SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
2016- MATEMÁTICA I Prof Julio Cezar
F U N Ç Õ E S
Q U A D R Á T I C A S
FUNÇÕES DO 2º GRAU
E SUAS APLICAÇÕES.
Considere a seguinte situação aplicativa envolvendo a quantidade de produtos vendidos
por uma empresa em função do preço aplicado ao produto. E também, a receita mensal total que
a empresa obtém com esses dados.
Em março deste ano uma empresa vendeu determinado produto por R$ 20,00 e totalizou
no mês, 20.000 unidades vendidas.
Em abril deste ano a empresa aumentou o preço do produto para R$ 22,00 e totalizou no
mês, 18.000 unidades vendidas.
Com essas informações, utilizando-se dos conceitos de Funções Lineares, podemos
determinar a fórmula matemática que pode calcular o total de unidades vendidas em qualquer
outro momento, em função do preço aplicado ao produto ( y = a.x + b )
Sejam p = preço aplicado ao produto (em reais) e
Q = quantidade de produtos vendidos por mês.
(resolução e obtenção da regra da função Linear)
Sabemos que a Receita é determinada multiplicando-se o valor do preço pela quantidade,
ou seja, R = p X Q
Nesse caso, temos:
R = p X Q
Observamos, portanto, que a Receita é uma nova fórmula matemática, que é calculada em função
do preço aplicado ao produto. E essa fórmula contém a variável (p) elevada ao quadrado (Função
do 2º grau)
Assim, as Funções do 2º grau (Funções Quadráticas) também serão funções estudadas por
apresentarem situações aplicadas extremamente importantes, especialmente na áreas
administrativas, de gestão e de negócios.
FUNÇÃO QUADRÁTICA (FUNÇÃO DO 2º GRAU)
Considerando-se três números reais a, b, c, com (a) diferente de zero,
denomina-se FUNÇÃO POLINOMIAL DO 2º. GRAU ou FUNÇÃO QUADRÁTICA, toda função definida
pela forma:
y = a x² + b x + c , para todo x real.
Exemplos:
I) y = 3x² - 2x + 1 onde a = 3; b = (-2) ; c = 1
II) y = -4x² + x - 5 a = (-4); b = 1 ; c = (-5)
III) f(x)= x² - 4 a = 1 ; b = 0 ; c = (-4)
IV) f (x)= - x² + 100 x a = (- l) ; b = 100; c = 0
V) y = 20 x² a = 20 ; b = 0 ; c = 0
VI) f ( t ) = 9 - t² a = ( -1); b = 0 ; c = 9
GRÁFICO CARTESIANO DE UMA FUNÇÃO DO 2º GRAU- Função Quadrática.
( I ) y = x² - 6x + 9 Domínio: [ 0 , 5 ]
( II ) f ( x ) = 12x - 3x² Domínio: [ 0 , 4 ]
Propostos:
a) y = x² + 2x Dom: [ -1 , 3 ]
b) y = 9 - x² Dom: [ -3 , 3 ]
c) y = x² - 5.x + 6 Dom: [ 0 , 5 ]
Análise dos elementos do gráfico de uma FUNÇÃO QUADRÁTICA
( I ) Concavidade da curva (Parábola) (para cima ou para baixo?)
( II ) Ponto onde a curva (parábola) intercepta o eixo vertical (Y)_.
( III ) Ponto(s) onde a curva intercepta o eixo horizontal (X)
( IV ) Domínio e Imagem da função.
OBTENÇÃO DO VALOR MÁXIMO OU MÍNIMO DE UMA FUNÇÃO QUADRÁTICA
(VÉRTICE DA PARÁBOLA).
Exemplos:
I. y = 2x² - 8x + 20
II. F ( x )= 3 + 18x – 3x²
III. L ( t ) = 6t² + 30t - 50
Exemplos aplicativos:
1. Considere a situação aplicativa onde o Custo total diário de produção; C de uma empresa,
depende da quantidade total de peças ( q ) produzidas diariamente ( em milhares de unidades).
O cálculo desse custo é feito pela seguinte fórmula:
C = 200 + 20q – 2q²
Assim, por exemplo, para se produzir 2 mil peças o custo total é de 232 mil reais, ou seja
C ( 2 ) = 232. Para se produzir 5 mil peças, o custo total é de 250 mil reais, ou seja C ( 5 ) = 250.
E para se produzir 3 mil e 500 peças, o Custo total é de 235 mil e 500 reais, ou seja, C(3,5)=235,5
Nessas condições:
a) Qual será o custo total ao se produzir 2 500 peças por dia?
b) Calcule o custo máximo dessa empresa e o total de unidades produzidas para se obter esse
custo?
c) Sabendo–se que, por dia, podem ser produzidas, no máximo 5 mil peças, calcule qual será
a variação total do custo de produção? (considerando o mínimo e máximo de produção
diária)
d) Apresentando o Domínio e a Imagem dessa função, construa o gráfico cartesiano .
....e) Determine a quantidade de unidades que devem ser produzidas diariamente para que o
custo total seja de 247 mil reais?
2. Considere a função F que calcula o Faturamento (Receita) mensal de uma empresa, que
depende do número de unidades vendidas por mês.
F = 300x - 20x² , sendo:
F o Faturamento mensal da empresa, em milhares de reais e x o número de unidades
vendidas por mês, em milhares de unidades. Nessas condições, responda o que se pede:
a) Calcule o Faturamento mensal dessa empresa se forem vendidas 4 mil unidades. E se
forem vendidas 7.500 unidades, que é o número máximo possível ?
b) Qual deve ser a quantidade de unidades vendidas para se ter o Faturamento mensal
máximo possível? E qual é o valor desse Faturamento?
c) Considerando o total de vendas máximo possível, apresente o Domínio e a Imagem dessa
função, bem como construa o gráfico cartesiano apresentando os principais pontos (ponto
inicial, ponto final, ponto de máximo e ponto de mínimo)
d) Se o total de vendas mensais variar entre 4 mil unidades e 7.500 unidades, qual será a
variação do faturamento dessa empresa?
....e) Determine a quantidade de unidades que devem ser vendidas mensalmente para que o o
faturamento atinja um milhão de reais?
3. Seja E = 2t² - 14t + 140 a fórmula que registra e calcula o valor das
exportações (em milhões de dólares) de determinada empresa, em função do tempo (t anos a
partir de 01/06/2013 – momento zero). Considere o período de análise de 01/06/2013 a
01/06/2017.
a) Calcule o valor das Exportações dessa empresa estimado para 01/06/2017.
E em 01/09/2016. (Apresente o valor por extenso).
Por exemplo: 10,5 Bi U$ = 10 bilhões e 500 milhões de dólares.
b) Calcule o valor mínimo das exportações e apresente a data em que esse valor será ( ou
foi ) atingido.
c) Apresente o valor máximo das exportações e a data em que isso ocorreu ( ou ocorrerá).
d) Apresente o Domínio e a Imagem dessa função e construa o gráfico cartesiano
....e) Determine em que momento (data ___/___/____ as exportações dessa empresa atingiram a
126,5 bilhões de dólares?
4. Um estudo sobre a audiência dos telespectadores de um determinado canal de televisão,
no período das (19h às 23 h), indica que o número de telespectadores (T), em milhões de pessoas,
que assistem televisão, depende do horário, a partir das 19 horas ( x = 0) . A regra que faz esse
cálculo é dada por:
T ( x ) = 60 + 5 x - x ² , onde x é o nº de horas após às 19:00h.
Considere as afirmativas abaixo, sabendo que todas estão INCORRETAS. Faça a análise e cálculos
e apresente a devida correção do valor apresentado em Negrito.
I) O número de telespectadores previsto para as 23 horas é de 96 milhões
II) O número de telespectadores previsto para as 20h 15 min é de 64 milhões, 960 mil .
III) A maior audiência registrada ocorre às 21 horas.
IV) E o menor número de telespectadores é registrado às 22 horas?
Nesses itens a seguir execute e responda ao que se pede.
V) Construa o gráfico cartesiano dessa função apresentando os pontos principais (ponto inicial,
ponto final, ponto de máximo e ponto de mínimo)
VI) Em que momento (horário) será registrada uma audiência de 64,56 milhões de telespectadores?
FUNÇÕES QUADRÁTICAS – FUNÇÕES DO 2º GRAU - MATEMÁTICA I -Prof Julio Cezar
PROBLEMAS PROPOSTOS.
1. Uma indústria tem um custo total mensal de produção que é calculado pela fórmula:
C ( x ) = 600 – 120x + 10x²
Sendo C = Custo total mensal (em milhares de reais) e
x = nº de peças produzidas por mês (em milhares de unidades), responda o que se pede:
a) Qual será o custo total mensal para se produzir 6000 unidades por mês?
b) E para se produzirem 2 500 unidades por mês?
c) Qual será Custo mínimo de produção?
d) Sabendo que a produção máxima é de 6 000 unidades por mês, apresente o Domínio e a
Imagem dessa função e construa o gráfico cartesiano , apresentando os pontos mais
importantes desse evento (ponto inicial, final e o ponto de máximo e mínimo)
e) Quantas unidades devem ser produzidas para se ter um custo mensal de 400 mil reais?
2. Sabe-e que o fluxo de passageiros de uma empresa de ônibus (transporte coletivo), em
média, depende do horário do dia. Suponha que esses ônibus saiam da garagem às 10 horas da
manhã e circulam até 15 horas .
Por observações, definiu-se que total de passageiros que utilizam esses ônibus
é calculado pela fórmula: N = 50 + 25h – 5h²
na qual : N é o total de número de passageiros (em milhares de pessoas)
h é o número de horas de realização do transporte no período das 10 às 15 horas.
Assim, por exemplo, às 11 horas, temos h = 1 . Assim, temos 70 mil de passageiros que utilizam
os ônibus nesse horário. Nessas condições responda:
a) Qual é, em média, a quantidade de passageiros , às 15:00 horas? E às 12h30minutos?
b) Qual é a quantidade máxima e mínima de passageiros transportados e em que horários do
dia isso ocorre?
c) Construa o gráfico cartesiano dessa função, apresentando o Domínio e Imagem.
d) Em que momento( horário=horas e minutos do dia) o fluxo de passageiros atinge 50 % do
máximo possível no dia?
3. Certa indústria, após observações na quantidade de sua produção semanal estima
que a quantidade de peças produzidas pode ser calculada por:
Q = 90x – 10x²
onde Q(x) é a quantidade produzida semanalmente (em milhares de unidades e
x é o valor investido em matéria prima (em milhares de reais). Determine:
a) Qual é a produção estimada com R$ 4 500,00 de investimento em matéria prima?
b) Qual é o valor de investimento que se deve fazer para se obter a quantidade de produção
semanal máxima? E qual será essa produção máxima?
c) Sabe-se que o Domínio dessa função é D = 0 ≤ x ≤ 5 . Assim, apresente a Imagem dessa
função e explique o que esses valores representam para essa situação.
d) Construa o gráfico cartesiano dessa função apresentando os principais pontos (ponto
inicial, ponto final, ponto de máximo e ponto de mínimo).
e) Qual é o valor investido em matéria prima para se ter uma produção semanal de 200 mil
unidades?
4. Calcula-se que daqui a um certo tempo (x anos) a população de uma cidade será de
P = 420 + 90t – 10 t² mil habitantes;
onde P é a população e t é o número de meses transcorridos, a partir deste
momento. (hoje: ___/___/2016) (data que estiver realizando o exercício proposto. Assim,
a) Calcule a população dessa cidade daqui a 5 meses. E daqui a 3 semanas ?
b) Sabendo-se que essa fórmula tem eficácia para um período de um ano de análise,
apresente o Domínio e Imagem dessa função e explique o que esses valores representam
para esse evento.
c) Construa o gráfico cartesiano dessa função.
d) Em que momento essa população será 10 % superior a população atual?
3. Certa indústria, após observações na quantidade de sua produção semanal estima
que a quantidade de peças produzidas pode ser calculada por:
Q = 90x – 10x²
onde Q(x) é a quantidade produzida semanalmente (em milhares de unidades e
x é o valor investido em matéria prima (em milhares de reais). Determine:
a) Qual é a produção estimada com R$ 4 500,00 de investimento em matéria prima?
b) Qual é o valor de investimento que se deve fazer para se obter a quantidade de produção
semanal máxima? E qual será essa produção máxima?
c) Sabe-se que o Domínio dessa função é D = 0 ≤ x ≤ 5 . Assim, apresente a Imagem dessa
função e explique o que esses valores representam para essa situação.
d) Construa o gráfico cartesiano dessa função apresentando os principais pontos (ponto
inicial, ponto final, ponto de máximo e ponto de mínimo).
e) Qual é o valor investido em matéria prima para se ter uma produção semanal de 200 mil
unidades?
4. Calcula-se que daqui a um certo tempo (x anos) a população de uma cidade será de
P = 420 + 90t – 10 t² mil habitantes;
onde P é a população e t é o número de meses transcorridos, a partir deste
momento. (hoje: ___/___/2016) (data que estiver realizando o exercício proposto. Assim,
a) Calcule a população dessa cidade daqui a 5 meses. E daqui a 3 semanas ?
b) Sabendo-se que essa fórmula tem eficácia para um período de um ano de análise,
apresente o Domínio e Imagem dessa função e explique o que esses valores representam
para esse evento.
c) Construa o gráfico cartesiano dessa função.
d) Em que momento essa população será 10 % superior a população atual?

Mais conteúdo relacionado

Mais procurados

Rev op com mon e pol geoplano prod not
Rev op com mon e pol geoplano prod notRev op com mon e pol geoplano prod not
Rev op com mon e pol geoplano prod notkarfrio
 
Exercicios minicurso
Exercicios minicursoExercicios minicurso
Exercicios minicursoFranbfk
 
Apostila de matematica_ii
Apostila de matematica_iiApostila de matematica_ii
Apostila de matematica_iiJuliano Machado
 
1ª lista de exercícios de pesquisa operacional com gabarito
1ª lista de exercícios de pesquisa operacional   com gabarito1ª lista de exercícios de pesquisa operacional   com gabarito
1ª lista de exercícios de pesquisa operacional com gabaritoAntonio Rodrigues
 
Função
Função Função
Função Aline
 
Matrizes e determinantes
Matrizes e determinantesMatrizes e determinantes
Matrizes e determinantesMarcieleEuzebio
 
Problemas função exponencial
Problemas   função exponencialProblemas   função exponencial
Problemas função exponencialPéricles Penuel
 
Derivadas aplicações taxa de variação marginal _ máximos e mínimos_2016
Derivadas aplicações  taxa de  variação marginal _ máximos e mínimos_2016Derivadas aplicações  taxa de  variação marginal _ máximos e mínimos_2016
Derivadas aplicações taxa de variação marginal _ máximos e mínimos_2016Julio Cezar Wojciechowski
 
Material de Apoio - Matemática 3
Material de Apoio - Matemática 3Material de Apoio - Matemática 3
Material de Apoio - Matemática 3Fernando Alves
 
Pesquisa operacional 1
Pesquisa operacional 1Pesquisa operacional 1
Pesquisa operacional 1Erique Neto
 
Análise de Itens
Análise de ItensAnálise de Itens
Análise de Itensluciaoliv
 
Projeto_Execução_Leandro_Casemiro
Projeto_Execução_Leandro_CasemiroProjeto_Execução_Leandro_Casemiro
Projeto_Execução_Leandro_Casemirol_dapaz
 

Mais procurados (20)

Caic rec 2_bim
Caic rec 2_bimCaic rec 2_bim
Caic rec 2_bim
 
Rev op com mon e pol geoplano prod not
Rev op com mon e pol geoplano prod notRev op com mon e pol geoplano prod not
Rev op com mon e pol geoplano prod not
 
Exercicios minicurso
Exercicios minicursoExercicios minicurso
Exercicios minicurso
 
Exercícios transportes1
Exercícios transportes1Exercícios transportes1
Exercícios transportes1
 
Apostila de matematica_ii
Apostila de matematica_iiApostila de matematica_ii
Apostila de matematica_ii
 
1ª lista de exercícios de pesquisa operacional com gabarito
1ª lista de exercícios de pesquisa operacional   com gabarito1ª lista de exercícios de pesquisa operacional   com gabarito
1ª lista de exercícios de pesquisa operacional com gabarito
 
Função
Função Função
Função
 
Matrizes e determinantes
Matrizes e determinantesMatrizes e determinantes
Matrizes e determinantes
 
Problemas função exponencial
Problemas   função exponencialProblemas   função exponencial
Problemas função exponencial
 
Derivadas aplicações taxa de variação marginal _ máximos e mínimos_2016
Derivadas aplicações  taxa de  variação marginal _ máximos e mínimos_2016Derivadas aplicações  taxa de  variação marginal _ máximos e mínimos_2016
Derivadas aplicações taxa de variação marginal _ máximos e mínimos_2016
 
Unidade ii
Unidade iiUnidade ii
Unidade ii
 
Problema de Transporte
Problema de TransporteProblema de Transporte
Problema de Transporte
 
Material de Apoio - Matemática 3
Material de Apoio - Matemática 3Material de Apoio - Matemática 3
Material de Apoio - Matemática 3
 
Pesquisa operacional 1
Pesquisa operacional 1Pesquisa operacional 1
Pesquisa operacional 1
 
Forum matematica
Forum matematicaForum matematica
Forum matematica
 
Exercícios po3
Exercícios po3Exercícios po3
Exercícios po3
 
Análise de Itens
Análise de ItensAnálise de Itens
Análise de Itens
 
Problema de transporte
Problema de transporteProblema de transporte
Problema de transporte
 
Projeto_Execução_Leandro_Casemiro
Projeto_Execução_Leandro_CasemiroProjeto_Execução_Leandro_Casemiro
Projeto_Execução_Leandro_Casemiro
 
Lista 1 8 java
Lista 1 8 javaLista 1 8 java
Lista 1 8 java
 

Destaque

งานกลุ่มคอมกลุ่ม5
งานกลุ่มคอมกลุ่ม5งานกลุ่มคอมกลุ่ม5
งานกลุ่มคอมกลุ่ม5Boss'Thanasit Tassana
 
Informatica 3
Informatica 3Informatica 3
Informatica 3Teemo98
 
BMS Prakticum Doceren
BMS Prakticum DocerenBMS Prakticum Doceren
BMS Prakticum DocerenWilliam Laros
 
Exclusive Interview With Director Of Corporate & Community Services, City Of ...
Exclusive Interview With Director Of Corporate & Community Services, City Of ...Exclusive Interview With Director Of Corporate & Community Services, City Of ...
Exclusive Interview With Director Of Corporate & Community Services, City Of ...kgraham32
 
Aktuální stav zavádění BIM v ČR?
Aktuální stav zavádění BIM v ČR?Aktuální stav zavádění BIM v ČR?
Aktuální stav zavádění BIM v ČR?Czech BIM Council
 
MODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONES
MODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONESMODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONES
MODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONESMercedes Ortiz
 

Destaque (12)

งานกลุ่มคอมกลุ่ม5
งานกลุ่มคอมกลุ่ม5งานกลุ่มคอมกลุ่ม5
งานกลุ่มคอมกลุ่ม5
 
Informatica 3
Informatica 3Informatica 3
Informatica 3
 
3D House Model
3D House Model3D House Model
3D House Model
 
test
testtest
test
 
BMS Prakticum Doceren
BMS Prakticum DocerenBMS Prakticum Doceren
BMS Prakticum Doceren
 
BIM: VÝZVA I VIZE
BIM: VÝZVA I VIZEBIM: VÝZVA I VIZE
BIM: VÝZVA I VIZE
 
Exclusive Interview With Director Of Corporate & Community Services, City Of ...
Exclusive Interview With Director Of Corporate & Community Services, City Of ...Exclusive Interview With Director Of Corporate & Community Services, City Of ...
Exclusive Interview With Director Of Corporate & Community Services, City Of ...
 
Rma
RmaRma
Rma
 
Aktuální stav zavádění BIM v ČR?
Aktuální stav zavádění BIM v ČR?Aktuální stav zavádění BIM v ČR?
Aktuální stav zavádění BIM v ČR?
 
MODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONES
MODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONESMODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONES
MODELAJE DE SISTEMAS EN INVESTIGACION DE OPERACIONES
 
ressummary
ressummaryressummary
ressummary
 
hct_workbook
hct_workbookhct_workbook
hct_workbook
 

Semelhante a Funcoes quadraticas 2016 1 nc admcont 1 s

Lista função de 1º grau
Lista função de 1º grauLista função de 1º grau
Lista função de 1º grauRubia Nunes
 
Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)Manoel Silva
 
Lista de exercicios
Lista de exerciciosLista de exercicios
Lista de exerciciosNick Kreusch
 
Revisão de Matemática Geral
Revisão de Matemática GeralRevisão de Matemática Geral
Revisão de Matemática GeralEvandro Batista
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grauHélio Rocha
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grauHélio Rocha
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grauHélio Rocha
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grauHélio Rocha
 
Apostila função do 1 grau
Apostila   função do 1 grauApostila   função do 1 grau
Apostila função do 1 grauCelia Lana
 
Aula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptx
Aula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptxAula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptx
Aula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptxJuliana Menezes
 
Funções - Exercícios
Funções - ExercíciosFunções - Exercícios
Funções - ExercíciosEverton Moraes
 
Exercicios de geometria_reg_4etapa
Exercicios de geometria_reg_4etapaExercicios de geometria_reg_4etapa
Exercicios de geometria_reg_4etapaMaíra Cordeiro
 
Matemática financeira aula 4
Matemática financeira aula 4Matemática financeira aula 4
Matemática financeira aula 4Augusto Junior
 

Semelhante a Funcoes quadraticas 2016 1 nc admcont 1 s (20)

Lista função de 1º grau
Lista função de 1º grauLista função de 1º grau
Lista função de 1º grau
 
Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)
 
1 cm mat
1 cm mat1 cm mat
1 cm mat
 
Lista de exercicios
Lista de exerciciosLista de exercicios
Lista de exercicios
 
Revisão de Matemática Geral
Revisão de Matemática GeralRevisão de Matemática Geral
Revisão de Matemática Geral
 
Conjuntos e intervalos 1 ano
Conjuntos e intervalos 1 ano Conjuntos e intervalos 1 ano
Conjuntos e intervalos 1 ano
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grau
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grau
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grau
 
Função 1º e 2º grau
Função 1º e 2º grauFunção 1º e 2º grau
Função 1º e 2º grau
 
Apostila função do 1 grau
Apostila   função do 1 grauApostila   função do 1 grau
Apostila função do 1 grau
 
Situação problemas ideia de função.gabarito
Situação problemas   ideia de função.gabaritoSituação problemas   ideia de função.gabarito
Situação problemas ideia de função.gabarito
 
Aula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptx
Aula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptxAula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptx
Aula de Apresentação, Função e Função do 1º Grau.ppt · versão 1.pptx
 
Situação problemas ideia de função
Situação problemas   ideia de funçãoSituação problemas   ideia de função
Situação problemas ideia de função
 
Aulafuncao
AulafuncaoAulafuncao
Aulafuncao
 
Funções - Exercícios
Funções - ExercíciosFunções - Exercícios
Funções - Exercícios
 
1323093437588
13230934375881323093437588
1323093437588
 
Exercicios de geometria_reg_4etapa
Exercicios de geometria_reg_4etapaExercicios de geometria_reg_4etapa
Exercicios de geometria_reg_4etapa
 
Fu log 2016
Fu log 2016Fu log 2016
Fu log 2016
 
Matemática financeira aula 4
Matemática financeira aula 4Matemática financeira aula 4
Matemática financeira aula 4
 

Último

v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
As variações do uso da palavra "como" no texto
As variações do uso da palavra "como" no  textoAs variações do uso da palavra "como" no  texto
As variações do uso da palavra "como" no textoMariaPauladeSouzaTur
 
A Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaA Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaFernanda Ledesma
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Paula Meyer Piagentini
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxLuizHenriquedeAlmeid6
 
A área de ciências da religião no brasil 2023.ppsx
A área de ciências da religião no brasil  2023.ppsxA área de ciências da religião no brasil  2023.ppsx
A área de ciências da religião no brasil 2023.ppsxGilbraz Aragão
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxGislaineDuresCruz
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREIVONETETAVARESRAMOS
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terraBiblioteca UCS
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Paula Meyer Piagentini
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptAlineSilvaPotuk
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...nexocan937
 
Ser Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitaçãoSer Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitaçãoJayaneSales1
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdfCarlosRodrigues832670
 
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxEVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxHenriqueLuciano2
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLaseVasconcelos1
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoCelianeOliveira8
 

Último (20)

v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
As variações do uso da palavra "como" no texto
As variações do uso da palavra "como" no  textoAs variações do uso da palavra "como" no  texto
As variações do uso da palavra "como" no texto
 
A Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaA Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão Linguística
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
 
A área de ciências da religião no brasil 2023.ppsx
A área de ciências da religião no brasil  2023.ppsxA área de ciências da religião no brasil  2023.ppsx
A área de ciências da religião no brasil 2023.ppsx
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terra
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
Ser Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitaçãoSer Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitação
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
 
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxEVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdf
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e feminino
 

Funcoes quadraticas 2016 1 nc admcont 1 s

  • 1. 2016- MATEMÁTICA I Prof Julio Cezar F U N Ç Õ E S Q U A D R Á T I C A S FUNÇÕES DO 2º GRAU E SUAS APLICAÇÕES.
  • 2. Considere a seguinte situação aplicativa envolvendo a quantidade de produtos vendidos por uma empresa em função do preço aplicado ao produto. E também, a receita mensal total que a empresa obtém com esses dados. Em março deste ano uma empresa vendeu determinado produto por R$ 20,00 e totalizou no mês, 20.000 unidades vendidas. Em abril deste ano a empresa aumentou o preço do produto para R$ 22,00 e totalizou no mês, 18.000 unidades vendidas. Com essas informações, utilizando-se dos conceitos de Funções Lineares, podemos determinar a fórmula matemática que pode calcular o total de unidades vendidas em qualquer outro momento, em função do preço aplicado ao produto ( y = a.x + b ) Sejam p = preço aplicado ao produto (em reais) e Q = quantidade de produtos vendidos por mês. (resolução e obtenção da regra da função Linear) Sabemos que a Receita é determinada multiplicando-se o valor do preço pela quantidade, ou seja, R = p X Q Nesse caso, temos: R = p X Q Observamos, portanto, que a Receita é uma nova fórmula matemática, que é calculada em função do preço aplicado ao produto. E essa fórmula contém a variável (p) elevada ao quadrado (Função do 2º grau) Assim, as Funções do 2º grau (Funções Quadráticas) também serão funções estudadas por apresentarem situações aplicadas extremamente importantes, especialmente na áreas administrativas, de gestão e de negócios.
  • 3. FUNÇÃO QUADRÁTICA (FUNÇÃO DO 2º GRAU) Considerando-se três números reais a, b, c, com (a) diferente de zero, denomina-se FUNÇÃO POLINOMIAL DO 2º. GRAU ou FUNÇÃO QUADRÁTICA, toda função definida pela forma: y = a x² + b x + c , para todo x real. Exemplos: I) y = 3x² - 2x + 1 onde a = 3; b = (-2) ; c = 1 II) y = -4x² + x - 5 a = (-4); b = 1 ; c = (-5) III) f(x)= x² - 4 a = 1 ; b = 0 ; c = (-4) IV) f (x)= - x² + 100 x a = (- l) ; b = 100; c = 0 V) y = 20 x² a = 20 ; b = 0 ; c = 0 VI) f ( t ) = 9 - t² a = ( -1); b = 0 ; c = 9 GRÁFICO CARTESIANO DE UMA FUNÇÃO DO 2º GRAU- Função Quadrática. ( I ) y = x² - 6x + 9 Domínio: [ 0 , 5 ] ( II ) f ( x ) = 12x - 3x² Domínio: [ 0 , 4 ] Propostos: a) y = x² + 2x Dom: [ -1 , 3 ] b) y = 9 - x² Dom: [ -3 , 3 ] c) y = x² - 5.x + 6 Dom: [ 0 , 5 ] Análise dos elementos do gráfico de uma FUNÇÃO QUADRÁTICA ( I ) Concavidade da curva (Parábola) (para cima ou para baixo?) ( II ) Ponto onde a curva (parábola) intercepta o eixo vertical (Y)_. ( III ) Ponto(s) onde a curva intercepta o eixo horizontal (X) ( IV ) Domínio e Imagem da função. OBTENÇÃO DO VALOR MÁXIMO OU MÍNIMO DE UMA FUNÇÃO QUADRÁTICA (VÉRTICE DA PARÁBOLA). Exemplos: I. y = 2x² - 8x + 20 II. F ( x )= 3 + 18x – 3x² III. L ( t ) = 6t² + 30t - 50
  • 4. Exemplos aplicativos: 1. Considere a situação aplicativa onde o Custo total diário de produção; C de uma empresa, depende da quantidade total de peças ( q ) produzidas diariamente ( em milhares de unidades). O cálculo desse custo é feito pela seguinte fórmula: C = 200 + 20q – 2q² Assim, por exemplo, para se produzir 2 mil peças o custo total é de 232 mil reais, ou seja C ( 2 ) = 232. Para se produzir 5 mil peças, o custo total é de 250 mil reais, ou seja C ( 5 ) = 250. E para se produzir 3 mil e 500 peças, o Custo total é de 235 mil e 500 reais, ou seja, C(3,5)=235,5 Nessas condições: a) Qual será o custo total ao se produzir 2 500 peças por dia? b) Calcule o custo máximo dessa empresa e o total de unidades produzidas para se obter esse custo? c) Sabendo–se que, por dia, podem ser produzidas, no máximo 5 mil peças, calcule qual será a variação total do custo de produção? (considerando o mínimo e máximo de produção diária) d) Apresentando o Domínio e a Imagem dessa função, construa o gráfico cartesiano . ....e) Determine a quantidade de unidades que devem ser produzidas diariamente para que o custo total seja de 247 mil reais? 2. Considere a função F que calcula o Faturamento (Receita) mensal de uma empresa, que depende do número de unidades vendidas por mês. F = 300x - 20x² , sendo: F o Faturamento mensal da empresa, em milhares de reais e x o número de unidades vendidas por mês, em milhares de unidades. Nessas condições, responda o que se pede: a) Calcule o Faturamento mensal dessa empresa se forem vendidas 4 mil unidades. E se forem vendidas 7.500 unidades, que é o número máximo possível ? b) Qual deve ser a quantidade de unidades vendidas para se ter o Faturamento mensal máximo possível? E qual é o valor desse Faturamento? c) Considerando o total de vendas máximo possível, apresente o Domínio e a Imagem dessa função, bem como construa o gráfico cartesiano apresentando os principais pontos (ponto inicial, ponto final, ponto de máximo e ponto de mínimo) d) Se o total de vendas mensais variar entre 4 mil unidades e 7.500 unidades, qual será a variação do faturamento dessa empresa? ....e) Determine a quantidade de unidades que devem ser vendidas mensalmente para que o o faturamento atinja um milhão de reais? 3. Seja E = 2t² - 14t + 140 a fórmula que registra e calcula o valor das exportações (em milhões de dólares) de determinada empresa, em função do tempo (t anos a partir de 01/06/2013 – momento zero). Considere o período de análise de 01/06/2013 a 01/06/2017. a) Calcule o valor das Exportações dessa empresa estimado para 01/06/2017. E em 01/09/2016. (Apresente o valor por extenso). Por exemplo: 10,5 Bi U$ = 10 bilhões e 500 milhões de dólares. b) Calcule o valor mínimo das exportações e apresente a data em que esse valor será ( ou foi ) atingido. c) Apresente o valor máximo das exportações e a data em que isso ocorreu ( ou ocorrerá). d) Apresente o Domínio e a Imagem dessa função e construa o gráfico cartesiano ....e) Determine em que momento (data ___/___/____ as exportações dessa empresa atingiram a 126,5 bilhões de dólares?
  • 5. 4. Um estudo sobre a audiência dos telespectadores de um determinado canal de televisão, no período das (19h às 23 h), indica que o número de telespectadores (T), em milhões de pessoas, que assistem televisão, depende do horário, a partir das 19 horas ( x = 0) . A regra que faz esse cálculo é dada por: T ( x ) = 60 + 5 x - x ² , onde x é o nº de horas após às 19:00h. Considere as afirmativas abaixo, sabendo que todas estão INCORRETAS. Faça a análise e cálculos e apresente a devida correção do valor apresentado em Negrito. I) O número de telespectadores previsto para as 23 horas é de 96 milhões II) O número de telespectadores previsto para as 20h 15 min é de 64 milhões, 960 mil . III) A maior audiência registrada ocorre às 21 horas. IV) E o menor número de telespectadores é registrado às 22 horas? Nesses itens a seguir execute e responda ao que se pede. V) Construa o gráfico cartesiano dessa função apresentando os pontos principais (ponto inicial, ponto final, ponto de máximo e ponto de mínimo) VI) Em que momento (horário) será registrada uma audiência de 64,56 milhões de telespectadores? FUNÇÕES QUADRÁTICAS – FUNÇÕES DO 2º GRAU - MATEMÁTICA I -Prof Julio Cezar PROBLEMAS PROPOSTOS. 1. Uma indústria tem um custo total mensal de produção que é calculado pela fórmula: C ( x ) = 600 – 120x + 10x² Sendo C = Custo total mensal (em milhares de reais) e x = nº de peças produzidas por mês (em milhares de unidades), responda o que se pede: a) Qual será o custo total mensal para se produzir 6000 unidades por mês? b) E para se produzirem 2 500 unidades por mês? c) Qual será Custo mínimo de produção? d) Sabendo que a produção máxima é de 6 000 unidades por mês, apresente o Domínio e a Imagem dessa função e construa o gráfico cartesiano , apresentando os pontos mais importantes desse evento (ponto inicial, final e o ponto de máximo e mínimo) e) Quantas unidades devem ser produzidas para se ter um custo mensal de 400 mil reais? 2. Sabe-e que o fluxo de passageiros de uma empresa de ônibus (transporte coletivo), em média, depende do horário do dia. Suponha que esses ônibus saiam da garagem às 10 horas da manhã e circulam até 15 horas . Por observações, definiu-se que total de passageiros que utilizam esses ônibus é calculado pela fórmula: N = 50 + 25h – 5h² na qual : N é o total de número de passageiros (em milhares de pessoas) h é o número de horas de realização do transporte no período das 10 às 15 horas. Assim, por exemplo, às 11 horas, temos h = 1 . Assim, temos 70 mil de passageiros que utilizam os ônibus nesse horário. Nessas condições responda: a) Qual é, em média, a quantidade de passageiros , às 15:00 horas? E às 12h30minutos? b) Qual é a quantidade máxima e mínima de passageiros transportados e em que horários do dia isso ocorre? c) Construa o gráfico cartesiano dessa função, apresentando o Domínio e Imagem. d) Em que momento( horário=horas e minutos do dia) o fluxo de passageiros atinge 50 % do máximo possível no dia?
  • 6. 3. Certa indústria, após observações na quantidade de sua produção semanal estima que a quantidade de peças produzidas pode ser calculada por: Q = 90x – 10x² onde Q(x) é a quantidade produzida semanalmente (em milhares de unidades e x é o valor investido em matéria prima (em milhares de reais). Determine: a) Qual é a produção estimada com R$ 4 500,00 de investimento em matéria prima? b) Qual é o valor de investimento que se deve fazer para se obter a quantidade de produção semanal máxima? E qual será essa produção máxima? c) Sabe-se que o Domínio dessa função é D = 0 ≤ x ≤ 5 . Assim, apresente a Imagem dessa função e explique o que esses valores representam para essa situação. d) Construa o gráfico cartesiano dessa função apresentando os principais pontos (ponto inicial, ponto final, ponto de máximo e ponto de mínimo). e) Qual é o valor investido em matéria prima para se ter uma produção semanal de 200 mil unidades? 4. Calcula-se que daqui a um certo tempo (x anos) a população de uma cidade será de P = 420 + 90t – 10 t² mil habitantes; onde P é a população e t é o número de meses transcorridos, a partir deste momento. (hoje: ___/___/2016) (data que estiver realizando o exercício proposto. Assim, a) Calcule a população dessa cidade daqui a 5 meses. E daqui a 3 semanas ? b) Sabendo-se que essa fórmula tem eficácia para um período de um ano de análise, apresente o Domínio e Imagem dessa função e explique o que esses valores representam para esse evento. c) Construa o gráfico cartesiano dessa função. d) Em que momento essa população será 10 % superior a população atual?
  • 7. 3. Certa indústria, após observações na quantidade de sua produção semanal estima que a quantidade de peças produzidas pode ser calculada por: Q = 90x – 10x² onde Q(x) é a quantidade produzida semanalmente (em milhares de unidades e x é o valor investido em matéria prima (em milhares de reais). Determine: a) Qual é a produção estimada com R$ 4 500,00 de investimento em matéria prima? b) Qual é o valor de investimento que se deve fazer para se obter a quantidade de produção semanal máxima? E qual será essa produção máxima? c) Sabe-se que o Domínio dessa função é D = 0 ≤ x ≤ 5 . Assim, apresente a Imagem dessa função e explique o que esses valores representam para essa situação. d) Construa o gráfico cartesiano dessa função apresentando os principais pontos (ponto inicial, ponto final, ponto de máximo e ponto de mínimo). e) Qual é o valor investido em matéria prima para se ter uma produção semanal de 200 mil unidades? 4. Calcula-se que daqui a um certo tempo (x anos) a população de uma cidade será de P = 420 + 90t – 10 t² mil habitantes; onde P é a população e t é o número de meses transcorridos, a partir deste momento. (hoje: ___/___/2016) (data que estiver realizando o exercício proposto. Assim, a) Calcule a população dessa cidade daqui a 5 meses. E daqui a 3 semanas ? b) Sabendo-se que essa fórmula tem eficácia para um período de um ano de análise, apresente o Domínio e Imagem dessa função e explique o que esses valores representam para esse evento. c) Construa o gráfico cartesiano dessa função. d) Em que momento essa população será 10 % superior a população atual?