Polinômios
Ao final dessa aula você saberá...
O que é um polinômio
Classificar os polinômios
Determinar o grau de um polinômio
Ordenar e completar um polinômio
Somar e subtrair polinômios
Multiplicar polinômios
Dividir um polinômio por um monômio
Dividir um polinômio por outro polinômio
O que é polinômio?
  É uma adição algébrica de monômios.

      Exemplos de polinômios
4a3       x2+3y        4m2+3m+1

              Atenção!
 O 1º exemplo é a soma do monômio 4a3
              com o zero.
Classificação dos polinômios

 Monômios  polinômios com apenas 1 termo

 Binômios  polinômios com 2 termos

 Trinômios  polinômios com 3 termos


      Não existe um nome específico para os
                   polinômios
       que apresentam 4 ou mais termos.
Como sabemos o grau de um polinômio?
  Verificamos o grau de cada monômio da
  expressão. O maior deles é o grau do
  polinômio.

Exemplos:
 x 2 y 3 +2 xy 2
                              polinômio do 5º grau
   5 º grau        3 º grau


  4a 3 + 7 a 2 − 6ab  polinômio do 4º grau
          b2 
  3 º grau        2 º grau
              4 º grau
Observação
  Polinômios com uma só variável geralmente
são apresentados ordenadamente, começando pelo
monômio de maior grau.

Exemplo:
  Ordenar o polinômio 2x2 + x + 5x3 + 9.
  Resposta: 5x3 + 2x2 + x + 9

Verifique que o 9 é um monômio de grau zero.
                       9 = 9x0
O que são polinômios incompletos
    em relação a uma variável?

    Se um polinômio estiver ordenado e o
 coeficiente de algum termo for zero, então
 esse polinômio é incompleto.

 Exemplos:
x4 – 3 = x4 + 0x3 + 0x2 + 0x – 3
8m3 + m2 = 8m3 + m2 + 0m + 0
Qual é a regra para somar e
     subtrair polinômios?
Basta fazer a redução dos termos semelhantes.

Exemplos:
a) (y3 – 2y2 + 5) + (2y3 – 5y – 7) =
    y3 – 2y2 + 5 + 2y3 – 5y – 7 =
    3y3 – 2y2 – 5y – 2

      b) (6m2 – 7mn + 8n2) – (8mn + 5m2 – 7n2) =
           6m2 – 7mn + 8n2 – 8mn – 5m2 + 7n2 =
                  m2 – 15mn + 15n2
Tente fazer sozinho!

Dados os polinômios:
A = 5x2 – 3x + 4
B = 2x2 + 4x – 3
C = x2 – 3x
         Calcule A + C – B
Solução

A+C–B=
(5x2 – 3x + 4) + (x2 – 3x) – (2x2 + 4x – 3)=
5x2 – 3x + 4 + x2 – 3x – 2x2 – 4x + 3 =
5x2 + x2 – 2x2 – 3x – 3x – 4x + 4 + 3 =
4x2 – 10x + 7
Como multiplicamos polinômios?
   Aplicando a propriedade distributiva.

Exemplos:

a) – y2 (y3 – 2y2 + 1) = – y5 + 2y4 – y2



b) (a + b) (a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2
Tente fazer sozinho!


             3       1
         2x + y    x− y
Seja A =     5 eB=   2



Calcule AB.
Solução
A.B=


      3        1                   3 xy 3 y 2
 2x +     y x − y
      5        2    = 2 x 2 − xy +     −        =
                                        5    10


      5 xy 3xy 3 y      2           2 xy 3 y 2
 2x −
   2
          +   −             = 2x2 −     −
       5    5   10                   5    10
Como dividimos um polinômio
      por um monômio?
      Aplicando a propriedade distributiva.

Exemplos:

a) (15m3 – 10m2) : (-5m) = - 3m2 + 2m


                                2
      3 3 2 1   4  9x           9x 3
      6x − x + x  :  x  =     −   +
          4   2  3        2     16 8
b)
Tente fazer sozinho!

(Cesgranrio - RJ) Simplificando a expressão
   3
     (2   3
           )
  a a +a : a  5

                , encontramos:


a) 1 + a       b) a2 + a         c) 1 + 5a



d) 1 – a       e) a3
Solução


  (        )
a 3 a 2 + a 3 : a 5 = (a 5 +a 6 ) : a 5 = 1 + a


                 Resposta: A
Para dividir um polinômio por outro
  também usamos a distributiva?
                   Não!
  Nesse caso temos que armar a conta, como
se fosse uma divisão de números naturais:
           dividendo   divisor



             resto     quociente


 e seguir os passos descritos nos próximos
         exemplos.
Exemplo 1

         (
Calcule: x + 2 x − 15
             2
                        )   :   ( x + 5)
1º passo: ordenar e completar o dividendo, se
  necessário.
Nesse caso não será necessário


2º passo: armar a conta.                         x+5
                                x 2 + 2 x − 15
3º passo: dividir o 1º termo do dividendo pelo
  1º termo do divisor.
                         x 2 + 2 x − 15   x+5

                                          x



4º passo: multiplicar o resultado por cada termo
  do divisor, colocando a resposta embaixo do
  dividendo,− com xo 5
        x 2 + 2 x 15 + sinal contrário.      so,         pas
       − x − 5x
         2                                      pr óximo os
                  x                  acilitar o ar os term ão.
                               Para f re coloc              reç
                                 proc u          mes  m a di
                                      ant  es na
                               semelh
5º passo: efetuar a soma da 1ª com a 2ª
linha, obtendo um novo dividendo.
              x 2 + 2 x − 15       x+5
              − x2 − 5x
                                   x
                   − 3 x − 15


6º passo: Verificar se o 1º termo do novo
dividendo é menor que o 1º termo do
divisor. Caso não seja, voltamos ao 3º
passo.
                       x 2 + 2 x − 15    x+5
                     − x 2 − 5x          x−3
                          − 3 x − 15
x 2 + 2 x − 15   x+5      x 2 + 2 x − 15   x+5
− x2 − 5x          x −3   − x2 − 5x          x −3
    − 3 x − 15                − 3 x − 15
      3 x + 15                  3 x + 15
                                    0

   Logo, quociente = x – 3 e resto = 0.


                   Importante!
   Note que para toda divisão vale dizer que
   dividendo = divisor x quociente + resto, ou
            seja, D = d.q + r
Exemplo 2
Encontre o resto da divisão de x + 1 por x3 + 1 .
                                              4




1º passo:     x 4 + 0 x3 + 0 x 2 + 0 x + 1

2º passo:                      3º passo:
x + 0x + 0x + 0x +1 x +1
 4   3    2         3              x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1
                                                             x
4º passo:                           5º passo:
  x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1     x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1
− x4               −x       x        − x4               −x       x
                                                       − x +1




 6º passo: como o 1º termo do novo dividendo é
   menor que o 1º termo do divisor, não podemos
   continuar a divisão.

           Logo, o quociente = x e o resto = - x +1
Tente fazer sozinho!


1) (Uespi) O resto da divisão do polinômio
       4x3 + 12x2 + x – 4 por 2x + 3 é:


  a) 1     b) 2      c) 4    d) 6      e) 8




2) Determine o polinômio que dividido por x + 5, tem
  por quociente x – 2 e resto 3.
Soluções
Exercício 1:
        4 x 3 + 12 x 2 + x − 4   2x + 3
      − 4 x3 − 6 x 2             2 x 2 + 3x − 4
                6x2 + x − 4
              − 6x2 − 9x
                    − 8x − 4
                    + 8 x + 12
                            8             Resposta: E
Exercício 2:
  D = d.q + r = (x + 5) (x – 2) + 3 =
                 x2 – 2x + 5x – 10 + 3 =
                 x2 + 3x – 7

www.aulasapoio.com - Matemática - Polinômios

  • 1.
  • 2.
    Ao final dessaaula você saberá... O que é um polinômio Classificar os polinômios Determinar o grau de um polinômio Ordenar e completar um polinômio Somar e subtrair polinômios Multiplicar polinômios Dividir um polinômio por um monômio Dividir um polinômio por outro polinômio
  • 3.
    O que épolinômio? É uma adição algébrica de monômios. Exemplos de polinômios 4a3 x2+3y 4m2+3m+1 Atenção! O 1º exemplo é a soma do monômio 4a3 com o zero.
  • 4.
    Classificação dos polinômios Monômios  polinômios com apenas 1 termo  Binômios  polinômios com 2 termos  Trinômios  polinômios com 3 termos Não existe um nome específico para os polinômios que apresentam 4 ou mais termos.
  • 5.
    Como sabemos ograu de um polinômio? Verificamos o grau de cada monômio da expressão. O maior deles é o grau do polinômio. Exemplos:  x 2 y 3 +2 xy 2   polinômio do 5º grau 5 º grau 3 º grau 4a 3 + 7 a 2 − 6ab  polinômio do 4º grau    b2  3 º grau 2 º grau 4 º grau
  • 6.
    Observação Polinômioscom uma só variável geralmente são apresentados ordenadamente, começando pelo monômio de maior grau. Exemplo: Ordenar o polinômio 2x2 + x + 5x3 + 9. Resposta: 5x3 + 2x2 + x + 9 Verifique que o 9 é um monômio de grau zero. 9 = 9x0
  • 7.
    O que sãopolinômios incompletos em relação a uma variável? Se um polinômio estiver ordenado e o coeficiente de algum termo for zero, então esse polinômio é incompleto. Exemplos: x4 – 3 = x4 + 0x3 + 0x2 + 0x – 3 8m3 + m2 = 8m3 + m2 + 0m + 0
  • 8.
    Qual é aregra para somar e subtrair polinômios? Basta fazer a redução dos termos semelhantes. Exemplos: a) (y3 – 2y2 + 5) + (2y3 – 5y – 7) = y3 – 2y2 + 5 + 2y3 – 5y – 7 = 3y3 – 2y2 – 5y – 2 b) (6m2 – 7mn + 8n2) – (8mn + 5m2 – 7n2) = 6m2 – 7mn + 8n2 – 8mn – 5m2 + 7n2 = m2 – 15mn + 15n2
  • 9.
    Tente fazer sozinho! Dadosos polinômios: A = 5x2 – 3x + 4 B = 2x2 + 4x – 3 C = x2 – 3x Calcule A + C – B
  • 10.
    Solução A+C–B= (5x2 – 3x+ 4) + (x2 – 3x) – (2x2 + 4x – 3)= 5x2 – 3x + 4 + x2 – 3x – 2x2 – 4x + 3 = 5x2 + x2 – 2x2 – 3x – 3x – 4x + 4 + 3 = 4x2 – 10x + 7
  • 11.
    Como multiplicamos polinômios? Aplicando a propriedade distributiva. Exemplos: a) – y2 (y3 – 2y2 + 1) = – y5 + 2y4 – y2 b) (a + b) (a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2
  • 12.
    Tente fazer sozinho! 3 1 2x + y x− y Seja A = 5 eB= 2 Calcule AB.
  • 13.
    Solução A.B=  3   1  3 xy 3 y 2  2x + y x − y  5   2  = 2 x 2 − xy + − = 5 10 5 xy 3xy 3 y 2 2 xy 3 y 2 2x − 2 + − = 2x2 − − 5 5 10 5 10
  • 14.
    Como dividimos umpolinômio por um monômio? Aplicando a propriedade distributiva. Exemplos: a) (15m3 – 10m2) : (-5m) = - 3m2 + 2m 2  3 3 2 1   4  9x 9x 3  6x − x + x  :  x  = − +  4 2  3  2 16 8 b)
  • 15.
    Tente fazer sozinho! (Cesgranrio- RJ) Simplificando a expressão 3 (2 3 ) a a +a : a 5 , encontramos: a) 1 + a b) a2 + a c) 1 + 5a d) 1 – a e) a3
  • 16.
    Solução ( ) a 3 a 2 + a 3 : a 5 = (a 5 +a 6 ) : a 5 = 1 + a Resposta: A
  • 17.
    Para dividir umpolinômio por outro também usamos a distributiva? Não! Nesse caso temos que armar a conta, como se fosse uma divisão de números naturais: dividendo divisor resto quociente e seguir os passos descritos nos próximos exemplos.
  • 18.
    Exemplo 1 ( Calcule: x + 2 x − 15 2 ) : ( x + 5) 1º passo: ordenar e completar o dividendo, se necessário. Nesse caso não será necessário 2º passo: armar a conta. x+5 x 2 + 2 x − 15
  • 19.
    3º passo: dividiro 1º termo do dividendo pelo 1º termo do divisor. x 2 + 2 x − 15 x+5 x 4º passo: multiplicar o resultado por cada termo do divisor, colocando a resposta embaixo do dividendo,− com xo 5 x 2 + 2 x 15 + sinal contrário. so, pas − x − 5x 2 pr óximo os x acilitar o ar os term ão. Para f re coloc reç proc u mes m a di ant es na semelh
  • 20.
    5º passo: efetuara soma da 1ª com a 2ª linha, obtendo um novo dividendo. x 2 + 2 x − 15 x+5 − x2 − 5x x − 3 x − 15 6º passo: Verificar se o 1º termo do novo dividendo é menor que o 1º termo do divisor. Caso não seja, voltamos ao 3º passo. x 2 + 2 x − 15 x+5 − x 2 − 5x x−3 − 3 x − 15
  • 21.
    x 2 +2 x − 15 x+5 x 2 + 2 x − 15 x+5 − x2 − 5x x −3 − x2 − 5x x −3 − 3 x − 15 − 3 x − 15 3 x + 15 3 x + 15 0 Logo, quociente = x – 3 e resto = 0. Importante! Note que para toda divisão vale dizer que dividendo = divisor x quociente + resto, ou seja, D = d.q + r
  • 22.
    Exemplo 2 Encontre oresto da divisão de x + 1 por x3 + 1 . 4 1º passo: x 4 + 0 x3 + 0 x 2 + 0 x + 1 2º passo: 3º passo: x + 0x + 0x + 0x +1 x +1 4 3 2 3 x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1 x
  • 23.
    4º passo: 5º passo: x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1 x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1 − x4 −x x − x4 −x x − x +1 6º passo: como o 1º termo do novo dividendo é menor que o 1º termo do divisor, não podemos continuar a divisão. Logo, o quociente = x e o resto = - x +1
  • 24.
    Tente fazer sozinho! 1)(Uespi) O resto da divisão do polinômio 4x3 + 12x2 + x – 4 por 2x + 3 é: a) 1 b) 2 c) 4 d) 6 e) 8 2) Determine o polinômio que dividido por x + 5, tem por quociente x – 2 e resto 3.
  • 25.
    Soluções Exercício 1: 4 x 3 + 12 x 2 + x − 4 2x + 3 − 4 x3 − 6 x 2 2 x 2 + 3x − 4 6x2 + x − 4 − 6x2 − 9x − 8x − 4 + 8 x + 12 8 Resposta: E Exercício 2: D = d.q + r = (x + 5) (x – 2) + 3 = x2 – 2x + 5x – 10 + 3 = x2 + 3x – 7