estatística caderno 7
Virtual Educação estatística caderno 7
Raquel Caparroz
 
Quando nasce um monstro
Quando nasce um monstro Quando nasce um monstro
Quando nasce um monstro
Raquel Caparroz
 
Fugindo das garras do gato
Fugindo das garras do gato Fugindo das garras do gato
Fugindo das garras do gato
Raquel Caparroz
 
Apostando com o monstro
Apostando com o monstro Apostando com o monstro
Apostando com o monstro
Raquel Caparroz
 
Adivinha quanto eu te amo
Adivinha quanto eu te amo Adivinha quanto eu te amo
Adivinha quanto eu te amo
Raquel Caparroz
 
Pnaic virtual Bertioga
Pnaic virtual  BertiogaPnaic virtual  Bertioga
Pnaic virtual Bertioga
Raquel Caparroz
 
Pnaic virtual 08-09
Pnaic virtual  08-09Pnaic virtual  08-09
Pnaic virtual 08-09
Raquel Caparroz
 
Dado
DadoDado
Jogo trilha folclore
Jogo trilha folcloreJogo trilha folclore
Jogo trilha folclore
Raquel Caparroz
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
Raquel Caparroz
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
Raquel Caparroz
 
Escalonadas
EscalonadasEscalonadas
Escalonadas
Raquel Caparroz
 
Livroacentopeiaeseussapatinhos 131013192700-phpapp01
Livroacentopeiaeseussapatinhos 131013192700-phpapp01Livroacentopeiaeseussapatinhos 131013192700-phpapp01
Livroacentopeiaeseussapatinhos 131013192700-phpapp01
Raquel Caparroz
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
Raquel Caparroz
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
Raquel Caparroz
 
Pacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certaPacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certa
Raquel Caparroz
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
Raquel Caparroz
 
Pacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certaPacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certa
Raquel Caparroz
 
pnaic formação
pnaic formaçãopnaic formação
pnaic formação
Raquel Caparroz
 

Mais de Raquel Caparroz (20)

caderno 8 pnaic matemática
caderno 8 pnaic matemáticacaderno 8 pnaic matemática
caderno 8 pnaic matemática
 
Virtual Educação estatística caderno 7
Virtual Educação estatística caderno 7Virtual Educação estatística caderno 7
Virtual Educação estatística caderno 7
 
Quando nasce um monstro
Quando nasce um monstro Quando nasce um monstro
Quando nasce um monstro
 
Fugindo das garras do gato
Fugindo das garras do gato Fugindo das garras do gato
Fugindo das garras do gato
 
Apostando com o monstro
Apostando com o monstro Apostando com o monstro
Apostando com o monstro
 
Adivinha quanto eu te amo
Adivinha quanto eu te amo Adivinha quanto eu te amo
Adivinha quanto eu te amo
 
Pnaic virtual Bertioga
Pnaic virtual  BertiogaPnaic virtual  Bertioga
Pnaic virtual Bertioga
 
Pnaic virtual 08-09
Pnaic virtual  08-09Pnaic virtual  08-09
Pnaic virtual 08-09
 
Dado
DadoDado
Dado
 
Jogo trilha folclore
Jogo trilha folcloreJogo trilha folclore
Jogo trilha folclore
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
 
Escalonadas
EscalonadasEscalonadas
Escalonadas
 
Livroacentopeiaeseussapatinhos 131013192700-phpapp01
Livroacentopeiaeseussapatinhos 131013192700-phpapp01Livroacentopeiaeseussapatinhos 131013192700-phpapp01
Livroacentopeiaeseussapatinhos 131013192700-phpapp01
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
 
Pacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certaPacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certa
 
Formação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaicFormação de professores alfabetizadores pnaic
Formação de professores alfabetizadores pnaic
 
Pacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certaPacto nacional para a alfabetização na idade certa
Pacto nacional para a alfabetização na idade certa
 
pnaic formação
pnaic formaçãopnaic formação
pnaic formação
 

situações problema

  • 1. Orientadora: Raquel Caparroz Cicconi Ramos- 3º ano- Bertioga
  • 11. Prof. Samantha Prof. Débora Prof. Lígia Prof. Sueli
  • 12. Prof. Gilvânea Prof. Rosana Prof. Ana Paula Prof. Marisa
  • 13. Retomando a aula anterior...
  • 14. Resolver problemas... ...não é apenas uma meta da aprendizagem matemática, mas também um modo importante de fazê-la. A resolução de problemas é uma parte integrante de toda a aprendizagem matemática e, portanto, não deve ser apenas uma parte isolada do programa de matemática. Em outras palavras, os estudantes devem resolver problemas não para aplicar matemática, mas para aprender nova matemática. (Van de Walle, 2009)
  • 15. Problema É definido aqui como qualquer tarefa ou atividade na qual os estudantes não tenham nenhum método ou regra já receitados ou memorizados e nem haja uma percepção por parte dos estudantes de que haja um método “correto” específico de solução. (Hiebert et al., 1997)
  • 16. Problema Em geral considera-se problema como uma situação que apresenta dificuldades para as quais não há uma solução evidente. (Itacarambi, 1998)
  • 17.  O ponto de partida da atividade matemática não é a definição, mas o problema. No processo de ensino e aprendizagem, conceitos, ideias e métodos matemáticos devem ser abordados mediante a exploração de problemas, ou seja, de situações em que os alunos precisem desenvolver algum tipo de estratégia para resolvê-las;  O problema certamente não é um exercício em que o aluno aplica, de forma quase mecânica, uma fórmula ou um processo operatório. Só há problema se o aluno for levado a interpretar o enunciado da questão que lhe é posta e a estruturar a situação que lhe é apresentada;
  • 19.  Concentra a atenção dos alunos sobre as ideias e em dar sentido às mesmas.  Desenvolve nos alunos a convicção de que eles são capazes de fazer matemática e de que a matemática faz sentido.
  • 20. John A. Van de Walle
  • 21.  A releitura de um problema não melhora muito, mas fazer os estudantes recontarem o problema em suas próprias palavras lhes obriga a pensar exatamente sobre o que o problema está perguntando.
  • 22.  É interessante desenvolver uma abordagem por etapas em que primeiro os alunos trabalhem sozinhos (refletem) e depois conversam e trocam ideias com um parceiro.  Apresenta o modelo: “pensar e escrever, conversar em dupla e compartilhar”. Acrescentando que os alunos devem, primeiro, escrever suas soluções para o problema antes de formar uma dupla com um parceiro. Com o trabalho escrito para compartilhar, os dois têm algo sobre o que falar.
  • 23.  Deixe os alunos caminharem por si mesmos.  Deixar caminhar também significa permitir que eles cometam erros. Quando você observa um erro ou pensamento incorreto, não o corrija imediatamente.  Se você corrigir todo pensamento incorreto, você terá menos debates, reduzirá a segurança dos alunos em seu próprio pensamento e terá menos ideias para uma discussão rica e proveitosa.  Não obrigue o uso de seus métodos ou os de outros alunos na classe.
  • 24.  Encoraje o diálogo entre alunos em vez de conversações entre alunos e professor que excluam a turma. “Joana, você pode responder a pergunta de Laura?”.  Chame os alunos para apresentar suas ideias e, primeiro, as crianças que tendem a ser tímidas ou ainda não tenham a habilidade de se expressar muito bem.
  • 25.  Encoraje os estudantes a fazer perguntas: “Alguém quer fazer uma pergunta para o Antônio?”  Demonstre aos alunos que é normal ficar confuso e que perguntar questões de esclarecimentos é apropriado.
  • 26. EVITE FRASES COMO:  É fácil!  Deixe-me ajudá-lo!  Ok! Está correto!  Bom trabalho!  Excelente trabalho! . PREFIRA:  O que você acha que o problema está perguntando?  Que ideias você já tentou até agora?  Você tem alguma ideia sobre qual deve ser a resposta?  Porque você pensa assim?  Por favor me explique como você descobriu isso...”
  • 27. DIFERENTES FORMAS DE RESOLVER PROBLEMAS A exigência precoce pelo algoritmo na resolução de problemas pode criar dificuldades para os alunos, quer na compreensão do que o problema pede, quer na elaboração adequada de uma estratégia para a sua resolução.
  • 28.  Oralmente  Desenho  Convencional utilizando a linguagem matemática
  • 29.  Promover a discussão das diferentes estratégias;  Painel de soluções - possibilita à classe conhecer os diferentes caminhos encontrados para resolver uma mesma situação;
  • 30.  Formular e resolver os problemas propostos para cada grupo para posterior socialização.
  • 31. AVANÇANDO A PARTIR DOS ERROS  Garantir que haja um clima de respeito e confiança em sala de aula para que as crianças sintam-se à vontade para lidar com o erro.  Discutir com o grupo por que a solução está errada é uma das formas de trabalho que contribui muito para que a criança reveja suas estratégias, localize seu erro e reorganize os dados em busca de uma solução correta.
  • 32.  ERROS FREQUENTES: o professor pode selecionar alguns deles e montar uma folha para que as crianças descubram onde está o erro e tentem corrigí-lo através da discussão com os colegas.  Sugerir que a classe crie um novo problema que possa ser resolvido por aquela estratégia e comparar os dois: o original com solução inadequada e o criado para se adaptar àquela resolução.
  • 33.  ( Guérios e Ligeski- 2013)  Ausência de compreensão ou compreensão inadequada na leitura  Ausência ou equívoco de compreensão matemática
  • 34. É uma coleção organizada de problemas colocadas em uma caixa ou fichário. Pode trazer a resposta no verso possibilitando a autocorreção.
  • 35.  Elaborar estratégias de confecção e utilização da Problemateca na sua sala.  As crianças confeccionarão?  Os problemas virão prontos?  As crianças confeccionarão?  Em que momento será utilizado?  Que tipos de problemas serão selecionados?  Como acontecerá a correção?  Farão individualmente, em duplas?
  • 36.  Reúnam o grupo de suas escolas para escolha de uma data do Dia da Matemática e entrem em contato com a coordenadora Solange para verificar possibilidade da mesma.  Lembro que esta atividade com as crianças faz parte da carga horária do curso e não pode deixar de ser realizada.
  • 38.  BRASIL. Secretaria de Educação Fundamental. Parâmetros curriculares nacionais : matemática / Secretaria de Educação Fundamental. – Brasília : MEC/SEF, 1997.  ITACARAMBI, Ruth Ribas (org). Resolução de problemas: construção de uma metodologia. São Paulo: editora Livraria da Física, 2010.  SMOLE, Kátia Stocco; DINIZ, Maria Ignez (org.). Ler, escrever e resolver problemas: habilidades básicas para aprender matemática. Porto Alegre: Artmed, 2001.  WALLE, John A. Van de. Tradução: Paulo Henrique Colonesi. Matemática no Ensino Fundamental: formação de professores e aplicação em sala de aula. 6ª ed. Porto Alegre: Artmed, 2009.