SlideShare uma empresa Scribd logo
1 de 14
Baixar para ler offline
EquaçõEsEquaçõEs
litEraislitErais
173 =+ yx
yzx =+ 73
073 =+x
Observa as equações seguintes:Observa as equações seguintes:
As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é
uma equação literal.
Então, qual será a definição de equação literal?Então, qual será a definição de equação literal?
Equações literais – são equações que têm mais do que uma variável, isto é,
pelo menos 2 incógnitas.
26 += xy
xy 6=
2
lA =
2
hb
A
×
=
( )
2
hbB
A
×+
=
222
cba +=
Exemplos de equações literais:
que representa uma reta não vertical (função afim).
que representa uma reta que passa na origem
do referencial (função linear).
•A fórmula do teorema de Pitágoras
•A equação
•A equação
(equações do 1.º grau com duas incógnitas)
Quantas soluções têm?
•As fórmulas:
que representam, respetivamente, as áreas do quadrado, do triângulo e
do trapézio.
• A equação da relatividade E = mc2
.
GeogebraGeogebra
Como resolver equações literais?
As regras para resolver equações, também se aplicam à resolução de uma
equação literal, em ordem a qualquer uma das letras que nela figuram.
x
y
1222 =+ yx
x
x
x
yx
y
x
yx
yx
−=⇔
⇔
−
=⇔
⇔−=⇔
⇔=+
6
2
212
2122
1222
Perímetro 12 cm
Nota:
Quando uma letra é
a incógnita, as
outras letras
funcionam como se
fossem números.
Exemplo I:
Observa a figura:
Como a equação tem duas
variáveis
e y, podemos resolvê-la em ordem a
ou em ordem a y,
isto é:
A figura sugere a seguinte
equação,
Resolvida em ordem aResolvida em ordem a
Nota: Diz-se que a equação está resolvida em ordem a x porque a variável x está isolada
num dos membros da equação, neste caso no 1.º membro.
xy
x
y
xy
yx
−=⇔
⇔
−
=⇔
⇔−=⇔
⇔=+
6
2
212
2122
1222
Resolvida em ordem a y.
Qual o interesse de resolver uma equação em ordem a uma das variáveis?Qual o interesse de resolver uma equação em ordem a uma das variáveis?
x
yx −= 6
426 =⇔−= xx
Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento?
Ora, aqui interessa resolver equação em ordem a
(é a incógnita, o valor
desconhecido).
O comprimento é 4.
Assim, é muito fácil dar a
resposta.
y
x
Perímetro 12 cm
Mas, se a pergunta fosse:
Sabendo que o comprimento, x , do rectângulo é 3, qual é a largura?
Neste caso já interessava resolver a equação em ordem a y.Neste caso já interessava resolver a equação em ordem a y.
xy −= 6
336 =⇔−= yy
Se se pretende determinar o comprimento do rectângulo, então, interessa
resolver a equação em ordem a x. Por outro lado, se se quisesse saber a
sua largura, neste caso, já interessava resolver a equação em ordem a y.
Conclusão:
Uma equação literal resolve-se em ordem a uma das letras (variável)
que se considera a incógnita (valor desconhecido). As outras letras
funcionam como números (valores dados).
As regras já conhecidas para resolver equações são também aplicáveis
na resolução de equações literais.
c
lA=100 m2
1001100 =×=→= lclc mas,
100250 =×=→= lclc
100425 =×=→= lclc
100520 =×=→= lclc
10085,12 =×=→= lclc
mas,
mas,
mas,
…
Assim, a equação tem umaAssim, a equação tem uma
infinidade de soluções.infinidade de soluções.
Equações do 1.º grau com duas incógnitas.Equações do 1.º grau com duas incógnitas.
ax+by=c; a, b e c
Quantas soluções têm?Quantas soluções têm?
As soluções desta equação são, geralmente, pares ordenados deAs soluções desta equação são, geralmente, pares ordenados de
números.números.
x+2y=9 S=(1,4) Uma solução
S=(0, 9/2) Outra solução
Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0,
b=0 e c ). Cuidado:Cuidado:
No contexto de
problemas nem sempre
todas as soluções
servem. Dar ex.
Relacionar com as funções afins, reta,Relacionar com as funções afins, reta,
todos os pontos que estão sobre atodos os pontos que estão sobre a
reta são soluções da equação.reta são soluções da equação.
Exemplo II
A equação E=mc2
em
que:
E- energia
m- quantidade de
matéria
c- velocidade da luz
Descoberta de Einstein apontava para a possibilidade de se obterem grandes
quantidades de energia a partir de pequenas quantidades de matéria. A bomba
atómica é um dos frutos desta equação.
Resolve a equação em ordem a m e depois em ordem a c.
2
2
2 2 2
E mc
E mc E
m
c c c
= ⇔
⇔ = ⇔ =
Resolvida em ordem a m.
2 2 E
E mc c
m
E
c
m
= ⇔ = ⇔
⇔ = ±
Resolvida em ordem a c.
lh
Vc
hl
hlc
lh
V
=⇔
⇔=
..
Neste caso, c é a
incógnita.
Para isolar c divide-se ambos os membros por lh e depois simplifica-se.
Exemplo
III
A fórmula V=c.l.h serve para determinar o volume de uma caixa de cereais.
Resolve a equação em ordem a c.
( )
2
hbB
A
×+
=
( )
bB
A
hhbBAh
bB
A
+
=⇔+=⇔×
+
=
2
2
2
Exemplo IV
A área de um trapézio é dada pela fórmula
Resolve a equação em ordem a h.
Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem
números.
Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de BSe pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B
(base maior) , b (base menor) e A (área). Por exemplo:(base maior) , b (base menor) e A (área). Por exemplo:
Determina h, sabendo que A=10 cmDetermina h, sabendo que A=10 cm22
, B=4 cm e b=1 cm., B=4 cm e b=1 cm.
2 10
4
4 1
h cm
×
= =
+
Exercícios:
1. Resolve em ordem a x, a equação ( ) x
y
y +=−
2
1
3
5
Neste caso a incógnita é x. A letra y “funciona” como um número.
( )
( ) ( ) ( )
( )
6
107
1076
631010
23
5
3
5
2
1
3
5
6
322
−
=⇔
⇔−=⇔
⇔+=−⇔
⇔+=−⇔
⇔+=−
×
×××
y
x
yx
xyy
x
y
y
x
y
y 1.º Tiram-se os parênteses
2.º Tiram-se os denominadores
3.º Isolam-se os termos com a incógnita
(pretendida) num dos membros
4.º Reduzem-se os termos semelhantes
5.º Determina-se o valor da incógnita,
quando são dados os valores das outras
variáveis.
A equação está resolvida em ordem a x.
2. Resolver a mesma equação em ordem a y.
( )
( ) ( ) ( )
( )6
32 2
5
1
3 2
5 5
3 3 2
10 10 3 6
10 3 10 6
7 10 6
10 6
7
y
y x
y
y x
y y x
y y x
y x
x
y
×
×× ×
− = + ⇔
⇔ − = + ⇔
⇔ − = + ⇔
⇔ − = + ⇔
⇔ = + ⇔
+
⇔ =
( ) x
y
y +=−
2
1
3
5
( ) ( )
393519
9
2,70
59
322,102
5
59
=⇔=⇔=⇔
−
=
××
CC
CC
Celsius) e F (graus Fahrenheirt).
Processo 1: Substitui-se F por 102,2 e resolve-se a equação em ordem a C.
Processo 2: Começa-se por resolver a equação em ordem a C.
9
1605
16059
9
32
5
−
=⇔−==
−
=
F
CFC
FC
9
32
5
−
=
FC3.
Em Física, a fórmula estabelece a correspondência entre C (graus
A Isabel está doente. A sua temperatura é
102,2ºF. Qual é a sua temperatura em ºC?
Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas:Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas:
39
9
1602,1025
=
−×
=C R.: A Isabel tem de temperatura 39 ºC.

Mais conteúdo relacionado

Mais procurados

Equações do 2º grau fórmula resolvente
Equações do 2º grau   fórmula resolventeEquações do 2º grau   fórmula resolvente
Equações do 2º grau fórmula resolventemarmorei
 
função quadrática
função quadráticafunção quadrática
função quadráticadeisebento
 
Proporcionalidade direta
Proporcionalidade diretaProporcionalidade direta
Proporcionalidade diretaHelena Borralho
 
Interseção planos
Interseção planosInterseção planos
Interseção planosanacdalves
 
Modelos de probabilidade
Modelos de probabilidadeModelos de probabilidade
Modelos de probabilidadeesoeneves
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau pptktorz
 
Funçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º AnoFunçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º AnoAna Tapadinhas
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricasLarissa Souza
 
MACS - lei de Laplace, Função massa de probabilidade, probabilidades
MACS - lei de Laplace, Função massa de probabilidade, probabilidadesMACS - lei de Laplace, Função massa de probabilidade, probabilidades
MACS - lei de Laplace, Função massa de probabilidade, probabilidadesJoana Pinto
 
Casos notaveis
Casos notaveisCasos notaveis
Casos notaveismarilia65
 
15 aula operacoes com conjuntos
15 aula   operacoes com conjuntos15 aula   operacoes com conjuntos
15 aula operacoes com conjuntosjatobaesem
 
1264817179 probabilidades
1264817179 probabilidades1264817179 probabilidades
1264817179 probabilidadesPelo Siro
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º graualdaalves
 

Mais procurados (20)

Equações do 2º grau fórmula resolvente
Equações do 2º grau   fórmula resolventeEquações do 2º grau   fórmula resolvente
Equações do 2º grau fórmula resolvente
 
Escultura barroca
Escultura barrocaEscultura barroca
Escultura barroca
 
função quadrática
função quadráticafunção quadrática
função quadrática
 
Proporcionalidade direta
Proporcionalidade diretaProporcionalidade direta
Proporcionalidade direta
 
Interseção planos
Interseção planosInterseção planos
Interseção planos
 
O reinado de D.João V
O reinado de D.João VO reinado de D.João V
O reinado de D.João V
 
Modelos de probabilidade
Modelos de probabilidadeModelos de probabilidade
Modelos de probabilidade
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Funçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º AnoFunçao quadratica-revisao 10º Ano
Funçao quadratica-revisao 10º Ano
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Equações 7
Equações 7Equações 7
Equações 7
 
MACS - lei de Laplace, Função massa de probabilidade, probabilidades
MACS - lei de Laplace, Função massa de probabilidade, probabilidadesMACS - lei de Laplace, Função massa de probabilidade, probabilidades
MACS - lei de Laplace, Função massa de probabilidade, probabilidades
 
Casos notaveis
Casos notaveisCasos notaveis
Casos notaveis
 
Inverso de um número
Inverso de um númeroInverso de um número
Inverso de um número
 
Rococó
RococóRococó
Rococó
 
15 aula operacoes com conjuntos
15 aula   operacoes com conjuntos15 aula   operacoes com conjuntos
15 aula operacoes com conjuntos
 
Barroco em portugal
Barroco em portugalBarroco em portugal
Barroco em portugal
 
1264817179 probabilidades
1264817179 probabilidades1264817179 probabilidades
1264817179 probabilidades
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Lei de Laplace
Lei de LaplaceLei de Laplace
Lei de Laplace
 

Destaque

Laboratorio Estadistico Usac para Maestros
Laboratorio Estadistico Usac para MaestrosLaboratorio Estadistico Usac para Maestros
Laboratorio Estadistico Usac para MaestrosDiego Laffiteau Matute
 
2 tabela periódica
2   tabela periódica2   tabela periódica
2 tabela periódicaLuis Pedro
 
EL SECTOR PUBLICO EN LA ECONOMIA
EL SECTOR PUBLICO EN LA ECONOMIAEL SECTOR PUBLICO EN LA ECONOMIA
EL SECTOR PUBLICO EN LA ECONOMIAYERALDINE JIMENEZ
 
Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)
Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)
Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)inovaDay .
 
Nuestra primer jornada de trabajo compartido
Nuestra primer jornada de trabajo compartidoNuestra primer jornada de trabajo compartido
Nuestra primer jornada de trabajo compartidojardin345
 
Introducción marketing de relaciones
Introducción marketing de relacionesIntroducción marketing de relaciones
Introducción marketing de relacionesMarlon Melara
 
Introdução a testes de software
Introdução a testes de softwareIntrodução a testes de software
Introdução a testes de softwareLeonardo Soares
 
Taller de mejoras pedagogicas
Taller de mejoras pedagogicasTaller de mejoras pedagogicas
Taller de mejoras pedagogicasCristian Sandoval
 
Do you speak facebook FullSIX Groupe oct 2010
Do you speak facebook FullSIX Groupe oct 2010Do you speak facebook FullSIX Groupe oct 2010
Do you speak facebook FullSIX Groupe oct 2010FullSIX Group
 
Prehistòria
PrehistòriaPrehistòria
Prehistòriajemer1200
 

Destaque (15)

Laboratorio Estadistico Usac para Maestros
Laboratorio Estadistico Usac para MaestrosLaboratorio Estadistico Usac para Maestros
Laboratorio Estadistico Usac para Maestros
 
Unidade1
Unidade1Unidade1
Unidade1
 
2 tabela periódica
2   tabela periódica2   tabela periódica
2 tabela periódica
 
EL SECTOR PUBLICO EN LA ECONOMIA
EL SECTOR PUBLICO EN LA ECONOMIAEL SECTOR PUBLICO EN LA ECONOMIA
EL SECTOR PUBLICO EN LA ECONOMIA
 
1 flowers-roses-3
1 flowers-roses-31 flowers-roses-3
1 flowers-roses-3
 
Presentación2
Presentación2Presentación2
Presentación2
 
Sesion 3 sit problema
Sesion 3 sit problemaSesion 3 sit problema
Sesion 3 sit problema
 
Te rangatahi
Te rangatahiTe rangatahi
Te rangatahi
 
Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)
Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)
Apoio a criação e fortalecimento de empresas tecnológicas nascentes (startups)
 
Nuestra primer jornada de trabajo compartido
Nuestra primer jornada de trabajo compartidoNuestra primer jornada de trabajo compartido
Nuestra primer jornada de trabajo compartido
 
Introducción marketing de relaciones
Introducción marketing de relacionesIntroducción marketing de relaciones
Introducción marketing de relaciones
 
Introdução a testes de software
Introdução a testes de softwareIntrodução a testes de software
Introdução a testes de software
 
Taller de mejoras pedagogicas
Taller de mejoras pedagogicasTaller de mejoras pedagogicas
Taller de mejoras pedagogicas
 
Do you speak facebook FullSIX Groupe oct 2010
Do you speak facebook FullSIX Groupe oct 2010Do you speak facebook FullSIX Groupe oct 2010
Do you speak facebook FullSIX Groupe oct 2010
 
Prehistòria
PrehistòriaPrehistòria
Prehistòria
 

Semelhante a Equaçoes literais

Equações literais
Equações literaisEquações literais
Equações literaisaldaalves
 
Equações literais
Equações literaisEquações literais
Equações literaisaldaalves
 
Equações literais
Equações literaisEquações literais
Equações literaisaldaalves
 
Matemática III Aula 20 2012
Matemática III Aula 20 2012Matemática III Aula 20 2012
Matemática III Aula 20 2012Débora Bastos
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basicatrigono_metrico
 
Intro teoria dos numerros cap7
Intro teoria dos numerros cap7Intro teoria dos numerros cap7
Intro teoria dos numerros cap7Paulo Martins
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -Patrícia Costa Grigório
 
Sistemas Lineares.pptx
Sistemas Lineares.pptxSistemas Lineares.pptx
Sistemas Lineares.pptxTopsAvakinImvu
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5janepaulla
 
inequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° anoinequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° anoamulherdarosa
 
aula_06_-_sistema_de_equações_lineares.ppt
aula_06_-_sistema_de_equações_lineares.pptaula_06_-_sistema_de_equações_lineares.ppt
aula_06_-_sistema_de_equações_lineares.pptOsmarinaMonte1
 

Semelhante a Equaçoes literais (20)

Equações literais
Equações literaisEquações literais
Equações literais
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
 
Matemática III Aula 20 2012
Matemática III Aula 20 2012Matemática III Aula 20 2012
Matemática III Aula 20 2012
 
Mat74a
Mat74aMat74a
Mat74a
 
Equações Modulares
Equações ModularesEquações Modulares
Equações Modulares
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
 
Intro teoria dos numerros cap7
Intro teoria dos numerros cap7Intro teoria dos numerros cap7
Intro teoria dos numerros cap7
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
 
EquaçAo Do 2º Grau
EquaçAo Do 2º GrauEquaçAo Do 2º Grau
EquaçAo Do 2º Grau
 
Equações Modulares
Equações ModularesEquações Modulares
Equações Modulares
 
Sistemas Lineares.pptx
Sistemas Lineares.pptxSistemas Lineares.pptx
Sistemas Lineares.pptx
 
Sistemas Lineares.pptx
Sistemas Lineares.pptxSistemas Lineares.pptx
Sistemas Lineares.pptx
 
Teste Derivadas
Teste DerivadasTeste Derivadas
Teste Derivadas
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
 
Aula2 equação 1º_
Aula2 equação 1º_Aula2 equação 1º_
Aula2 equação 1º_
 
inequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° anoinequacoes_do_1o_grau 6a série ou 5° ano
inequacoes_do_1o_grau 6a série ou 5° ano
 
aula_06_-_sistema_de_equações_lineares.ppt
aula_06_-_sistema_de_equações_lineares.pptaula_06_-_sistema_de_equações_lineares.ppt
aula_06_-_sistema_de_equações_lineares.ppt
 

Mais de Laurinda Barros (18)

Agenda prof 2
Agenda prof 2Agenda prof 2
Agenda prof 2
 
A bruxa panhonhas
A bruxa panhonhasA bruxa panhonhas
A bruxa panhonhas
 
Ficha operacoes-com-potencias
Ficha operacoes-com-potenciasFicha operacoes-com-potencias
Ficha operacoes-com-potencias
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Pmat
PmatPmat
Pmat
 
Pmat
PmatPmat
Pmat
 
rastrosRastros regras
rastrosRastros regrasrastrosRastros regras
rastrosRastros regras
 
Regras gatoscaes
Regras gatoscaesRegras gatoscaes
Regras gatoscaes
 
Rastros regras
Rastros regrasRastros regras
Rastros regras
 
Ft nros racionais_x
Ft nros racionais_xFt nros racionais_x
Ft nros racionais_x
 
Ficha reforço nº1
Ficha reforço nº1Ficha reforço nº1
Ficha reforço nº1
 
Ft12 revisoesteste3
Ft12 revisoesteste3Ft12 revisoesteste3
Ft12 revisoesteste3
 
Latex
LatexLatex
Latex
 
Comunicacao n7-2014
Comunicacao n7-2014Comunicacao n7-2014
Comunicacao n7-2014
 
Equaes de-1-grau
Equaes de-1-grauEquaes de-1-grau
Equaes de-1-grau
 
Ft 12-probabilidades-revisao
Ft 12-probabilidades-revisaoFt 12-probabilidades-revisao
Ft 12-probabilidades-revisao
 
Exame naci on-al-testes-intermedios-de-matematica-do-9º-ano
Exame naci on-al-testes-intermedios-de-matematica-do-9º-anoExame naci on-al-testes-intermedios-de-matematica-do-9º-ano
Exame naci on-al-testes-intermedios-de-matematica-do-9º-ano
 

Último

Jogo de Revisão Primeira Série (Primeiro Trimestre)
Jogo de Revisão Primeira  Série (Primeiro Trimestre)Jogo de Revisão Primeira  Série (Primeiro Trimestre)
Jogo de Revisão Primeira Série (Primeiro Trimestre)Paula Meyer Piagentini
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024GleyceMoreiraXWeslle
 
A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...
A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...
A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...Unidad de Espiritualidad Eudista
 
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...azulassessoria9
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas BrasileirosMary Alvarenga
 
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...DominiqueFaria2
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullyingMary Alvarenga
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREIVONETETAVARESRAMOS
 
Modelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesModelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesGilbraz Aragão
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Paula Meyer Piagentini
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTECAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTEJoaquim Colôa
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evoluçãoprofleticiasantosbio
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxLuizHenriquedeAlmeid6
 
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdfPARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdfceajajacu
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terraBiblioteca UCS
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptxSlides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxLuizHenriquedeAlmeid6
 

Último (20)

Jogo de Revisão Primeira Série (Primeiro Trimestre)
Jogo de Revisão Primeira  Série (Primeiro Trimestre)Jogo de Revisão Primeira  Série (Primeiro Trimestre)
Jogo de Revisão Primeira Série (Primeiro Trimestre)
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024
 
A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...
A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...
A Unidade de Espiritualidade Eudista se une ao sentimiento de toda a igreja u...
 
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas Brasileiros
 
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullying
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
Modelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesModelos Evolutivos em História das Religiões
Modelos Evolutivos em História das Religiões
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTECAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evolução
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
 
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdfPARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terra
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptxSlides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
 

Equaçoes literais

  • 2. 173 =+ yx yzx =+ 73 073 =+x Observa as equações seguintes:Observa as equações seguintes: As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é uma equação literal. Então, qual será a definição de equação literal?Então, qual será a definição de equação literal? Equações literais – são equações que têm mais do que uma variável, isto é, pelo menos 2 incógnitas.
  • 3. 26 += xy xy 6= 2 lA = 2 hb A × = ( ) 2 hbB A ×+ = 222 cba += Exemplos de equações literais: que representa uma reta não vertical (função afim). que representa uma reta que passa na origem do referencial (função linear). •A fórmula do teorema de Pitágoras •A equação •A equação (equações do 1.º grau com duas incógnitas) Quantas soluções têm? •As fórmulas: que representam, respetivamente, as áreas do quadrado, do triângulo e do trapézio. • A equação da relatividade E = mc2 . GeogebraGeogebra
  • 4. Como resolver equações literais? As regras para resolver equações, também se aplicam à resolução de uma equação literal, em ordem a qualquer uma das letras que nela figuram. x y 1222 =+ yx x x x yx y x yx yx −=⇔ ⇔ − =⇔ ⇔−=⇔ ⇔=+ 6 2 212 2122 1222 Perímetro 12 cm Nota: Quando uma letra é a incógnita, as outras letras funcionam como se fossem números. Exemplo I: Observa a figura: Como a equação tem duas variáveis e y, podemos resolvê-la em ordem a ou em ordem a y, isto é: A figura sugere a seguinte equação, Resolvida em ordem aResolvida em ordem a
  • 5. Nota: Diz-se que a equação está resolvida em ordem a x porque a variável x está isolada num dos membros da equação, neste caso no 1.º membro. xy x y xy yx −=⇔ ⇔ − =⇔ ⇔−=⇔ ⇔=+ 6 2 212 2122 1222 Resolvida em ordem a y. Qual o interesse de resolver uma equação em ordem a uma das variáveis?Qual o interesse de resolver uma equação em ordem a uma das variáveis? x yx −= 6 426 =⇔−= xx Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento? Ora, aqui interessa resolver equação em ordem a (é a incógnita, o valor desconhecido). O comprimento é 4. Assim, é muito fácil dar a resposta. y x Perímetro 12 cm
  • 6. Mas, se a pergunta fosse: Sabendo que o comprimento, x , do rectângulo é 3, qual é a largura? Neste caso já interessava resolver a equação em ordem a y.Neste caso já interessava resolver a equação em ordem a y. xy −= 6 336 =⇔−= yy Se se pretende determinar o comprimento do rectângulo, então, interessa resolver a equação em ordem a x. Por outro lado, se se quisesse saber a sua largura, neste caso, já interessava resolver a equação em ordem a y. Conclusão: Uma equação literal resolve-se em ordem a uma das letras (variável) que se considera a incógnita (valor desconhecido). As outras letras funcionam como números (valores dados). As regras já conhecidas para resolver equações são também aplicáveis na resolução de equações literais.
  • 7. c lA=100 m2 1001100 =×=→= lclc mas, 100250 =×=→= lclc 100425 =×=→= lclc 100520 =×=→= lclc 10085,12 =×=→= lclc mas, mas, mas, … Assim, a equação tem umaAssim, a equação tem uma infinidade de soluções.infinidade de soluções.
  • 8. Equações do 1.º grau com duas incógnitas.Equações do 1.º grau com duas incógnitas. ax+by=c; a, b e c Quantas soluções têm?Quantas soluções têm? As soluções desta equação são, geralmente, pares ordenados deAs soluções desta equação são, geralmente, pares ordenados de números.números. x+2y=9 S=(1,4) Uma solução S=(0, 9/2) Outra solução Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0, b=0 e c ). Cuidado:Cuidado: No contexto de problemas nem sempre todas as soluções servem. Dar ex. Relacionar com as funções afins, reta,Relacionar com as funções afins, reta, todos os pontos que estão sobre atodos os pontos que estão sobre a reta são soluções da equação.reta são soluções da equação.
  • 9. Exemplo II A equação E=mc2 em que: E- energia m- quantidade de matéria c- velocidade da luz Descoberta de Einstein apontava para a possibilidade de se obterem grandes quantidades de energia a partir de pequenas quantidades de matéria. A bomba atómica é um dos frutos desta equação. Resolve a equação em ordem a m e depois em ordem a c. 2 2 2 2 2 E mc E mc E m c c c = ⇔ ⇔ = ⇔ = Resolvida em ordem a m. 2 2 E E mc c m E c m = ⇔ = ⇔ ⇔ = ± Resolvida em ordem a c.
  • 10. lh Vc hl hlc lh V =⇔ ⇔= .. Neste caso, c é a incógnita. Para isolar c divide-se ambos os membros por lh e depois simplifica-se. Exemplo III A fórmula V=c.l.h serve para determinar o volume de uma caixa de cereais. Resolve a equação em ordem a c.
  • 11. ( ) 2 hbB A ×+ = ( ) bB A hhbBAh bB A + =⇔+=⇔× + = 2 2 2 Exemplo IV A área de um trapézio é dada pela fórmula Resolve a equação em ordem a h. Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem números. Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de BSe pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B (base maior) , b (base menor) e A (área). Por exemplo:(base maior) , b (base menor) e A (área). Por exemplo: Determina h, sabendo que A=10 cmDetermina h, sabendo que A=10 cm22 , B=4 cm e b=1 cm., B=4 cm e b=1 cm. 2 10 4 4 1 h cm × = = +
  • 12. Exercícios: 1. Resolve em ordem a x, a equação ( ) x y y +=− 2 1 3 5 Neste caso a incógnita é x. A letra y “funciona” como um número. ( ) ( ) ( ) ( ) ( ) 6 107 1076 631010 23 5 3 5 2 1 3 5 6 322 − =⇔ ⇔−=⇔ ⇔+=−⇔ ⇔+=−⇔ ⇔+=− × ××× y x yx xyy x y y x y y 1.º Tiram-se os parênteses 2.º Tiram-se os denominadores 3.º Isolam-se os termos com a incógnita (pretendida) num dos membros 4.º Reduzem-se os termos semelhantes 5.º Determina-se o valor da incógnita, quando são dados os valores das outras variáveis. A equação está resolvida em ordem a x.
  • 13. 2. Resolver a mesma equação em ordem a y. ( ) ( ) ( ) ( ) ( )6 32 2 5 1 3 2 5 5 3 3 2 10 10 3 6 10 3 10 6 7 10 6 10 6 7 y y x y y x y y x y y x y x x y × ×× × − = + ⇔ ⇔ − = + ⇔ ⇔ − = + ⇔ ⇔ − = + ⇔ ⇔ = + ⇔ + ⇔ = ( ) x y y +=− 2 1 3 5
  • 14. ( ) ( ) 393519 9 2,70 59 322,102 5 59 =⇔=⇔=⇔ − = ×× CC CC Celsius) e F (graus Fahrenheirt). Processo 1: Substitui-se F por 102,2 e resolve-se a equação em ordem a C. Processo 2: Começa-se por resolver a equação em ordem a C. 9 1605 16059 9 32 5 − =⇔−== − = F CFC FC 9 32 5 − = FC3. Em Física, a fórmula estabelece a correspondência entre C (graus A Isabel está doente. A sua temperatura é 102,2ºF. Qual é a sua temperatura em ºC? Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas:Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas: 39 9 1602,1025 = −× =C R.: A Isabel tem de temperatura 39 ºC.