O documento descreve o Teorema de Fermat e o Teorema de Euler, que são fundamentais na teoria da aritmética modular. O Teorema de Fermat estabelece que se p for primo e a qualquer inteiro, então ap ≡ a (mod p). O Teorema de Euler relaciona a função φ de Euler com a congruência modular e estabelece que se a e m forem relativamente primos, então aφ(m) ≡ 1 (mod m). Demonstrações e exemplos são fornecidos.