SlideShare uma empresa Scribd logo
1 de 5
Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes                               - Profº Paulo Vieira Neto   1


No regime de juros simples, os juros incidem somente sobre a aplicação capital inicial, qualquer que seja o número
períodos de capitalização.
Por definição, o juro simples é diretamente proporcional ao capital inicial e ao tempo de aplicação, sendo a taxa de juro
por período o fator de proporcionalidade.

1. Um capital de $ 2.000,00 foi aplicado durante 3 meses, à juros simples, à taxa de 18% a.a. Pede-se:
a) Juros                                                   b) Montante.

    1)     J = Cin           2)     M=C+j             3)     M = C +Cin        4)    M = C (1+ in)                  5)   J= M-C

Solução:      C = 4000,00          i = 18% a.a.                   n=3m

a) J = Cin                                                                b)   M=C+J
J = 4000 {[(18/100)/12]x3}                                                     M = 4000 + 180
J = 4000 {[0,18/12]x3}                                                         M = 4.180,00
J = 4000 {0,015 x 3}
J = 4000 x 0,045
J = 180,00

2. Calcular o juro simples referente a um capital de $ 2.400,00 nas seguintes               condições:
   Taxa de Juros                Prazo                         Taxa de Juros                  Prazo
a) 21% a.a.                     1 ano                         c) 21% a.a.                    3 meses
b) 21% a.a.                     3 anos                        d) 21% a.a.                    32 dias

Solução:
a) J = Cin                        b) J = Cin                   c) J = Cin                       d) J = Cin
J = 2400 [(21/100)x1]             J = 2400 [(21/100)x3]        J = 2400 {[(21/100)/12]x3}       J = 2400 {[(21/100)/360]x32}
J = 2400 [0,21 x 1]               J = 2400 [0,21x3]            J = 2400 {[0,21/12]x3}           J = 2400 {[0,21/360]x32}
J = 2400 x 0,21                   J = 2400 0,63                J = 2400 {0,0175x3}              J = 2400 {0,000583333 x 32}
J = 504,00                        J = 1.512,00                 J = 2400 x 0,0525                J = 2400 x 0,018666667
                                                               J = 126,00                       J = 44,80

3. Que Montante um aplicador receberá, tendo investido $ 3.000,00, a juros simples, nas seguintes condições:
   Taxa de Juros             Prazo
a) 30% a.a.                  5 meses
b) 27% a.a.                  1 ano e 4 meses
c) 3% a.m.                   48 dias

Solução:
a) J = Cin – M = C + J    M = C(1 + in)

a) J = Cin                               a) M = C + J           ou             M = C(1 + in)
J = 3000 {[(30/100)/12]x5}                  M = 3000 + 375                     M = 3000 x { 1 + [(30/100)/12]x5}
J = 3000 {[0,30/12]x5}                      M = 3.375,00                       M = 3000 x {1 + [0,30/12] x 5}
J = 3000 {0,025x5}                                                             M = 3000 x {1 + 0,025 x 5}
J = 3000 X 0,125                                                               M = 3000 x {1 + 0,125}
J = 375,00                                                                     M = 3000 x 1,125
                                                                               M = 3.375,00

b) n = 1 a 4m  12m + 4m = 16m
b) J = Cin                     b) M = C + J                     ou             M = C(1 + in)
J = 3000 {[(27/100)/12]x16}       M = 3000 + 1080                              M = 3000 x { 1 + [(27/100)/12]x16}
J = 3000 {[0,27/12]x16}           M = 4.080,00                                 M = 3000 x {1 + [0,27/12] x 16}
J = 3000 {0,0225x16}                                                           M = 3000 x {1 + 0,0225 x 16}
J = 3000 X 0,136                                                               M = 3000 x {1 + 0,365}
J = 1.080,00                                                                   M = 3000 x 1,36
                                                                               M = 4.080,00


b) J = Cin                               b) M = C + J           ou             M = C(1 + in)
J = 3000 {[(3/100)/30]x48}                  M = 3000 + 144                     M = 3000 x { 1 + [(3/100)/30]x48}
J = 3000 {[0,3/30]x48}                      M = 3.144,00                       M = 3000 x {1 + [0,03/30] x 48}
J = 3000 {0,001x48}                                                            M = 3000 x {1 + 0,001 x 48}
J = 3000 X 0,048                                                               M = 3000 x {1 + 0,048}
J = 144,00                                                                     M = 3000 x 1,048
                                                                               M = 3.144,00
Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes                                - Profº Paulo Vieira Neto            2


4. Calcule os juros simples auferidos de uma aplicação de $ 3.500,00, à taxa de 38% a.a. pelo prazo de 5 meses.
Solução:                 J = Cin
C: 3500                  J = 3500 x {[(38/100)/12] x 5}
i: 38% a.a.              J = 3500 x { [0,38/12] x 5 }
n: 5m                    J = 3500 x { 0,031666667 x 5 }
                         J = 3500 x 0,158333333
                         J = 554,17

5. Um capital de $ 19.000,00 foi aplicado a juros simples à taxa de 39% a.a., pelo prazo de 56 dias. Obtenha os juros
comerciais e exatos para esta aplicação.
Solução:                J = Cin  Juros Comercias                      J = Cin  Juros Exatos
C: 19000                J = 19000 x {[(39/100)/360] x 56}              J = 19000 x {[(39/100)/365] x 56}
i: 39% a.a.             J = 19000 x { [0,39/360] x 56 }                J = 19000 x { [0,39/365] x 56 }
n: 56d                  J = 19000 x { 0,001083333 x 56 }               J = 19000 x { 0,001068493 x 56 }
                        J = 19000 x 0,060666667                        J = 19000 x 0,059835616
                        J = 1.152,67                                   J = 1.136,88


DESCONTO: É a quantia abatida do valor nominal, isto é, a diferença entre o valor nominal e o valor atual.
[Valor Nominal também chamado de Valor Futuro ou Valor de Face ou Valor de Resgate]

Desconto Comercial [ Dc ], bancário ou por fora, o equivalente a juros simples, produzido pelo valor nominal [N]
do título no período de tempo correspondente e a taxa fixada.
Dc = Nin  onde: Dc: Desconto comercial; i: Taxa de desconto [i ÷ 100], n: prazo.

Desconto Racional [Dr] ou por dentro, é o equivalente a juros simples, produzido pelo valor atual do título numa taxa
fixada e durante o tempo correspondente.
          Nin
Dr =
         1 + in
Valor Atual [VA], é a diferente entre o Valor Nominal [N] menos o [VA]  d = N – VA

1. Um título no valor de $ 14.000,00 foi descontado num banco 3 meses antes do vencimento, a uma taxa de desconto
comercial de 3,5% a.m..
a) calcule o desconto;
b) calcule o valor líquido recebido pelo empresa. [Valor Atual – VA]
                             Dc = Nin                                VA = N - d
Solução:                     Dc = 14000 x [(3,5/100) x 3]            VAc = N - dc
N: 14000                     Dc = 14000 x [0,035 x 3]                VAc = 14000 - 1470
i: 3,5% a.m.                 Dc = 14000 x 0,105                      VAc = 12.530,00
n: 3 meses.                  Dc = 1.470,00

2. Uma empresa descontou num banco um título de valor nominal igual a $ 90.000,00, 40 dias antes do vencimento, a
uma taxa de desconto comercial de 30% a.a..
a) qual o desconto comercial;
b) calcule o valor líquido recebido pelo empresa. [Valor Atual – VA]
                             Dc = Nin                                VA = N - d
Solução:                     Dc = 90000 x {[(30/100)/360] x 40}      VAc = N - dc
N: 90000                     Dc = 90000 x {[0,30/360] x 40}          VAc = 90000 - 3000
i: 30% a.a.                  Dc = 90000 x 0,000833333 x 40           VAc = 87.000,00
n: 40 dias.                  Dc = 90000 x 0,033333333
                             Dc = 3.000,00

3. Uma duplicata de valor nominal igual a $8.000,00, foi descontada num banco dois meses antes do vencimento, a uma
taxa de desconto comercial de 2,50% a.m..
a) qual o desconto comercial;
b) calcule o valor líquido recebido pelo empresa. [Valor Atual – VA]
                             Dc = Nin                                 VA = N - d
Solução:                     Dc = 8000 x [(2,50/100) x 2]             VAc = N - dc
N: 8000                      Dc = 8000 x [0,025 x 2}                  VAc = 8000 - 400
i: 2,5% a.a.                 Dc = 8000 x 0,05                         VAc = 7.600,00
n: 2 meses.                  Dc = 400,00

4. Uma dívida de $ 13.500,00, será saldada 3 meses antes do seu vencimento. Que desconto racional será obtido, se
a taxa de juros que reza no contrato é de 30% a.a.?
N: 13.500              n: 3 meses                   i: 30% a.a.               Dr = ?
     Nin          13500 x [(0,30/12) x 3]        13500 x [0,025 x 3]        13500 x 0,075        13500 x 0,075        1012,50
Dr =       ⇒ Dr =                         → Dr =                     → Dr =               → Dr =               → Dr =           → Dr = 941,84
    1 + in          1 + [(0,30/12) x 3]            1 + [0,025 x 3]            1 + 0,075            1 + 0,075           1,075
$ 941,86 é, portanto, o desconto racional obtido pelo resgate antecipado da dívida.
Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes                                           - Profº Paulo Vieira Neto   3


5. Determinar o desconto racional em cada uma das hipóteses abaixo, adotando-se o ano comercial.
   Valor Nominal         Taxa de Juros        Prazo de Antecipação
a) $ 12.000,00            27,30% a.a.           7 meses
b) $ 4.200,00             18,0% a.a.            120 dias
c) $ 7.400,00             33,0% a.a.            34 dias
d) $ 3.700,00             21,0% a.a.            5 meses e 20 dias

Solução:
a) N: 12000             i: 27,3%a.a.         n: 7 meses     Dr = ?
                                 27,3   
                          12000         /12  x7
                                  100                               {[         ] }
        Nin                                       12000 0,273/12 x7
Dr =
       1 + in
                      →
                                27,3   
                                                     →
                                                                       {[
                                                         1 + 0,273/12 x7           ] }         →

                           1 +        /12  x7
                                 100        
                                           
                  {
       12000 0,02275x7             }             12000 x 0,15925                        1911
Dr =
              {
        1 + 0,02275x7          }       → Dr =
                                                     1 + 0,15925
                                                                        → Dr =
                                                                                   1,15925
                                                                                                   → Dr = 1.648,48



b) N: 4200                i: 33%a.a.             n: 120 dias = 4 meses                         Dr = ?
                                 18   
                           4200       /12  x4
                                                   
        Nin
                                       
                                 100   
                                                                   {[
                                                            4200 0,18/12 x4       ] }                    {
                                                                                                   4200 0,015x4   }
                                                                1 + { [ 0,18/12 ] x4}               1 + { 0,015x4}
Dr =                  →                                 →                               → Dr =
       1 + in                   18   
                           1 + 
                                        /12  x4
                                                 
                                100   
                                            
          4200 x 0,06                           252
→ Dr =                             → Dr =              → Dr = 237,74
                  1 + 0,06                     1,06

c) N: 7400                i: 33%a.a.             n: 34 dias            Dr = ?
                                 33              
                           7400       
                                    100  /360  x34 
                                                
        Nin                                                      {[
                                                                  7400 0,33/360 x34] }                        {
                                                                                                        7400 0,000916667x34    }
Dr =
       1 + in
                      →
                                33              
                                                            →
                                                                  1+   {[ 0,33/360]x34}        → Dr =
                                                                                                             {
                                                                                                        1 + 0,00091666 7x34   }    →

                           1 +       
                                   100  /360  x34 
                                               
                                
                                                 
       7400 x 0,03116666 7                              230,63
Dr =                                        → Dr =                       → Dr = 223,66
        1 + 0,031166667                               1,031166667

d) N: 3700                i: 21%a.a.             n: 5 m e 20 dias = [(5x30)+20] = 170 dias                        Dr = ?
                                 21    /360  x170 
                                                 
                           3700                      
        Nin                        100 
                                             
                                                       →               {[
                                                                   3700 0,21/360 x170  ] }                       {
                                                                                                            3700 0,00058333 3x170 }
                                                                    1 + { [ 0,21/360 ] x170}                1 + { 0,000583333x170}
Dr =                  →                                                                            → Dr =                              →
       1 + in                   21                
                           1 +         /360  x170
                                                       
                                   100       
                                                  
       3700 x 0,09916666 7                               366,92
Dr =                                        → Dr =                       → Dr = 333,81
         1 + 0,09916666 7                             1,09916666 7




JUROS COMPOSTOS
No regime de juros compostos, o rendimento gerado pela aplicação será incorporado a ela a partir do segundo período.
Dizemos, então, que os rendimentos ou juros são capitalizados:
               n
O fator (1 + i) é chamado de fator de acumulação de capital, para pagamento único.


Para o Cálculo do Montante, utilizamos a seguinte fórmula: M = C(1 + i)n [1], Cálculo do Juro: J = M – C [2] ou se


preferir: J = C
                       (1 + i)n        
                                       −1    [3], M = C + J [4]
                       
                                       
                                        
Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes                                 - Profº Paulo Vieira Neto     4

1. Qual o montante de uma aplicação de $16.000,00, a juros compostos, pelo prazo de 4 meses, à taxa de 2,5% a.m.?

Solução:
C: 16000               i: 2,5% a.m.        n: 4 meses.

M = C ( 1 + i )n
                        4
             2,5   → M = 16000 1 + 0,025 4 → M = 16000 1,025 4 → M = 16000 x 1,103812891 → M = 17.661,01
M = 16000 1 +                                 [            ]                     [           ]
             100  
             
Solução, utilizando a calculadora científica, modelo ML-82LB ou similar:
                          X
2,5 ÷ 100 + 1 = 1,025 Y 4 =  1,103812891 X 16000 = 17661,100625, para fixar 2 casas decimais: 2ndF TAB 2
 17.661,01 [Resposta final].

2. Calcule o montante e os juros das aplicações abaixo, considerando o regime de juros compostos:
      Capital            Taxa de Juros           Prazo de Antecipação
a) $ 20.000,00            3,0% a.m.                7 meses
b) $ 6.800,00             34,49% a.a.              5 meses
c) $ 6.800,00             34,49% a.a.              150 dias
d) $ 6.800,00             2,5% a.m.                5 meses

Solução:
a) C: 20000               i: 3,0% a.m.      n: 7 meses.

M = C(1 + i) n
                          7
              3   → M = 20000 1 + 0,03 7 → M = 20000 1,03 7 → M = 20000 x 1,229873685 → M = 24.597,48
M = 20000 1 +                                 [            ]                     [       ]
              100  
              
Solução, utilizando a calculadora científica, modelo ML-82LB ou similar:
                        X
3 ÷ 100 + 1 = 1,03 Y 7 =  1,229873865 X 20000 = 24597,47731, para fixar 2 casas decimais: 2ndF TAB 2 
24.597,48 [Resposta final].

Solução:
b) C: 6800                i: 34,49% a.m.            n: 5 meses.
                                                         5

      (        )   n                       34,49   12                  [                       ] 5/12
M = C 1+ i                ⇒     M=   6800 1 +                  → M = 6800 1 + 0,3449
                                           100  
                                                 

           [
M = 6800 1,3449           ] 5/12   → M = 6800 x 1,13141213 → M = 7.693,60

Solução, utilizando a calculadora científica, modelo ML-82LB ou similar:  Observa que o período está fracionado!
                              X
34,49 ÷ 100 + 1 = 1,3449 Y (5 ÷ 12) =  1,13141213 X 6800 = 7693,602486, para fixar 2 casas decimais: 2ndF
TAB 2  7.693,60 [Resposta final].

Solução:
c) C: 6800                i: 34,49% a.m.            n: 150 dias.
                                                         150

      (        )n                         34,49   360 → M = 6800 1 + 0,3449 150/360
                                                                               [                    ]
M = C 1+ i                ⇒     M = 6800 1 +     
                                          100  
                                                

           [
M = 6800 1,3449           ]150/360   → M = 6800 x 1,13141213 → M = 7.693,60

Solução, utilizando a calculadora científica, modelo ML-82LB ou similar:  Observa que o período está fracionado!
                             X
34,49 ÷ 100 + 1 = 1,3449 Y (150 ÷ 360) =  1,13141213 X 6800 = 7693,602486, para fixar 2 casas decimais: 2ndF
TAB 2  7.693,60 [Resposta final].

Solução:
c) C: 6800                i: 2,5% a.m.      n: 5 meses
                                                    5

      (        )n                         2,5   → M = 6800 1 + 0,025 5
                                                                       [               ]
M = C 1+ i               ⇒      M = 6800 1 +   
                                          100  
                                          
           [
M = 6800 1,025           ]5   → M = 6800 x 1,131408213 → M = 7.693,58

Solução, utilizando a calculadora científica, modelo ML-82LB ou similar:
                          X
2,5 ÷ 100 + 1 = 1,025 Y 5 =  1,131408213 X 6800 = 7693,575848, para fixar 2 casas decimais: 2ndF                              TAB      2 
7.693,58 [Resposta final].
As taxas 2,5% a.m. e 34,4889% a.a. são equivalentes.
Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes                                 - Profº Paulo Vieira Neto         5




Questões Falso [F] – Verdadeira [V]
a. (F) (V) Montante: define-se como montante de um capital, aplicado à taxa i e pelo prazo de n períodos, como sendo a soma do juro
   mais o capital inicial;
b. (F) (V) Juro exato: é o juro obtido tomando como base o ano de 365 ou 366 dias como os anos bissextos;
c. (F) (V) Os fatores necessários para calcular o valor do juro são: Montante (M.), Taxa (n) e Tempo (i);
d. (F) (V) Capital: quantia de dinheiro envolvida numa operação financeira;
e. (F) (V) Forma percentual: Nesta situação diz-se aplicada a centos do capital, isto é, ao que se obtém após dividir-se o capital por 100;
f. (F) (V) Juro exato: é o juro obtido tomando como base o ano de 365 ou 366 dias como os anos bissextos;
g. (F) (V) Juro comercial: é o juro obtido tomando como base o ano de 360 dias (ano comercial) e mês de 30 dias (mês comercial).
h. (F) (V) Regime de capitalização: Entende-se por regime de capitalização o processo de formação de juro. Há dois tipos de
regimes de capitalização.
i. (F) (V) Regime de capitalização a juro simples : por convenção, os juros incidem somente sobre o capital inicial. Apenas o capital
inicial rende juros, i.e., o juro formado no fim de cada período a que se refere a taxa. Não é incorporado ao capital,
j. (F) (V) Regime de capitalização a juro composto: o juro formado no fim de cada período é incorporado ao capital que tínhamos no
início desse período, passando o montante a render juro no período seguinte; dizemos que os juros são capitalizados.
k. (F) (V) juro: É a remuneração, a qualquer título, atribuída ao capital;
l. (F) (V) Taxas Proporcionais: são proporcionais quando, aplicadas sucessivamente no cálculo dos juros simples de um mesmo
capital, por um certo período de tempo, produzem juros iguais;
m. (F) (V) Por definição, o juro simples é diretamente proporcional ao capital inicial e ao tempo de aplicação, sendo a taxa de juro por
período o fator de proporcionalidade;
n. (F) (V) No regime de juros simples, os juros incidem somente sobre a aplicação capital inicial, qualquer que seja o número
períodos de capitalização;
o. (F) (V) DESCONTO: É a quantia abatida do valor nominal, isto é, a diferença entre o valor nominal e o valor atual.
[Valor Nominal também chamado de Valor Futuro ou Valor de Face ou Valor de Resgate];
p. (F) (V) Desconto Comercial [ Dc ], bancário ou por fora, o equivalente a juros simples, produzido pelo valor nominal [ N ] do
título no período de tempo correspondente e a taxa fixada;
p1. (F) (V) Desconto Comercial [ Dc ], incide sobre o valor do Título [Sobre o valor de face];
q. (F) (V) Desconto Racional [Dr] ou por dentro, é o equivalente a juros simples, produzido pelo valor atual do título numa taxa fixada
e durante o tempo correspondente;
q1. (F) (V) Desconto Racional [Dr], incide sobre o VA [Valor Atual];
r. (F) (V) o desconto comercial é maior que o desconto racional efetuado nas mesmas condições, Dc > Dr;
t. (F) (V) Juros compostos: o rendimento gerado pela aplicação será incorporado a ela a partir do segundo período. Dizemos, então,
que os rendimentos ou juros são capitalizados;
u. (F) (V) o fator (1 + i)n é chamado de fator de acumulação de capital, para pagamento único.


Combine as questões abaixo:
  I. É aquele em que a taxa de descontos incide sobre o valor nominal;
 II. É aquele em que a taxa de descontos incide sobre o valor líquido;
III. Soma do capital com o juro obtido pela aplicação (ou pago pelo empréstimo);
IV. É a remuneração, a qualquer título, atribuída ao capital;
  V. É calculado unicamente sobre o capital inicial;
 VI. A cada período financeiro, a partir do segundo, é calculado a sobre o montante relativo ao período anterior;
VII. É o juro obtido tomando como base o ano de 360 dias (ano comercial) e mês de 30 dias (mês comercial);
VIII. quando aplicadas sucessivamente no cálculo de juros simples de um mesmo capital, por um certo período, produzem juros iguais.
a. (   ) Juros compostos;            b. (    ) Juros;                    c. (   ) Montante;                   d. (    ) Desconto comercial;
e. (   ) Taxas proporcionais;        f. (   ) Juro comercial;            g. (   ) Juros simples;              h. (    ) Desconto racional.

Mais conteúdo relacionado

Mais procurados

Lista de exercicios de mat financeira juros compostos resolvidos 1
Lista de exercicios de mat financeira juros compostos resolvidos 1Lista de exercicios de mat financeira juros compostos resolvidos 1
Lista de exercicios de mat financeira juros compostos resolvidos 1
Maxlenon Gonçalves Costa
 
Aula sistema de amortização
Aula   sistema de amortizaçãoAula   sistema de amortização
Aula sistema de amortização
Thaiane Oliveira
 
Apresentação juros compostos
Apresentação juros compostosApresentação juros compostos
Apresentação juros compostos
Danielle Karla
 
Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
Rafael Marques
 

Mais procurados (20)

Juros simples e compostos
Juros simples e compostosJuros simples e compostos
Juros simples e compostos
 
Juros simples
Juros simplesJuros simples
Juros simples
 
Lista de exercicios de mat financeira juros compostos resolvidos 1
Lista de exercicios de mat financeira juros compostos resolvidos 1Lista de exercicios de mat financeira juros compostos resolvidos 1
Lista de exercicios de mat financeira juros compostos resolvidos 1
 
Matematica Basica
Matematica BasicaMatematica Basica
Matematica Basica
 
Aula sistema de amortização
Aula   sistema de amortizaçãoAula   sistema de amortização
Aula sistema de amortização
 
1ª Lista de exercício de administração financeira completa com respostas
1ª Lista de exercício de administração financeira completa com respostas1ª Lista de exercício de administração financeira completa com respostas
1ª Lista de exercício de administração financeira completa com respostas
 
Juros compostos exercicios
Juros compostos exerciciosJuros compostos exercicios
Juros compostos exercicios
 
Apresentação juros compostos
Apresentação juros compostosApresentação juros compostos
Apresentação juros compostos
 
Matemática Financeira - Inflação
Matemática Financeira - InflaçãoMatemática Financeira - Inflação
Matemática Financeira - Inflação
 
Equação do 1º grau
Equação do 1º grauEquação do 1º grau
Equação do 1º grau
 
Atividade de matemática plano cartesiano
Atividade de matemática   plano cartesianoAtividade de matemática   plano cartesiano
Atividade de matemática plano cartesiano
 
Aula sobre porcentagem 9º ano
Aula sobre porcentagem 9º anoAula sobre porcentagem 9º ano
Aula sobre porcentagem 9º ano
 
Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
 
Juros simples e compostos
Juros simples e compostosJuros simples e compostos
Juros simples e compostos
 
Regra de três simples e composta
Regra de três simples e compostaRegra de três simples e composta
Regra de três simples e composta
 
Potenciação
PotenciaçãoPotenciação
Potenciação
 
Soma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabaritoSoma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabarito
 
Juros Simples
Juros SimplesJuros Simples
Juros Simples
 
Matematica Financeira
Matematica FinanceiraMatematica Financeira
Matematica Financeira
 
Notação cientifica
Notação cientificaNotação cientifica
Notação cientifica
 

Semelhante a Exercícios resolvidos juros simples descontos

Exercícios Matemática Financeira
Exercícios Matemática FinanceiraExercícios Matemática Financeira
Exercícios Matemática Financeira
arpetry
 
Mat em financeira sol vol2 cap2
Mat em financeira sol vol2 cap2Mat em financeira sol vol2 cap2
Mat em financeira sol vol2 cap2
trigono_metrico
 
Revisão de matematica financeira professor danilo pires
Revisão de matematica financeira  professor danilo piresRevisão de matematica financeira  professor danilo pires
Revisão de matematica financeira professor danilo pires
Danilo Pires
 
6935889 anpadfev2003
6935889 anpadfev20036935889 anpadfev2003
6935889 anpadfev2003
Andre Somar
 

Semelhante a Exercícios resolvidos juros simples descontos (20)

Resolucao de casos praticos matematica financeira
Resolucao de casos praticos   matematica financeiraResolucao de casos praticos   matematica financeira
Resolucao de casos praticos matematica financeira
 
porcentagem.ppt
porcentagem.pptporcentagem.ppt
porcentagem.ppt
 
31exerccios
31exerccios31exerccios
31exerccios
 
Prof ivan questoes_de_matematica_comentadas_banca_cesgranrio
Prof ivan questoes_de_matematica_comentadas_banca_cesgranrioProf ivan questoes_de_matematica_comentadas_banca_cesgranrio
Prof ivan questoes_de_matematica_comentadas_banca_cesgranrio
 
Exercícios Matemática Financeira
Exercícios Matemática FinanceiraExercícios Matemática Financeira
Exercícios Matemática Financeira
 
4893 solucoes
4893 solucoes4893 solucoes
4893 solucoes
 
21 - Noções de Matemática Financeira
21 - Noções de Matemática Financeira21 - Noções de Matemática Financeira
21 - Noções de Matemática Financeira
 
Resolvida 2.1 pagina 5
Resolvida 2.1 pagina 5Resolvida 2.1 pagina 5
Resolvida 2.1 pagina 5
 
Mat em financeira sol vol2 cap2
Mat em financeira sol vol2 cap2Mat em financeira sol vol2 cap2
Mat em financeira sol vol2 cap2
 
Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011
 
Revisão de matematica financeira professor danilo pires
Revisão de matematica financeira  professor danilo piresRevisão de matematica financeira  professor danilo pires
Revisão de matematica financeira professor danilo pires
 
Aula 2 mat em
Aula 2   mat emAula 2   mat em
Aula 2 mat em
 
Matemática Financeira - Módulo 2
Matemática Financeira - Módulo 2Matemática Financeira - Módulo 2
Matemática Financeira - Módulo 2
 
Matemática financeira 2
Matemática financeira 2Matemática financeira 2
Matemática financeira 2
 
Bizurada 1 bb
Bizurada 1   bbBizurada 1   bb
Bizurada 1 bb
 
Matematica financeira
Matematica financeiraMatematica financeira
Matematica financeira
 
Td 6 mat i
Td 6   mat iTd 6   mat i
Td 6 mat i
 
Matemática Financeira - Módulo 2
Matemática Financeira - Módulo 2Matemática Financeira - Módulo 2
Matemática Financeira - Módulo 2
 
6935889 anpadfev2003
6935889 anpadfev20036935889 anpadfev2003
6935889 anpadfev2003
 
Anpad fev-2003
Anpad fev-2003Anpad fev-2003
Anpad fev-2003
 

Mais de zeramento contabil (20)

Contabilidade 11
Contabilidade 11Contabilidade 11
Contabilidade 11
 
Contabilidade 01
Contabilidade 01Contabilidade 01
Contabilidade 01
 
Contabilidade 02
Contabilidade 02Contabilidade 02
Contabilidade 02
 
Contabilidade 03
Contabilidade 03Contabilidade 03
Contabilidade 03
 
Contabilidade 04
Contabilidade 04Contabilidade 04
Contabilidade 04
 
Contabilidade 05
Contabilidade 05Contabilidade 05
Contabilidade 05
 
Contabilidade 06
Contabilidade 06Contabilidade 06
Contabilidade 06
 
Contabilidade 07
Contabilidade 07Contabilidade 07
Contabilidade 07
 
Contabilidade 08
Contabilidade 08Contabilidade 08
Contabilidade 08
 
Contabilidade 09
Contabilidade 09Contabilidade 09
Contabilidade 09
 
Contabilidade 10
Contabilidade 10Contabilidade 10
Contabilidade 10
 
Contabilidade 12
Contabilidade 12Contabilidade 12
Contabilidade 12
 
Contabilidade 13
Contabilidade 13Contabilidade 13
Contabilidade 13
 
Contabilidade 15
Contabilidade 15Contabilidade 15
Contabilidade 15
 
Razonetes cap i 2015
Razonetes cap i 2015Razonetes cap i 2015
Razonetes cap i 2015
 
Caderno de-exercicios-contab-ii
Caderno de-exercicios-contab-iiCaderno de-exercicios-contab-ii
Caderno de-exercicios-contab-ii
 
Livro contabilidade intermediaria 2
Livro contabilidade intermediaria 2Livro contabilidade intermediaria 2
Livro contabilidade intermediaria 2
 
Contabilidade respostas 00
Contabilidade respostas 00Contabilidade respostas 00
Contabilidade respostas 00
 
Contabilidade respostas 00
Contabilidade respostas 00Contabilidade respostas 00
Contabilidade respostas 00
 
Rosa dos ventos
Rosa dos ventosRosa dos ventos
Rosa dos ventos
 

Exercícios resolvidos juros simples descontos

  • 1. Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes - Profº Paulo Vieira Neto 1 No regime de juros simples, os juros incidem somente sobre a aplicação capital inicial, qualquer que seja o número períodos de capitalização. Por definição, o juro simples é diretamente proporcional ao capital inicial e ao tempo de aplicação, sendo a taxa de juro por período o fator de proporcionalidade. 1. Um capital de $ 2.000,00 foi aplicado durante 3 meses, à juros simples, à taxa de 18% a.a. Pede-se: a) Juros b) Montante. 1) J = Cin 2) M=C+j 3) M = C +Cin 4) M = C (1+ in) 5) J= M-C Solução: C = 4000,00 i = 18% a.a. n=3m a) J = Cin b) M=C+J J = 4000 {[(18/100)/12]x3} M = 4000 + 180 J = 4000 {[0,18/12]x3} M = 4.180,00 J = 4000 {0,015 x 3} J = 4000 x 0,045 J = 180,00 2. Calcular o juro simples referente a um capital de $ 2.400,00 nas seguintes condições: Taxa de Juros Prazo Taxa de Juros Prazo a) 21% a.a. 1 ano c) 21% a.a. 3 meses b) 21% a.a. 3 anos d) 21% a.a. 32 dias Solução: a) J = Cin b) J = Cin c) J = Cin d) J = Cin J = 2400 [(21/100)x1] J = 2400 [(21/100)x3] J = 2400 {[(21/100)/12]x3} J = 2400 {[(21/100)/360]x32} J = 2400 [0,21 x 1] J = 2400 [0,21x3] J = 2400 {[0,21/12]x3} J = 2400 {[0,21/360]x32} J = 2400 x 0,21 J = 2400 0,63 J = 2400 {0,0175x3} J = 2400 {0,000583333 x 32} J = 504,00 J = 1.512,00 J = 2400 x 0,0525 J = 2400 x 0,018666667 J = 126,00 J = 44,80 3. Que Montante um aplicador receberá, tendo investido $ 3.000,00, a juros simples, nas seguintes condições: Taxa de Juros Prazo a) 30% a.a. 5 meses b) 27% a.a. 1 ano e 4 meses c) 3% a.m. 48 dias Solução: a) J = Cin – M = C + J  M = C(1 + in) a) J = Cin a) M = C + J ou M = C(1 + in) J = 3000 {[(30/100)/12]x5} M = 3000 + 375 M = 3000 x { 1 + [(30/100)/12]x5} J = 3000 {[0,30/12]x5} M = 3.375,00 M = 3000 x {1 + [0,30/12] x 5} J = 3000 {0,025x5} M = 3000 x {1 + 0,025 x 5} J = 3000 X 0,125 M = 3000 x {1 + 0,125} J = 375,00 M = 3000 x 1,125 M = 3.375,00 b) n = 1 a 4m  12m + 4m = 16m b) J = Cin b) M = C + J ou M = C(1 + in) J = 3000 {[(27/100)/12]x16} M = 3000 + 1080 M = 3000 x { 1 + [(27/100)/12]x16} J = 3000 {[0,27/12]x16} M = 4.080,00 M = 3000 x {1 + [0,27/12] x 16} J = 3000 {0,0225x16} M = 3000 x {1 + 0,0225 x 16} J = 3000 X 0,136 M = 3000 x {1 + 0,365} J = 1.080,00 M = 3000 x 1,36 M = 4.080,00 b) J = Cin b) M = C + J ou M = C(1 + in) J = 3000 {[(3/100)/30]x48} M = 3000 + 144 M = 3000 x { 1 + [(3/100)/30]x48} J = 3000 {[0,3/30]x48} M = 3.144,00 M = 3000 x {1 + [0,03/30] x 48} J = 3000 {0,001x48} M = 3000 x {1 + 0,001 x 48} J = 3000 X 0,048 M = 3000 x {1 + 0,048} J = 144,00 M = 3000 x 1,048 M = 3.144,00
  • 2. Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes - Profº Paulo Vieira Neto 2 4. Calcule os juros simples auferidos de uma aplicação de $ 3.500,00, à taxa de 38% a.a. pelo prazo de 5 meses. Solução: J = Cin C: 3500 J = 3500 x {[(38/100)/12] x 5} i: 38% a.a. J = 3500 x { [0,38/12] x 5 } n: 5m J = 3500 x { 0,031666667 x 5 } J = 3500 x 0,158333333 J = 554,17 5. Um capital de $ 19.000,00 foi aplicado a juros simples à taxa de 39% a.a., pelo prazo de 56 dias. Obtenha os juros comerciais e exatos para esta aplicação. Solução: J = Cin  Juros Comercias J = Cin  Juros Exatos C: 19000 J = 19000 x {[(39/100)/360] x 56} J = 19000 x {[(39/100)/365] x 56} i: 39% a.a. J = 19000 x { [0,39/360] x 56 } J = 19000 x { [0,39/365] x 56 } n: 56d J = 19000 x { 0,001083333 x 56 } J = 19000 x { 0,001068493 x 56 } J = 19000 x 0,060666667 J = 19000 x 0,059835616 J = 1.152,67 J = 1.136,88 DESCONTO: É a quantia abatida do valor nominal, isto é, a diferença entre o valor nominal e o valor atual. [Valor Nominal também chamado de Valor Futuro ou Valor de Face ou Valor de Resgate] Desconto Comercial [ Dc ], bancário ou por fora, o equivalente a juros simples, produzido pelo valor nominal [N] do título no período de tempo correspondente e a taxa fixada. Dc = Nin  onde: Dc: Desconto comercial; i: Taxa de desconto [i ÷ 100], n: prazo. Desconto Racional [Dr] ou por dentro, é o equivalente a juros simples, produzido pelo valor atual do título numa taxa fixada e durante o tempo correspondente. Nin Dr = 1 + in Valor Atual [VA], é a diferente entre o Valor Nominal [N] menos o [VA]  d = N – VA 1. Um título no valor de $ 14.000,00 foi descontado num banco 3 meses antes do vencimento, a uma taxa de desconto comercial de 3,5% a.m.. a) calcule o desconto; b) calcule o valor líquido recebido pelo empresa. [Valor Atual – VA] Dc = Nin VA = N - d Solução: Dc = 14000 x [(3,5/100) x 3] VAc = N - dc N: 14000 Dc = 14000 x [0,035 x 3] VAc = 14000 - 1470 i: 3,5% a.m. Dc = 14000 x 0,105 VAc = 12.530,00 n: 3 meses. Dc = 1.470,00 2. Uma empresa descontou num banco um título de valor nominal igual a $ 90.000,00, 40 dias antes do vencimento, a uma taxa de desconto comercial de 30% a.a.. a) qual o desconto comercial; b) calcule o valor líquido recebido pelo empresa. [Valor Atual – VA] Dc = Nin VA = N - d Solução: Dc = 90000 x {[(30/100)/360] x 40} VAc = N - dc N: 90000 Dc = 90000 x {[0,30/360] x 40} VAc = 90000 - 3000 i: 30% a.a. Dc = 90000 x 0,000833333 x 40 VAc = 87.000,00 n: 40 dias. Dc = 90000 x 0,033333333 Dc = 3.000,00 3. Uma duplicata de valor nominal igual a $8.000,00, foi descontada num banco dois meses antes do vencimento, a uma taxa de desconto comercial de 2,50% a.m.. a) qual o desconto comercial; b) calcule o valor líquido recebido pelo empresa. [Valor Atual – VA] Dc = Nin VA = N - d Solução: Dc = 8000 x [(2,50/100) x 2] VAc = N - dc N: 8000 Dc = 8000 x [0,025 x 2} VAc = 8000 - 400 i: 2,5% a.a. Dc = 8000 x 0,05 VAc = 7.600,00 n: 2 meses. Dc = 400,00 4. Uma dívida de $ 13.500,00, será saldada 3 meses antes do seu vencimento. Que desconto racional será obtido, se a taxa de juros que reza no contrato é de 30% a.a.? N: 13.500 n: 3 meses i: 30% a.a. Dr = ? Nin 13500 x [(0,30/12) x 3] 13500 x [0,025 x 3] 13500 x 0,075 13500 x 0,075 1012,50 Dr = ⇒ Dr = → Dr = → Dr = → Dr = → Dr = → Dr = 941,84 1 + in 1 + [(0,30/12) x 3] 1 + [0,025 x 3] 1 + 0,075 1 + 0,075 1,075 $ 941,86 é, portanto, o desconto racional obtido pelo resgate antecipado da dívida.
  • 3. Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes - Profº Paulo Vieira Neto 3 5. Determinar o desconto racional em cada uma das hipóteses abaixo, adotando-se o ano comercial. Valor Nominal Taxa de Juros Prazo de Antecipação a) $ 12.000,00 27,30% a.a. 7 meses b) $ 4.200,00 18,0% a.a. 120 dias c) $ 7.400,00 33,0% a.a. 34 dias d) $ 3.700,00 21,0% a.a. 5 meses e 20 dias Solução: a) N: 12000 i: 27,3%a.a. n: 7 meses Dr = ?  27,3    12000   /12  x7  100    {[ ] } Nin      12000 0,273/12 x7 Dr = 1 + in →  27,3    → {[ 1 + 0,273/12 x7 ] } → 1 +   /12  x7  100        { 12000 0,02275x7 } 12000 x 0,15925 1911 Dr = { 1 + 0,02275x7 } → Dr = 1 + 0,15925 → Dr = 1,15925 → Dr = 1.648,48 b) N: 4200 i: 33%a.a. n: 120 dias = 4 meses Dr = ?  18    4200    /12  x4  Nin    100      {[ 4200 0,18/12 x4 ] } { 4200 0,015x4 } 1 + { [ 0,18/12 ] x4} 1 + { 0,015x4} Dr = → → → Dr = 1 + in  18    1 +   /12  x4    100      4200 x 0,06 252 → Dr = → Dr = → Dr = 237,74 1 + 0,06 1,06 c) N: 7400 i: 33%a.a. n: 34 dias Dr = ?  33    7400     100  /360  x34   Nin     {[ 7400 0,33/360 x34] } { 7400 0,000916667x34 } Dr = 1 + in →  33    → 1+ {[ 0,33/360]x34} → Dr = { 1 + 0,00091666 7x34 } → 1 +     100  /360  x34        7400 x 0,03116666 7 230,63 Dr = → Dr = → Dr = 223,66 1 + 0,031166667 1,031166667 d) N: 3700 i: 21%a.a. n: 5 m e 20 dias = [(5x30)+20] = 170 dias Dr = ?  21   /360  x170   3700    Nin  100      → {[ 3700 0,21/360 x170 ] } { 3700 0,00058333 3x170 } 1 + { [ 0,21/360 ] x170} 1 + { 0,000583333x170} Dr = → → Dr = → 1 + in  21    1 +    /360  x170    100        3700 x 0,09916666 7 366,92 Dr = → Dr = → Dr = 333,81 1 + 0,09916666 7 1,09916666 7 JUROS COMPOSTOS No regime de juros compostos, o rendimento gerado pela aplicação será incorporado a ela a partir do segundo período. Dizemos, então, que os rendimentos ou juros são capitalizados: n O fator (1 + i) é chamado de fator de acumulação de capital, para pagamento único. Para o Cálculo do Montante, utilizamos a seguinte fórmula: M = C(1 + i)n [1], Cálculo do Juro: J = M – C [2] ou se preferir: J = C (1 + i)n  −1 [3], M = C + J [4]    
  • 4. Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes - Profº Paulo Vieira Neto 4 1. Qual o montante de uma aplicação de $16.000,00, a juros compostos, pelo prazo de 4 meses, à taxa de 2,5% a.m.? Solução: C: 16000 i: 2,5% a.m. n: 4 meses. M = C ( 1 + i )n 4   2,5   → M = 16000 1 + 0,025 4 → M = 16000 1,025 4 → M = 16000 x 1,103812891 → M = 17.661,01 M = 16000 1 +   [ ] [ ]   100      Solução, utilizando a calculadora científica, modelo ML-82LB ou similar: X 2,5 ÷ 100 + 1 = 1,025 Y 4 =  1,103812891 X 16000 = 17661,100625, para fixar 2 casas decimais: 2ndF TAB 2  17.661,01 [Resposta final]. 2. Calcule o montante e os juros das aplicações abaixo, considerando o regime de juros compostos: Capital Taxa de Juros Prazo de Antecipação a) $ 20.000,00 3,0% a.m. 7 meses b) $ 6.800,00 34,49% a.a. 5 meses c) $ 6.800,00 34,49% a.a. 150 dias d) $ 6.800,00 2,5% a.m. 5 meses Solução: a) C: 20000 i: 3,0% a.m. n: 7 meses. M = C(1 + i) n 7   3   → M = 20000 1 + 0,03 7 → M = 20000 1,03 7 → M = 20000 x 1,229873685 → M = 24.597,48 M = 20000 1 +   [ ] [ ]   100      Solução, utilizando a calculadora científica, modelo ML-82LB ou similar: X 3 ÷ 100 + 1 = 1,03 Y 7 =  1,229873865 X 20000 = 24597,47731, para fixar 2 casas decimais: 2ndF TAB 2  24.597,48 [Resposta final]. Solução: b) C: 6800 i: 34,49% a.m. n: 5 meses. 5 ( ) n   34,49   12 [ ] 5/12 M = C 1+ i ⇒ M= 6800 1 +   → M = 6800 1 + 0,3449   100      [ M = 6800 1,3449 ] 5/12 → M = 6800 x 1,13141213 → M = 7.693,60 Solução, utilizando a calculadora científica, modelo ML-82LB ou similar:  Observa que o período está fracionado! X 34,49 ÷ 100 + 1 = 1,3449 Y (5 ÷ 12) =  1,13141213 X 6800 = 7693,602486, para fixar 2 casas decimais: 2ndF TAB 2  7.693,60 [Resposta final]. Solução: c) C: 6800 i: 34,49% a.m. n: 150 dias. 150 ( )n   34,49   360 → M = 6800 1 + 0,3449 150/360 [ ] M = C 1+ i ⇒ M = 6800 1 +     100      [ M = 6800 1,3449 ]150/360 → M = 6800 x 1,13141213 → M = 7.693,60 Solução, utilizando a calculadora científica, modelo ML-82LB ou similar:  Observa que o período está fracionado! X 34,49 ÷ 100 + 1 = 1,3449 Y (150 ÷ 360) =  1,13141213 X 6800 = 7693,602486, para fixar 2 casas decimais: 2ndF TAB 2  7.693,60 [Resposta final]. Solução: c) C: 6800 i: 2,5% a.m. n: 5 meses 5 ( )n   2,5   → M = 6800 1 + 0,025 5 [ ] M = C 1+ i ⇒ M = 6800 1 +     100      [ M = 6800 1,025 ]5 → M = 6800 x 1,131408213 → M = 7.693,58 Solução, utilizando a calculadora científica, modelo ML-82LB ou similar: X 2,5 ÷ 100 + 1 = 1,025 Y 5 =  1,131408213 X 6800 = 7693,575848, para fixar 2 casas decimais: 2ndF TAB 2  7.693,58 [Resposta final]. As taxas 2,5% a.m. e 34,4889% a.a. são equivalentes.
  • 5. Exercícios Resolvidos: Juros Simples – Descontos – Juros Compostos – Testes - Profº Paulo Vieira Neto 5 Questões Falso [F] – Verdadeira [V] a. (F) (V) Montante: define-se como montante de um capital, aplicado à taxa i e pelo prazo de n períodos, como sendo a soma do juro mais o capital inicial; b. (F) (V) Juro exato: é o juro obtido tomando como base o ano de 365 ou 366 dias como os anos bissextos; c. (F) (V) Os fatores necessários para calcular o valor do juro são: Montante (M.), Taxa (n) e Tempo (i); d. (F) (V) Capital: quantia de dinheiro envolvida numa operação financeira; e. (F) (V) Forma percentual: Nesta situação diz-se aplicada a centos do capital, isto é, ao que se obtém após dividir-se o capital por 100; f. (F) (V) Juro exato: é o juro obtido tomando como base o ano de 365 ou 366 dias como os anos bissextos; g. (F) (V) Juro comercial: é o juro obtido tomando como base o ano de 360 dias (ano comercial) e mês de 30 dias (mês comercial). h. (F) (V) Regime de capitalização: Entende-se por regime de capitalização o processo de formação de juro. Há dois tipos de regimes de capitalização. i. (F) (V) Regime de capitalização a juro simples : por convenção, os juros incidem somente sobre o capital inicial. Apenas o capital inicial rende juros, i.e., o juro formado no fim de cada período a que se refere a taxa. Não é incorporado ao capital, j. (F) (V) Regime de capitalização a juro composto: o juro formado no fim de cada período é incorporado ao capital que tínhamos no início desse período, passando o montante a render juro no período seguinte; dizemos que os juros são capitalizados. k. (F) (V) juro: É a remuneração, a qualquer título, atribuída ao capital; l. (F) (V) Taxas Proporcionais: são proporcionais quando, aplicadas sucessivamente no cálculo dos juros simples de um mesmo capital, por um certo período de tempo, produzem juros iguais; m. (F) (V) Por definição, o juro simples é diretamente proporcional ao capital inicial e ao tempo de aplicação, sendo a taxa de juro por período o fator de proporcionalidade; n. (F) (V) No regime de juros simples, os juros incidem somente sobre a aplicação capital inicial, qualquer que seja o número períodos de capitalização; o. (F) (V) DESCONTO: É a quantia abatida do valor nominal, isto é, a diferença entre o valor nominal e o valor atual. [Valor Nominal também chamado de Valor Futuro ou Valor de Face ou Valor de Resgate]; p. (F) (V) Desconto Comercial [ Dc ], bancário ou por fora, o equivalente a juros simples, produzido pelo valor nominal [ N ] do título no período de tempo correspondente e a taxa fixada; p1. (F) (V) Desconto Comercial [ Dc ], incide sobre o valor do Título [Sobre o valor de face]; q. (F) (V) Desconto Racional [Dr] ou por dentro, é o equivalente a juros simples, produzido pelo valor atual do título numa taxa fixada e durante o tempo correspondente; q1. (F) (V) Desconto Racional [Dr], incide sobre o VA [Valor Atual]; r. (F) (V) o desconto comercial é maior que o desconto racional efetuado nas mesmas condições, Dc > Dr; t. (F) (V) Juros compostos: o rendimento gerado pela aplicação será incorporado a ela a partir do segundo período. Dizemos, então, que os rendimentos ou juros são capitalizados; u. (F) (V) o fator (1 + i)n é chamado de fator de acumulação de capital, para pagamento único. Combine as questões abaixo: I. É aquele em que a taxa de descontos incide sobre o valor nominal; II. É aquele em que a taxa de descontos incide sobre o valor líquido; III. Soma do capital com o juro obtido pela aplicação (ou pago pelo empréstimo); IV. É a remuneração, a qualquer título, atribuída ao capital; V. É calculado unicamente sobre o capital inicial; VI. A cada período financeiro, a partir do segundo, é calculado a sobre o montante relativo ao período anterior; VII. É o juro obtido tomando como base o ano de 360 dias (ano comercial) e mês de 30 dias (mês comercial); VIII. quando aplicadas sucessivamente no cálculo de juros simples de um mesmo capital, por um certo período, produzem juros iguais. a. ( ) Juros compostos; b. ( ) Juros; c. ( ) Montante; d. ( ) Desconto comercial; e. ( ) Taxas proporcionais; f. ( ) Juro comercial; g. ( ) Juros simples; h. ( ) Desconto racional.