Versão preliminar
6 de setembro de 2002

Notas de Aula de Física
02. VETORES E ESCALARES........................................................................................... 2
UM POUCO DE TRIGONOMETRIA............................................................................................ 2
MÉTODO GEOMÉTRICO ........................................................................................................ 2
MÉTODO ANALÍTICO ............................................................................................................ 3
MULTIPLICAÇÃO DE VETORES............................................................................................... 3
Multiplicação de um vetor por um escalar..................................................................... 4
Produto escalar ............................................................................................................. 4
Produto vetorial ............................................................................................................. 5
SOLUÇÃO DE ALGUNS PROBLEMAS ....................................................................................... 7
02 .................................................................................................................................. 7
06 .................................................................................................................................. 7
32 .................................................................................................................................. 8
39 .................................................................................................................................. 8
45 .................................................................................................................................. 9
46 .................................................................................................................................. 9
47 ................................................................................................................................ 10
51 ................................................................................................................................ 10
Prof. Romero Tavares da Silva

02. Vetores e escalares
Algumas grandezas físicas ficam completamente definidas quando informamos um
número e uma unidade. Quando dizemos que a temperatura de uma pessoa é 370C a
informação está completa. A temperatura é uma grandeza escalar. Se dissermos que a
velocidade de um automóvel é de 50km/h não definimos completamente a informação.
Não foi dito em que direção e sentido esse corpo se movimentava. A necessidade dessa
informação complementar - direção e sentido - caracteriza a velocidade como um vetor.
Os vetores são representados por setas, e costuma-se representar um vetor com
módulo maior que outro por uma seta de tamanho maior. Usamos basicamente de dois
modos de representar os vetores, o método geométrico e o método analítico.
Um pouco de trigonometria
Vamos considerar um triângulo retângulo com hipotenusa a e catetos b e c respectivamente. O teorema de
Pitágoras diz que:
a2 = b2 + c2

α

As funções seno e cosseno são definidas como:
c
c
= cos α
a
b
cos θ = = sen α
a
E do Teorema de Pitágoras, encontramos que:

a

senθ =

θ
b

sen 2 θ + cos 2 = 1
senθ
c
cos α
= tan θ = = cot α =
cos θ
a
sen α
Método geométrico
No método geométrico, a visualização dos vetores fica mais óbvia, mas não é adequado para a operações com diversos vetores.
Método geométrico
A força é uma grandeza vetorial.
Quando consideramos duas forças atuando
sobre um dado corpo, o efeito resultante será !
igual à atuação de uma única força que seja a
!
!
a soma vetorial das duas forças mencionab
c
das.
!
!
A soma desses dois vetores pode ser
a
b
efetuada usando-se a regra do paralelogramo.
! ! !
c =a+b
Cap 02

romero@fisica.ufpb.br

2
Prof. Romero Tavares da Silva
Método analítico
O método analítico consiste basicamente em definir um sistema de coordenadas
cartesianas e decompor os vetores segundo as suas componentes nestes eixos.
Vamos considerar um sistema de coordenadas
bidimensional, definido pelos eixos x ! e y , como
mostrados na figura ao lado. O vetor a tem componentes cartesianas ax e ay que tem a forma:
y
ax = a . cosθ
ay = a . senθ

!
a
ay

Ou de maneira inversa:
a = a +a
2
x

tan θ =

θ
ax

2
y

x

ay
ax

Uma maneira de representar vetores é através de suas componentes num dado
sistema de coordenadas, como foi antecipado na figura anterior. Desse modo:
!
a = iˆa x + ˆa y
j
onde iˆ e ˆ são vetores unitários (ou versores) que apontam nas direções dos eixos x
j
e y respectivamente e têm módulos iguais a um.
A soma de dois vetores será então definida como:
" ! !
c =a+b

onde

!
a = iˆa x +

e
!
b = iˆb +
x


ˆa
j y

!
c = iˆ (a x + b x ) + ˆ (a y + b y )
j

⇒
ˆb
j y

ou seja:
!
c = iˆc x + ˆc y
j

onde

c x = a x + b x

e

c = a + b
y
y
 y

Multiplicação de vetores
As operações com vetores são utilizadas de maneira muito ampla na Física, para
expressar as relações que existem entre as diversas grandezas.

Cap 02

romero@fisica.ufpb.br

3
Prof. Romero Tavares da Silva
Multiplicação de um vetor por um escalar
!
!
Sejam dois vetores a e b e um escalar k. Definimos a multiplicação mencionada como:
!
!
b = ka
!
!
O vetor k a tem a mesma direção do vetor a . Terá
mesmo sentido se k for positivo e sentido contrário se
k for negativo.

!
ka

!
a

Produto escalar
!
Define-se o produto escalar de dois vetores a e
!
b como a operação:
! !
a ⋅ b = ab cos ϕ

!
a
ϕ
!
b

onde ϕ é o ângulo formado pelos dois vetores.

Podemos dizer que o produto escalar de dois vetores é igual ao módulo do primeiro
vezes a componente do segundo no eixo determinado pelo primeiro, ou vice-versa. Isso
pode-se resumir na propriedade :
! ! ! !
a ⋅b = b ⋅a
Uma aplicação do produto escalar é a definição de trabalho W executado por uma
força constante que atua ao longo de um percurso d:
! !
W = F .d = Fd cos θ
Usando o conceito de vetor unitário encontramos que:
iˆ ⋅ iˆ = iˆ iˆ cos 0 0 = 1

z

ˆ⋅ ˆ =1
j j
ˆ ˆ
k ⋅k =1
e de modo equivalente:
iˆ ⋅ ˆ = iˆ ˆ cos 90 0 = 0
j
j

ˆ
k
iˆ

ˆ
j

y

ˆ
iˆ ⋅ k = 0
x
ˆ⋅k = 0
j ˆ
Podemos utilizar a decomposição de um vetor segundo as suas componentes cartesianas e definir o produto escalar:

Cap 02

romero@fisica.ufpb.br

4
Prof. Romero Tavares da Silva
!
ˆ
a = iˆa x + ˆa y + ka z
j
!
ˆ
b = iˆb x + ˆb y + kb z
j

(

)(

! !
ˆ
ˆ
a ⋅ b = iˆa x + ˆa y + ka z ⋅ iˆb x + ˆb y + kbz
j
j
e portanto:

)

! !
a ⋅ b = a x b x + a y by + a z bz

Fica fácil perceber que:
! !
2
2
a ⋅ a = a 2 = a x + a y + a z2
!!
! !
a.b
Como a ⋅ b = ab cos ϕ , temos que cos ϕ =
, e assim poderemos calcular o
ab
ângulo entre os dois vetores, em função de suas componentes cartesianas:
cos ϕ =

a x b x + a y by + az bz
2
2
2
a x + a y + a z b x2 + b y2 + b z2

Produto vetorial
!
Define-se o produto vetorial de dois vetores a e
!
b como a operação:
! ! !
c = a×b
e módulo c é definido como:
c = ab sen ϕ
!
onde c é um vetor perpendicular ao plano defino pe!
!
los vetores a e b e ϕ é o ângulo formado por esses
dois últimos dois vetores.

!
c

!
b
ϕ
!
a

!
Uma aplicação do produto vetorial é a definição da força F que atua em uma car!
ga elétrica q que penetra com velocidade v numa região que existe um campo magnéti!
co B :
!
! !
F = qv ×B
ou ainda:
F = q v B senϕ

Cap 02

romero@fisica.ufpb.br

5
Prof. Romero Tavares da Silva
Usando a definição de produto vetorial, encontramos que:
iˆ × ˆ = k = − ˆ × iˆ
j ˆ
j
ˆ ˆ
ˆ j
j × k = iˆ = −k × ˆ

z

ˆ
k

ˆ
ˆ
ˆ
k × iˆ = j = −iˆ × k

iˆ

ˆ ˆ ˆ ˆ
iˆ × iˆ = j × j = k × k = 0

ˆ
j

y

x

De modo genérico, podemos definir o produto vetorial como:

(

)(

! ! !
ˆ
ˆ
c = a × b = iˆa x + ˆa y + ka z × iˆb x + ˆb y + kb z
j
j

)

e usando os resultados dos produtos vetoriais entre os vetores unitários, encontramos
que:
!
ˆ
c = iˆ(a y b z − a z b y ) + ˆ(a z b x − a x bz ) + k (a x b y − a y b x )
j
Usando as propriedades de matrizes, encontramos que o produto vetorial pode ser
expresso como o determinante da matriz definida a seguir:
 iˆ
! ! ! 
c = a × b =  ax

 bx


Cap 02

ˆ
j
ay
by

romero@fisica.ufpb.br

ˆ
k

az 

bz 


6
Prof. Romero Tavares da Silva
Solução de alguns problemas
Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
!
!
02 Quais são as propriedades dos vetores a e b tais que:
! ! !
a)
a+b =c e a+b=c
Temos que:
! !
! ! ! !
! ! ! !
! !
c ⋅ c = a + b ⋅ a + b = a ⋅ a + b ⋅ b + 2a ⋅ b
ou seja:
c 2 = a 2 + b 2 + 2ab cos θ

(

)(

)

!
b

!
c
θ

!
a

Para que c = a + b é necessário que θ = 0 pois
!
b

!
a

c2 = a2 + b2 + 2ab = (a + b)2
! !
Portanto a b
! ! ! !
a+b =a−b

b)

Da equação acima, temos que:
!
!
! ! ! !
a − a = b + b ∴ 2b = 0 ∴ b = 0
! ! !
a+b =c

c)

e

a2 + b2 = c 2

Como
c 2 = a 2 + b 2 + 2ab cos θ ,
para que

2

2

2

!
b

2

c = a + b + 2ab = (a + b)
devemos ter

θ =

θ

! !
π
portanto a ⊥ b
2

!
a

Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
!
!
O vetor a tem módulo de 3 unidades e está dirigido para Leste. O vetor b está diri06 gido para 350 a Oeste do Norte e tem módulo 4 unidades. Construa os diagramas
!
!
!
!
vetoriais para ! a + b e b - a . Estime o módulo e a orientação dos vetores
!
!
!
a + b e a - b a partir desse diagramas.
!
a = iˆa x

! ˆ
j
b = i b x + ˆb y

a x = a = 3

0
b x = −b senθ = −4 sen 35 = −2,29
b = b cos θ == 4 cos 35 0 = 3,27
 y
Cap 02

romero@fisica.ufpb.br

y
!
b
θ
Oeste

Leste
!
a

x
7
Prof. Romero Tavares da Silva
a)

! ! !
c =a+b

c x = a x + b x

c y = a y + b y

cx = 3 - 2,29 = 0,71
cy = 3,27
2
2
c = c x + c y = 3,34

b)

! ! !
d = b −a

d x = b x − a x

d y = b y − a y

dx = -2,29 - 3 = -5,29
dy = 3,27
2
d = d x + d y2 = 6,21

Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
Prove que dois vetores devem ter o mesmo módulo para que sua soma seja perpen32 dicular á sua diferença.
! ! ! !
(a + b )⋅ (a − b ) = a

2

− b2 = 0

⇒

a=b

Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
39 Mostre que num sistema de coordenadas destrógiro:
iˆ ⋅ iˆ = ˆ ⋅ ˆ = k ⋅ k = 1
j j ˆ ˆ
e
iˆ ⋅ ˆ = ˆ ⋅ k = k ⋅ iˆ = 0
j j ˆ ˆ
! !
A definição de produto escalar é tal que: a ⋅ b = a b cos θ , onde θ é o ângulo formado
pelos vetores. Logo:
iˆ ⋅ iˆ = iˆ iˆ cos 0 0 = 1.1.1 = 1
e
iˆ ⋅ ˆ = iˆ ˆ cos 90 0 = 1.1.0 = 0
j
j
Os outros itens seguem-se como extensão desses anteriores.

Cap 02

romero@fisica.ufpb.br

8
Prof. Romero Tavares da Silva
Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
45
A soma de três vetores é igual a zero, como mostra a
figura. Calcule:

α

!
c
θ

! !
a) a ⋅ b = ?
! !
π
a ⋅ b = a b cos = 0
2
! !
b) a ⋅ c = - a c cosθ = -a c (a/c) = - a2
c)

!
b

!
a

! !
b ⋅ c = - b c cosα = - b c (b/c) = - b2
Podemos concluir que:
! ! !
c +a+b =0
! ! ! ! ! !
c ⋅c + c ⋅b + c ⋅a = 0
logo:
c2 = a2 + b2

Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
46 Para o problema anterior, calcule:
! !
a) a × b = ?

!
b

Suponhamos que o eixo z seja! perpendicular ao pla!
no definido pelos vetores a e b .
! !
ˆ
ˆ
a × b = z a b sen(π/2) = z a b

β
!
a

! !
b) a × c = ?

c)

θ

! !
a × c = a c senθ
! !
ˆ
ˆ
ˆ
a × c = (- z ) a c senθ = - z a c (b/c) = - z a b
! !
b×c =?
! !
b × c = b c senα
! !
ˆ
ˆ
b × c = z b c senα = z b c (a/c)
! !
ˆ
b×c = z a b

Cap 02

romero@fisica.ufpb.br

!
c

!
a

!
b

!
c

α

9
Prof. Romero Tavares da Silva
Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
47 Produto escalar em função das coordenadas: Suponha que dois vetores sejam
representados em termos das coordenadas como:
!
!
ˆ
ˆ
a = iˆa x + ˆa y + ka z e b = iˆb x + ˆb y + kb z
j
j
mostre que:

! !
a ⋅ b = a x b x + a y by + a z bz

Por definição temos que:

(

)(

! !
ˆ
ˆ
a ⋅ b = iˆa x + ˆa y + ka z ⋅ iˆb x + ˆb y + kb z
j
j

)

Usando os resultados do problema 39, resolvido anteriormente, temos a resposta
pedida.
! !
a ⋅ b = a x b x + a y by + a z bz

Capítulo 3 - Halliday, Resnick e Walker - 4a. edição
!
!
Dois vetores são dados por a = 3iˆ + 5 ˆ e b = 2iˆ + 4 ˆ . Calcule:
j
j

51

! !
a) a × b =?
 iˆ ˆ k 
j ˆ

! ! 
ˆ
ˆ
a × b =  3 5 0  = k (3.4 − 5.2) = 2k


2 4 0


!
!
b) a ⋅ b =?
! !
a ⋅ b = 3.2 + 5.4 = 26
c)

! ! !
(a + b )⋅ b =?
!
(a + b )⋅ b = (5iˆ + 9 jˆ)⋅ (2iˆ + 4 jˆ)= 5.2 + 9.4 = 46
!

Cap 02

!

romero@fisica.ufpb.br

10

02. vetores e escalares

  • 1.
    Versão preliminar 6 desetembro de 2002 Notas de Aula de Física 02. VETORES E ESCALARES........................................................................................... 2 UM POUCO DE TRIGONOMETRIA............................................................................................ 2 MÉTODO GEOMÉTRICO ........................................................................................................ 2 MÉTODO ANALÍTICO ............................................................................................................ 3 MULTIPLICAÇÃO DE VETORES............................................................................................... 3 Multiplicação de um vetor por um escalar..................................................................... 4 Produto escalar ............................................................................................................. 4 Produto vetorial ............................................................................................................. 5 SOLUÇÃO DE ALGUNS PROBLEMAS ....................................................................................... 7 02 .................................................................................................................................. 7 06 .................................................................................................................................. 7 32 .................................................................................................................................. 8 39 .................................................................................................................................. 8 45 .................................................................................................................................. 9 46 .................................................................................................................................. 9 47 ................................................................................................................................ 10 51 ................................................................................................................................ 10
  • 2.
    Prof. Romero Tavaresda Silva 02. Vetores e escalares Algumas grandezas físicas ficam completamente definidas quando informamos um número e uma unidade. Quando dizemos que a temperatura de uma pessoa é 370C a informação está completa. A temperatura é uma grandeza escalar. Se dissermos que a velocidade de um automóvel é de 50km/h não definimos completamente a informação. Não foi dito em que direção e sentido esse corpo se movimentava. A necessidade dessa informação complementar - direção e sentido - caracteriza a velocidade como um vetor. Os vetores são representados por setas, e costuma-se representar um vetor com módulo maior que outro por uma seta de tamanho maior. Usamos basicamente de dois modos de representar os vetores, o método geométrico e o método analítico. Um pouco de trigonometria Vamos considerar um triângulo retângulo com hipotenusa a e catetos b e c respectivamente. O teorema de Pitágoras diz que: a2 = b2 + c2 α As funções seno e cosseno são definidas como: c c = cos α a b cos θ = = sen α a E do Teorema de Pitágoras, encontramos que: a senθ = θ b sen 2 θ + cos 2 = 1 senθ c cos α = tan θ = = cot α = cos θ a sen α Método geométrico No método geométrico, a visualização dos vetores fica mais óbvia, mas não é adequado para a operações com diversos vetores. Método geométrico A força é uma grandeza vetorial. Quando consideramos duas forças atuando sobre um dado corpo, o efeito resultante será ! igual à atuação de uma única força que seja a ! ! a soma vetorial das duas forças mencionab c das. ! ! A soma desses dois vetores pode ser a b efetuada usando-se a regra do paralelogramo. ! ! ! c =a+b Cap 02 romero@fisica.ufpb.br 2
  • 3.
    Prof. Romero Tavaresda Silva Método analítico O método analítico consiste basicamente em definir um sistema de coordenadas cartesianas e decompor os vetores segundo as suas componentes nestes eixos. Vamos considerar um sistema de coordenadas bidimensional, definido pelos eixos x ! e y , como mostrados na figura ao lado. O vetor a tem componentes cartesianas ax e ay que tem a forma: y ax = a . cosθ ay = a . senθ ! a ay Ou de maneira inversa: a = a +a 2 x tan θ = θ ax 2 y x ay ax Uma maneira de representar vetores é através de suas componentes num dado sistema de coordenadas, como foi antecipado na figura anterior. Desse modo: ! a = iˆa x + ˆa y j onde iˆ e ˆ são vetores unitários (ou versores) que apontam nas direções dos eixos x j e y respectivamente e têm módulos iguais a um. A soma de dois vetores será então definida como: " ! ! c =a+b onde ! a = iˆa x +  e ! b = iˆb + x  ˆa j y ! c = iˆ (a x + b x ) + ˆ (a y + b y ) j ⇒ ˆb j y ou seja: ! c = iˆc x + ˆc y j onde c x = a x + b x  e  c = a + b y y  y Multiplicação de vetores As operações com vetores são utilizadas de maneira muito ampla na Física, para expressar as relações que existem entre as diversas grandezas. Cap 02 romero@fisica.ufpb.br 3
  • 4.
    Prof. Romero Tavaresda Silva Multiplicação de um vetor por um escalar ! ! Sejam dois vetores a e b e um escalar k. Definimos a multiplicação mencionada como: ! ! b = ka ! ! O vetor k a tem a mesma direção do vetor a . Terá mesmo sentido se k for positivo e sentido contrário se k for negativo. ! ka ! a Produto escalar ! Define-se o produto escalar de dois vetores a e ! b como a operação: ! ! a ⋅ b = ab cos ϕ ! a ϕ ! b onde ϕ é o ângulo formado pelos dois vetores. Podemos dizer que o produto escalar de dois vetores é igual ao módulo do primeiro vezes a componente do segundo no eixo determinado pelo primeiro, ou vice-versa. Isso pode-se resumir na propriedade : ! ! ! ! a ⋅b = b ⋅a Uma aplicação do produto escalar é a definição de trabalho W executado por uma força constante que atua ao longo de um percurso d: ! ! W = F .d = Fd cos θ Usando o conceito de vetor unitário encontramos que: iˆ ⋅ iˆ = iˆ iˆ cos 0 0 = 1 z ˆ⋅ ˆ =1 j j ˆ ˆ k ⋅k =1 e de modo equivalente: iˆ ⋅ ˆ = iˆ ˆ cos 90 0 = 0 j j ˆ k iˆ ˆ j y ˆ iˆ ⋅ k = 0 x ˆ⋅k = 0 j ˆ Podemos utilizar a decomposição de um vetor segundo as suas componentes cartesianas e definir o produto escalar: Cap 02 romero@fisica.ufpb.br 4
  • 5.
    Prof. Romero Tavaresda Silva ! ˆ a = iˆa x + ˆa y + ka z j ! ˆ b = iˆb x + ˆb y + kb z j ( )( ! ! ˆ ˆ a ⋅ b = iˆa x + ˆa y + ka z ⋅ iˆb x + ˆb y + kbz j j e portanto: ) ! ! a ⋅ b = a x b x + a y by + a z bz Fica fácil perceber que: ! ! 2 2 a ⋅ a = a 2 = a x + a y + a z2 !! ! ! a.b Como a ⋅ b = ab cos ϕ , temos que cos ϕ = , e assim poderemos calcular o ab ângulo entre os dois vetores, em função de suas componentes cartesianas: cos ϕ = a x b x + a y by + az bz 2 2 2 a x + a y + a z b x2 + b y2 + b z2 Produto vetorial ! Define-se o produto vetorial de dois vetores a e ! b como a operação: ! ! ! c = a×b e módulo c é definido como: c = ab sen ϕ ! onde c é um vetor perpendicular ao plano defino pe! ! los vetores a e b e ϕ é o ângulo formado por esses dois últimos dois vetores. ! c ! b ϕ ! a ! Uma aplicação do produto vetorial é a definição da força F que atua em uma car! ga elétrica q que penetra com velocidade v numa região que existe um campo magnéti! co B : ! ! ! F = qv ×B ou ainda: F = q v B senϕ Cap 02 romero@fisica.ufpb.br 5
  • 6.
    Prof. Romero Tavaresda Silva Usando a definição de produto vetorial, encontramos que: iˆ × ˆ = k = − ˆ × iˆ j ˆ j ˆ ˆ ˆ j j × k = iˆ = −k × ˆ z ˆ k ˆ ˆ ˆ k × iˆ = j = −iˆ × k iˆ ˆ ˆ ˆ ˆ iˆ × iˆ = j × j = k × k = 0 ˆ j y x De modo genérico, podemos definir o produto vetorial como: ( )( ! ! ! ˆ ˆ c = a × b = iˆa x + ˆa y + ka z × iˆb x + ˆb y + kb z j j ) e usando os resultados dos produtos vetoriais entre os vetores unitários, encontramos que: ! ˆ c = iˆ(a y b z − a z b y ) + ˆ(a z b x − a x bz ) + k (a x b y − a y b x ) j Usando as propriedades de matrizes, encontramos que o produto vetorial pode ser expresso como o determinante da matriz definida a seguir:  iˆ ! ! !  c = a × b =  ax   bx  Cap 02 ˆ j ay by romero@fisica.ufpb.br ˆ k  az   bz   6
  • 7.
    Prof. Romero Tavaresda Silva Solução de alguns problemas Capítulo 3 - Halliday, Resnick e Walker - 4a. edição ! ! 02 Quais são as propriedades dos vetores a e b tais que: ! ! ! a) a+b =c e a+b=c Temos que: ! ! ! ! ! ! ! ! ! ! ! ! c ⋅ c = a + b ⋅ a + b = a ⋅ a + b ⋅ b + 2a ⋅ b ou seja: c 2 = a 2 + b 2 + 2ab cos θ ( )( ) ! b ! c θ ! a Para que c = a + b é necessário que θ = 0 pois ! b ! a c2 = a2 + b2 + 2ab = (a + b)2 ! ! Portanto a b ! ! ! ! a+b =a−b b) Da equação acima, temos que: ! ! ! ! ! ! a − a = b + b ∴ 2b = 0 ∴ b = 0 ! ! ! a+b =c c) e a2 + b2 = c 2 Como c 2 = a 2 + b 2 + 2ab cos θ , para que 2 2 2 ! b 2 c = a + b + 2ab = (a + b) devemos ter θ = θ ! ! π portanto a ⊥ b 2 ! a Capítulo 3 - Halliday, Resnick e Walker - 4a. edição ! ! O vetor a tem módulo de 3 unidades e está dirigido para Leste. O vetor b está diri06 gido para 350 a Oeste do Norte e tem módulo 4 unidades. Construa os diagramas ! ! ! ! vetoriais para ! a + b e b - a . Estime o módulo e a orientação dos vetores ! ! ! a + b e a - b a partir desse diagramas. ! a = iˆa x  ! ˆ j b = i b x + ˆb y  a x = a = 3  0 b x = −b senθ = −4 sen 35 = −2,29 b = b cos θ == 4 cos 35 0 = 3,27  y Cap 02 romero@fisica.ufpb.br y ! b θ Oeste Leste ! a x 7
  • 8.
    Prof. Romero Tavaresda Silva a) ! ! ! c =a+b c x = a x + b x  c y = a y + b y cx = 3 - 2,29 = 0,71 cy = 3,27 2 2 c = c x + c y = 3,34 b) ! ! ! d = b −a d x = b x − a x  d y = b y − a y dx = -2,29 - 3 = -5,29 dy = 3,27 2 d = d x + d y2 = 6,21 Capítulo 3 - Halliday, Resnick e Walker - 4a. edição Prove que dois vetores devem ter o mesmo módulo para que sua soma seja perpen32 dicular á sua diferença. ! ! ! ! (a + b )⋅ (a − b ) = a 2 − b2 = 0 ⇒ a=b Capítulo 3 - Halliday, Resnick e Walker - 4a. edição 39 Mostre que num sistema de coordenadas destrógiro: iˆ ⋅ iˆ = ˆ ⋅ ˆ = k ⋅ k = 1 j j ˆ ˆ e iˆ ⋅ ˆ = ˆ ⋅ k = k ⋅ iˆ = 0 j j ˆ ˆ ! ! A definição de produto escalar é tal que: a ⋅ b = a b cos θ , onde θ é o ângulo formado pelos vetores. Logo: iˆ ⋅ iˆ = iˆ iˆ cos 0 0 = 1.1.1 = 1 e iˆ ⋅ ˆ = iˆ ˆ cos 90 0 = 1.1.0 = 0 j j Os outros itens seguem-se como extensão desses anteriores. Cap 02 romero@fisica.ufpb.br 8
  • 9.
    Prof. Romero Tavaresda Silva Capítulo 3 - Halliday, Resnick e Walker - 4a. edição 45 A soma de três vetores é igual a zero, como mostra a figura. Calcule: α ! c θ ! ! a) a ⋅ b = ? ! ! π a ⋅ b = a b cos = 0 2 ! ! b) a ⋅ c = - a c cosθ = -a c (a/c) = - a2 c) ! b ! a ! ! b ⋅ c = - b c cosα = - b c (b/c) = - b2 Podemos concluir que: ! ! ! c +a+b =0 ! ! ! ! ! ! c ⋅c + c ⋅b + c ⋅a = 0 logo: c2 = a2 + b2 Capítulo 3 - Halliday, Resnick e Walker - 4a. edição 46 Para o problema anterior, calcule: ! ! a) a × b = ? ! b Suponhamos que o eixo z seja! perpendicular ao pla! no definido pelos vetores a e b . ! ! ˆ ˆ a × b = z a b sen(π/2) = z a b β ! a ! ! b) a × c = ? c) θ ! ! a × c = a c senθ ! ! ˆ ˆ ˆ a × c = (- z ) a c senθ = - z a c (b/c) = - z a b ! ! b×c =? ! ! b × c = b c senα ! ! ˆ ˆ b × c = z b c senα = z b c (a/c) ! ! ˆ b×c = z a b Cap 02 romero@fisica.ufpb.br ! c ! a ! b ! c α 9
  • 10.
    Prof. Romero Tavaresda Silva Capítulo 3 - Halliday, Resnick e Walker - 4a. edição 47 Produto escalar em função das coordenadas: Suponha que dois vetores sejam representados em termos das coordenadas como: ! ! ˆ ˆ a = iˆa x + ˆa y + ka z e b = iˆb x + ˆb y + kb z j j mostre que: ! ! a ⋅ b = a x b x + a y by + a z bz Por definição temos que: ( )( ! ! ˆ ˆ a ⋅ b = iˆa x + ˆa y + ka z ⋅ iˆb x + ˆb y + kb z j j ) Usando os resultados do problema 39, resolvido anteriormente, temos a resposta pedida. ! ! a ⋅ b = a x b x + a y by + a z bz Capítulo 3 - Halliday, Resnick e Walker - 4a. edição ! ! Dois vetores são dados por a = 3iˆ + 5 ˆ e b = 2iˆ + 4 ˆ . Calcule: j j 51 ! ! a) a × b =?  iˆ ˆ k  j ˆ  ! !  ˆ ˆ a × b =  3 5 0  = k (3.4 − 5.2) = 2k   2 4 0   ! ! b) a ⋅ b =? ! ! a ⋅ b = 3.2 + 5.4 = 26 c) ! ! ! (a + b )⋅ b =? ! (a + b )⋅ b = (5iˆ + 9 jˆ)⋅ (2iˆ + 4 jˆ)= 5.2 + 9.4 = 46 ! Cap 02 ! romero@fisica.ufpb.br 10