Definição:
Prisma é um poliedro convexo tal que duas
faces são polígonos congruentes situados em
planos paralelos e as demais faces são
paralelogramos.
Num prisma, o número de faces laterais é igual
ao número de lados dos polígonos da base, isto
é, é igual ao número de arestas da base.
Prismas
Elementos do prisma
Nomenclatura
A nomenclatura dos prisma é dada de
acordo a forma da bases Assim, se temos
hexágonos nas bases, teremos um prisma
hexagonal.
Prisma triangular Prisma pentagonal Prisma hexagonal
Classificação dos prismas
Reto ou Obliquo
Quando as arestas laterais de um prisma forem
perpendiculares aos planos das bases, o prisma
é chamado de reto; caso contrário, de oblíquo..
Prisma reto
Prisma obliquo
Prismas Regulares
É um prisma reto cujas bases
são polígonos regulares.
Área lateral e Área total do
prisma
 A área Lateral( ) de um prisma é a soma
das áreas das faces laterais.
 A área total ( ) de um prisma é a soma
das áreas das faces laterais ( ), com as áreas
das duas bases.
lA
tA
lA
Volume
O volume de um prisma é o produto da área da
base pela medida da altura.
 Área lateral de um prisma reto com base poligonal
regular
A área lateral de um prisma reto que tem por base
uma região poligonal regular de n lados é dada pela
soma das áreas das faces laterais. Como neste caso
todas as áreas das faces laterais são iguais, basta tomar
a área lateral como:
Al = n. A Face Lateral
Área e Volume de Prismas
Regulares
Uma forma alternativa para obter a área
lateral de um prisma reto tendo como base
um polígono regular de n lados é:
Al = 2P × h
onde 2P é o perímetro da base e h é a
altura do prisma.
Volume
V = . hbA

Gemetria Espacial: Prismas

  • 1.
    Definição: Prisma é umpoliedro convexo tal que duas faces são polígonos congruentes situados em planos paralelos e as demais faces são paralelogramos. Num prisma, o número de faces laterais é igual ao número de lados dos polígonos da base, isto é, é igual ao número de arestas da base. Prismas
  • 2.
  • 3.
    Nomenclatura A nomenclatura dosprisma é dada de acordo a forma da bases Assim, se temos hexágonos nas bases, teremos um prisma hexagonal. Prisma triangular Prisma pentagonal Prisma hexagonal
  • 4.
    Classificação dos prismas Retoou Obliquo Quando as arestas laterais de um prisma forem perpendiculares aos planos das bases, o prisma é chamado de reto; caso contrário, de oblíquo.. Prisma reto Prisma obliquo
  • 5.
    Prismas Regulares É umprisma reto cujas bases são polígonos regulares.
  • 6.
    Área lateral eÁrea total do prisma  A área Lateral( ) de um prisma é a soma das áreas das faces laterais.  A área total ( ) de um prisma é a soma das áreas das faces laterais ( ), com as áreas das duas bases. lA tA lA
  • 7.
    Volume O volume deum prisma é o produto da área da base pela medida da altura.
  • 8.
     Área lateralde um prisma reto com base poligonal regular A área lateral de um prisma reto que tem por base uma região poligonal regular de n lados é dada pela soma das áreas das faces laterais. Como neste caso todas as áreas das faces laterais são iguais, basta tomar a área lateral como: Al = n. A Face Lateral Área e Volume de Prismas Regulares
  • 9.
    Uma forma alternativapara obter a área lateral de um prisma reto tendo como base um polígono regular de n lados é: Al = 2P × h onde 2P é o perímetro da base e h é a altura do prisma.
  • 10.