Aulafuncao

3.371 visualizações

Publicada em

Função do 1º grau

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
3.371
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2.058
Ações
Compartilhamentos
0
Downloads
24
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aulafuncao

  1. 1. . Nesta aula você aprenderá sobre: . Função do 1ºgrau  Reconhecer quando uma correspondência entre duas grandezas caracteriza uma função;  Reconhecer Função Polinomial do 1º grau que representa uma situação- problema;  Resolver problemas. . Ao final da aula você estará pronto para: Você já estudou Coordenadas. Estudou Produto Cartesiano e Diagrama de flechas.
  2. 2. . Função do 1ºgrau O salário de um vendedor varia em função do valor de suas vendas no mês. O preço de uma passagem de ônibus varia, entre outros fatores, em função da distância percorrida. O volume de um cubo varia em função da medida de suas arestas. http://www.youtube.com/watch?v=eSW-qNeSYiI
  3. 3. O que você já sabe? Questão 1: O consumo de energia elétrica é medido em KW/h (quilowatt-hora) e depende do tempo em que cada aparelho fica ligado. A tabela indica o consumo de um chuveiro elétrico. Qual o consumo mensal, em quilowatt-hora, desse chuveiro elétrico, que fica ligado, em média, 22 min por dia? (Considere um mês = 30 dias) Chuveiro Resposta: O consumo mensal, em quilowatt-hora, desse chuveiro elétrico é de: ( A ) 53,0 KW/h ( B ) 58,3 KW/h ( C ) 116,6 KW/h ( D ) 159,0 KW/h Gabarito: Letra B
  4. 4. Questão 2: O quadro abaixo informa a quantidade, em gotas, de um certo medicamento, em função da massa corporal de uma pessoa. Uma dose de 39 gotas é indicada para uma pessoa com massa igual a quantos quilogramas? Resposta: Uma dose de 39 gotas é indicada para uma pessoa com massa igual a: ( A ) 40 Kg. ( B ) 50 Kg. ( C ) 65 Kg. ( D ) 90 Kg. GABARITO: Letra ( C )
  5. 5. Para transformar graus Fahrenheit em graus Celsius, usa-se a fórmula: Agora, encontre: a) Na escala Fahrenheit o valor correspondente a 35°C. b) Qual a temperatura (em graus Celsius) em que o número de graus Fahrenheit é o dobro do número de graus Celsius? As temperaturas são, respectivamente: ( A ) 95° F e 160° C. ( B ) 95° C e 160° F. ( C ) 160° C e 95°F. ( D ) 160° F e 95° C. GABARITO: Letra ( A ) Para graduar um termômetro nas escalas Celsius e Fahrenheit são utilizados dois estados térmicos com temperaturas bem definidas: Ponto de gelo, temperatura de fusão do gelo sob pressão normal; Ponto de vapor, temperatura de ebulição da água sob pressão normal. Questão 3:
  6. 6. . . Função Polinomial do 1° grau Produto Cartesiano - Par Ordenado A correspondência entre dois conjuntos é dada em termos de pares ordenados. Indicamos por (x, y) o par ordenado formado pelos elementos x e y, onde x é o 1º elemento e y é o 2º elemento. A = { 1, 2 } B = { 2 , 3 , 4 } A X B = { (1,2), (1,3), (1,4), (2,2), (2,3), (2,4) } A X B = { (x,y) / x ϵ A e y ϵ B } <=> ( x , y ) ≠ ( y , x ) A X B (2,4) (2,3) (1,4) (1,3) (1,2) . (2,1) (2,2) . Observe! (1,2) ≠ (2,1)
  7. 7. Uma relação f de A em B é uma função se, e somente se:  1 - Todos os elementos de A têm um correspondente em B.  2 - Cada elemento de A tem um e somente um correspondente em B. Observe os seguintes diagramas. A B 1 . 2 . 3 . .1 .2 .3 .4 .5 I A B 1 . 2 . 3 . .1 .2 .3 .4 .5 II A B 1 . 2 . 3 . .1 .2 .3 .4 .5 III A 1 . 2 . 3 . .1 .2 .3 .4 .5 B IV 1 . 2 . 3 . .1 .2 .3 .4 .5 A B V Somente os diagramas I, III e IV satisfazem as condições que representam uma função. Diagrama de Flechas a) {(1,2),(2,3),(3,4),(4,5)} b) {(1,2),(1,3),(2,5),(3,5),(4,6)} c) {(1,3),(2,4),(3,5),(4,6)} d) {(1,2),(2,4),(3,6) } Dados os conjuntos A={1,2,3,4} e B={2,3,4,5,6} , construa em cada caso o diagrama de flechas e, através dele, identifique as relações de A em B que são funções.
  8. 8. Domínio, Contradomínio e Imagem Função é uma expressão matemática que relaciona dois valores pertencentes a conjuntos diferentes, mas com relações entre si. A lei de formação que intitula uma determinada função, possui três características básicas: domínio, contradomínio e imagem. Essas características podem ser representadas por um diagrama de flechas Nessa situação, temos que: Domínio: x = {1, 2, 3, 4, 5} Contradomínio: y = {1, 2, 3, 4, 5, 6, 7} Imagem: Im = {2, 3, 4, 5, 6} Dizemos que 2 é a imagem de 1 =>f (1) = 2, e assim sucessivamente. x y y = x + 1 1 . 2 . 3 . 4 . 5 . . 1 . 2 . 3 . 4 . 5 . 6 . 7 Dados os conjuntos A = {3, 4, 5, 6} e B = {7, 9, 11, 13} e a função f: A → B definida por y = 2x + 1, determine: a) O diagrama de flechas da função; b) O contradomínio da função; c) O domínio da função; d) A imagem da função.
  9. 9. O que você aprendeu até aqui? Quais dos seguintes diagramas representam uma f: A ─> B? Questão 1: 20 . 10 . 5 . 2 . . 1 . 0 . 2 A B I 3 . 2 . 1 . 0 . . 0 . 1 . 2 A BII 9 . 4 . 0 . . 0 . -2 . 2 . -3 . 3 A BIII 5 . 4 . 3 . 2 . . 0 . 1 . 2 . 3 . 4 A B IV Os diagramas que representam uma f: A ─> B são: ( A ) I e II ( B ) I e IV ( C ) II e III ( D ) III e IV GABARITO: Letra ( B )
  10. 10. O resultado do produto cartesiano de duas relações é uma terceira relação contendo todas as combinações possíveis entre os elementos das relações originais. Questão 2: No gráfico ao lado estão representados os elementos do conjunto A no eixo x e os elementos do conjunto B no eixo y. Qual o conjunto que representa os pontos pertencentes ao produto cartesiano A X B? ( A ) { (3,1), (3,2), (5,1), (5,2), (7,1), (7,2) } ( B ) { (1,3), (1,5), (1,7), (3,2), (5,2), (7,2) } ( C ) { (1,3), (1,5), (1,7), (2,3), (2,5), (2,7) } ( D ) { (1,3), (1,5), (1,7), (2,3), (2,5), (7,2) } GABARITO: LETRA ( C )
  11. 11. Questão 3 : Cada triângulo da sequência é formada por triângulos construídos com palitos de fósforo. Observe a tabela que relaciona a correspondência entre o número de triângulos em função da quantidade de palitos. a) Qual a fórmula que permite calcular a quantidade de palitos em função da quantidade de triângulos? b) Quantos palitos são necessários para formar a figura dessa sequência composta de 13 triângulos? As respostas são respectivamente: ( A ) p = 2t + 2 e 39 palitos. ( B ) p = 3t + 2 e 39 palitos. ( C ) p = 2t + 1 e 27 palitos. ( D ) p = 3t + 1 e 27 palitos. GABARITO: Letra ( C )
  12. 12. Observe a figura e escreva uma fórmula, em função de x, que permita calcular: a) O perímetro P da figura. b) A área A da figura. 3x - 1 3x 1 + 3x 1,5x 1,5xAs fórmulas para calcular o perímetro e a área da figura são, respectivamente: ( A ) P = 12x e A = 3x + 9x² ( B ) P = 13,5 x e A = 9x² - 3x ( C ) P = 12x e A = 9x² - 3x ( D ) P = 12x + 2 e A = 3x + 9x² GABARITO: Letra ( D ) Questão 4:
  13. 13. Grandeza é tudo aquilo que pode ser medido, contado. Alguns exemplos de grandeza: o volume, a massa, a superfície, o comprimento, a capacidade, a velocidade, o tempo, o custo e a produção. Grandezas e Função Algumas situações envolvem duas grandezas diretamente proporcionais. Quando isso ocorre, dizemos que essas grandezas são dependentes uma da outra por uma Função Polinomial do 1° grau. Para produzir um determinado produto, uma indústria tem um custo fixo de R$ 35,00 mais R$ 2,35 por peça produzida. O custo é composto de duas partes: uma fixa, no valor de R$ 35,00, e a outra variável, que corresponde a R$ 2,35 por peça produzida. Represente por letras: x, o total de peças produzidas e y o custo total da produção e use a fórmula para calcular o custo total da produção de 500 peças. f(x) = ax + b y = ax + bou
  14. 14. Função afim O clima europeu de Gramado, Rio Grande do Sul, não está apenas na temperatura que pode baixar de zero no inverno, mas também na arquitetura, na culinária, nos jardins de hortênsias e, principalmente, no rosto dos moradores, de origem alemã e italiana. Chamamos função afim toda função do tipo f(x) = ax + b, com a ≠ 0.  a e b representam números reais;  a é o coeficiente do termo em x;  b é o termo independente de x ou termo constante;  x é a variável independente;  y ou f(x) é a variável dependente;  x e y representam números reais. Rodrigo e sua família vão passar 7 dias das férias de dezembro em Gramado e para isso decidiram alugar um quarto em uma pousada. O aluguel corresponde a uma parte fixa de R$ 65,00, referente à taxa de limpeza, mais R$ 240,00 por dia. Escreva a função referente ao aluguel e calcule o valor total para os 7 dias de hospedagem.
  15. 15. Lei de formação Fazer exercício é importante para se manter saudável. Seja qual for a sua idade, o exercício físico regular traz grandes benefícios a saúde, à aparência e ao bem estar. A lei de formação de uma função é a regra matemática que define exatamente como tal função deve ser representada. A lei de formação de uma função de primeiro grau é expressa da seguinte forma: y = f(x) = ax + b Francisco , foi se matricular numa academia e aproveitou uma promoção e pagou R$ 950,00. Matrícula - R$ 50,00 Mensalidade - R$ 75,00 Durante quanto tempo ele poderá frequentar a academia?
  16. 16. Função linear No mundo globalizado e digital que vivemos, inúmeras são as opções de pagamento de uma compra, dentre elas: dinheiro, cheque, cartão de crédito e de débito, boleto, débito em conta e etc. É comum que as lojas façam promoções para vender suas mercadorias, e, geralmente, os descontos são concedidos quando o pagamento é realizado à vista. Uma função afim f(x) = ax +b, em que a ≠ 0 e b = 0, é chamada de função linear e pode ser representada por f(x) = ax. O gráfico de uma função linear é uma reta que passa pelo ponto (0,0). Para pagamento à vista, certa loja oferece 15% de desconto na compra de um celular. a) Escreva uma função que relacione o valor y a ser pago após o desconto na compra do celular cujo preço é x reais. b) Quantos reais um cliente vai pagar por um celular que custa R$ 870,00?
  17. 17. O que mais você aprendeu? ( A ) C = 22 + 0,2 min ( B ) C = 0,2 + 22 min ( C ) C = 22 – 0,2 min ( D ) C = 0,2 – 22 min GABARITO: Letra ( A ) A expressão que melhor representa esta situação é: A conta mensal de uma linha telefônica do tipo econômica (que só faz ligações para telefone fixo local) é composta de duas partes: uma taxa fixa de R$ 22,00, chamada assinatura, e mais uma parte variável, que é de R$ 0,20 por minuto de ligação. O valor da total da conta mensal será calculado em função do tempo de uso do telefone. Qual das expressões melhor representa esta situação? Questão 1: .
  18. 18. Dois carros se movem em linha reta em movimento uniforme e no mesmo sentido. No instante t0 = 0 eles estão distantes 200 m um do outro, conforme ilustração. Se o carro A desenvolve uma velocidade constante de 8 m/s e o carro B de 6 m/s, quanto tempo o carro A leva para alcançar o carro B? O carro A parte da origem com velocidade escalar de 8 m/s. O carro B parte da posição 1000 metros com velocidade escalar 6 m/s Questão 2: O carro A alcançará o carro B em: ( A ) 2 s ( B ) 100s ( C ) 48 s ( D ) 800s GABARITO: Letra ( B )
  19. 19. Questão 3: Márcia ligou seu computador à rede internacional de computadores, Internet. Para fazer uso dessa rede, ela paga uma mensalidade fixa de R$ 35,00, mais 10 centavos de real (R$ 0,10) por cada minuto de uso. O valor a ser pago por Márcia ao final do mês depende, então, do tempo que ela gasta acessando a Internet. Quantas horas ela poderá utilizar a Internet, se quiser gastar, no máximo, R$ 90,00 no mês? ( A ) 2 h 57 min ( B ) 5 h 50 min ( C ) 9 h 10 min ( D ) 12 h 50 min GABARITO: Letra ( C ) Márcia poderá utilizar a internet, no máximo, por:
  20. 20. ( A ) L(x) = 21 x + 6 e R$ 10.506,00 ( B ) L(x) = 21 x – 6 e R$ 10.494,00 ( C ) L (x) = 19 x + 4 e R$ 9.504,00 ( D ) L (x) = 19 x – 4 e R$ 9.496,00 GABARITO: Letra ( D ) O preço de venda de um livro é de R$ 25,00 a unidade. Sabendo que o custo de cada livro corresponde a um valor fixo de R$ 4,00 mais R$ 6,00 por unidade, construa uma função capaz de determinar o lucro líquido (valor descontado das despesas) na venda de x livros, e o lucro obtido na venda de 500 livros. Considere: Venda = Receita [ R(x) ] Fabricação = Custo [ C(x) ] Receita – Custo = Lucro [ L (x) ] Questão 4:.
  21. 21. Educossíntese A lei de formação de uma função é a regra matemática que define exatamente como tal função deve ser representada. A correspondência entre dois conjuntos é dada em termos de pares ordenados. O produto cartesiano de A X B é um conjunto contendo todas as combinações possíveis entre os elementos de A e de B. Se uma situação envolve duas grandezas diretamente proporcionais. dizemos são dependentes uma da outra por uma Função Polinomial do 1° grau. Uma relação f de A em B é uma função se, e somente se, todos os elementos de A têm um e somente um correspondente em B. Função é uma expressão matemática que relaciona dois valores pertencentes a conjuntos diferentes, mas com relações entre si. A lei de formação de uma determinada função, possui três características básicas: domínio, contradomínio e imagem. A lei de formação de uma função de primeiro grau é expressa da seguinte forma: y = f(x) = ax + b Chamamos função afim toda função do tipo f(x) = ax + b, com a ≠ 0. Uma função afim f(x) = ax +b, em que a ≠ 0 e b = 0, é chamada de função linear e pode ser representada por f(x) = ax. .

×