Mais conteúdo relacionado

Último(20)

Ligações químicas

  1. LIGAÇÕES QUÍMICAS
  2. Regra do Octeto: Os átomos, ao se combinarem, tenderão a adquirir a configuração do gás nobre mais próximo, que é de oito elétrons na última camada (octeto) para atingir a estabilidade.
  3. Exemplo: 11 Na - 1s2 2s2 2p6 3s1 (K=2 – L=8 – M=1) o átomo de sódio tende a ceder um elétron para se estabilizar, formando o cátion sódio, que possui configuração de gás nobre. Na+ - 1s2 2s2 2p6 (K=2 – L=8) 11 Observação: Alguns átomos (H, Li, Be) estabilizam-se, segundo a configuração eletrônica gás nobre hélio (1s2).
  4. Ligação Iônica ou Eletrovalente: • Caracteriza-se pela transferência de elétrons de um átomo que perde elétrons para outro átomo que ganha elétrons. •Atração eletrostática entre íons de cargas opostas (cátion e ânion) • Ocorre normalmente entre: METAL e AMETAL ou METAL e HIDROGÊNIO.
  5.  Ligação entre o sódio (metal) e o cloro (ametal): Na - 2 - 8 – 1 (tende a ceder um elétron) 11 Cl - 2 - 8 – 7 (tende a receber um elétron) 17
  6. oo oo Na x + o Cl o o [ Na ] + + [ x Cl o ] - o o oo oo [Na]+ [Cl]- NaCl
  7. Estrutura cristalina do NaCl sólido
  8.  Ligação entre o cálcio (metal) e o cloro (ametal) Ca - 2 - 8 - 8 - 2 ( tende a ceder 2 elétrons) 20 Cl - 2 - 8 - 7 (tende a receber um elétron) 17 oo o o Cl oo o oo x + 2 [ Cl ] - 2+ x Ca x + [ Ca ] o oo o o oo o o Cl oo o CaCl2
  9. •Método Prático para Escrever a Fórmula de um Composto Iônico: x+ y- [ CÁTION ] y [ ÂNION ] x Família Carga dos íon 1A +1 2A +2 3A +3 5A -3 6A -2 7A /H -1
  10. Exemplo: Composto iônico formado pelos elementos Alumínio (Al) e Oxigênio (O). Al (3A) : 2 – 8 - 3 / O (6A) : 2 – 8 - 6 3+ 2- [ Al ] 2 [O]3 Fórmula Molecular: Al2O3
  11. Características dos Compostos Iônicos:  São sólidos nas condições ambiente;  Possuem elevados pontos de fusão e ebulição;  Conduzem a corrente elétrica quando fundidos ou em solução aquosa, devido à presença de íons livres.
  12. Ligação Covalente ou Molecular • Caracteriza-se pelo compartilhamento (emparelhamento) de elétrons. • Ocorre normalmente entre: AMETAL e AMETAL ou AMETAL e HIDROGÊNIO
  13. Exemplos: 1- Ligação química entre 2 átomos de cloro 17 Cl : 2-8-7 (tende a receber 1e-) Fórmula estrutural Fórmula plana Fórmula eletrônica ou molecular de Lewis oo xx Cl x o ox o Cl x Cl Cl oo xx Cl2
  14. 2-Ligação química entre os átomos de carbono e oxigênio 6C : 2 - 4 ( tende a receber 4e-) O : 2 - 6 (tende a receber 2e-) 8 Fórmula Fórmula Fórmula eletrônica ou estrutural molecular de Lewis plana xx x o o x xx O x oC o x xx O xx O C O CO2
  15. • Ligação Covalente Dativa ou Coordenada: Ocorre quando um dos átomos envolvidos já adquiriu o octeto e dispõe de par eletrônico livre. Este par pode ser “emprestado” para outro átomo ou íon.
  16. Exemplo: SO2 (dióxido de enxofre) Fórmula Eletrônica Fórmula Estrutural
  17. • Principais características dos compostos moleculares: Apresentam-se nos estados sólido, líquido e gasoso; possuem pontos de fusão e ebulição geralmente baixos; Não conduzem a corrente elétrica (com algumas exceções. Ex: ácidos na presença de solvente ionizante (por exemplo: água).
  18. Polaridade de Ligações 1. Ligação Covalente Apolar: Ocorre em ligações formadas por átomos de mesma eletronegatividade. Exemplo: H2 H H
  19. 2. Ligação Covalente Polar: Ocorre em ligações formadas por átomos de diferentes eletronegatividades. Em torno do átomo mais eletronegativo se formará uma carga parcial negativa (δ-) e no átomo menos eletronegativo se formará uma carga parcial positiva (δ+). Exemplo: HCl δ+ δ- H Cl
  20. • Ligação Metálica: Ocorre entre átomos metálicos (metal + metal). Como os metais possuem uma baixa eletronegatividade, os mesmos perdem seus elétrons muito facilmente. Esses elétrons livres formam uma nuvem eletrônica que mantém os íons metálicos sempre unidos formando a chamada ligação metálica.
  21. Esquema da Ligação Metálica
  22. Geometria Molecular: Tipo de Geometria Molécula linear X2 e XY (toda molécula biatômica é linear) se X é da família 6A: XY2 linear angular trigona se X é da família 5A: XY3 l plana piramidal XY4 tetraédrica
  23. •Polaridade de Moléculas: MOLÉCULA APOLAR ⇒ µR = 0 Em uma molécula apolar o vetor momento dipolar resultante (µR ) é igual a zero. Ex: CO2 O=C=O ⇒ O← Cµ O → ⇒ µ r = Zero µ
  24. MOLÉCULA POLAR ⇒ µ R ≠ 0 Em uma molécula polar, o vetor momento dipolar resultante (µR) é diferente de zero. Ex: H2O O ⇒ O ⇒ µ r ≠ Zero (polar) H H H H
  25. • Princípio Geral da Solubilidade: (“semelhante dissolve semelhante”) Substâncias polares são solúveis em substâncias polares (H2O + NH3) e substâncias apolares são solúveis em substâncias apolares (CH4 + I2).
  26. • Forças Intermoleculares: I- Interações Dipolo Instantâneo - Dipolo Induzido (Forças de Van Der Waals ou Forças de London): São interações que ocorrem entre moléculas apolares ou gases nobres nos estados sólido e líquido. Exemplos: I2(s), C6H6(l), Ar(s)
  27. II-Interações Dipolo - Dipolo Permanente: São interações que ocorrem entre moléculas polares. Exemplo: molécula do HCl
  28. III- Ponte ou Ligação de Hidrogênio:
  29. Intensidades das Forças Intermoleculares: Dipolo P onte de Dipolo - Dipolo Instantâneo - > > Hidrogênio P ermanente Dipolo Induzido
  30. •Relação entre as Forças Intermoleculares e os Pontos de Fusão e Ebulição: Dois fatores influenciam os PF e PE das substâncias: a. O tamanho das moléculas: Quanto maior a superfície, maior o número de interações entre as moléculas vizinhas, o que implica em maiores PF e PE.  A intensidade das forças intermoleculares: Quanto mais intensas as atrações intermoleculares, maiores serão os PF e PE.
  31. O gráfico a seguir mostra a variação dos pontos de ebulição dos hidretos da família 6A, com o aumento dos números atômicos (aumento do tamanho):