SlideShare uma empresa Scribd logo
1 de 3
Baixar para ler offline
MATEMÁTICA


                                                    DETERMINANTES
1. INTRODUÇÃO                                                                    5. REGRA DE SARRUS
      Determinante é um número real que se associa                                      1o ) Repetem-se as duas primeiras colunas à di-
a uma matriz quadrada.                                                           reita do determinante.
                                                                                        2o ) Multiplicam-se:
      Determinante de uma matriz A de ordem 1.                                              os elementos da diagonal principal e os e-
                    det A = |a11| = a11                                                     lementos de cada paralela a essa diagonal,
      Determinante de uma matriz A de ordem 2.                                              conservando o sinal de cada produto obtido;
                   a11 a12                                                                  os elementos da diagonal secundária e os
         det A =             = a11 ⋅ a 22 − a12 ⋅ a 21
                   a 21 a 22                                                                elementos de cada paralela a essa diagonal,
                                                                                            invertendo o sinal de cada produto obtido.
2. MENOR   COMPLEMENTAR     DETERMI-
   NANTE DA MATRIZ REDUZIDA                                                                                           −a 31 . a 22 . a13
      Chama-se menor complementar Dij relativo a                                                                      −a 32 . a 23 . a11
um elemento aij da matriz A, de ordem n, o determi-                                                                   −a 33 . a 21 . a12
nante da matriz de ordem n − 1 , que se obtém a partir                                   a11   a12   a13 a11   a12
de A, suprimindo sua linha de ordem i e sua coluna                                       a 21 a 22   a 23 a 21 a 22
de ordem j.                                                                              a 31 a 32   a 33 a 31 a 32
Exemplo:                                                                                                              a13 . a 21 . a 32
                       2 − 1 3                                                                                       a12 . a 23 . a 31
                               
      Sendo        A = 0 1 4 ,              temos:
                        5 − 2 1                                                                                      a11 . a 22 . a 33
                               
                                                        0 4                            3o) e somam-se os resultados obtidos no 2o.
      a) D11 = 1         4
                             =9           b) D12 =             = −20
                   −2 1                                 5 1                      passo, ou seja:
                                                                                            det A = a11a22a33 + a12a23a31 + a13a21a32 -
3. COFATOR
                                                                                            a31a22a13    -a32a23a11 - a33a21a12
       Chama-se cofator do elemento aij, e se indica
                                                                                 6. PROPRIEDADES DOS DETERMINANTES
por Aij o seguinte número:
                                                                                          Matriz com fila nula: o determinante dessa
                    A ij = (− 1) i + j⋅ Dij                                               matriz é nulo.
Exemplo:                                                                                  Matriz triangular: o determinante é igual ao
                                                                                          produto dos elementos da sua diagonal
        O cofator do elemento a21 da matriz
                                                                                          principal.
       2 1 1
                                            1 1                                         Multiplicação de uma fila por um número k
  A = 3 5 4       é: A 21 = ( −1)2 +1             = ( −1)3 (1 ⋅ 3) = −3.
                                                                                          real: O determinante da nova matriz é igual
      6 0 3                                 0 3
                                                                                        ao anterior, multiplicado pelo número k.
                                                                                          Troca de filas paralelas: o determinante da
4. TEOREMA DE LAPLACE
                                                                                          nova matriz é o anterior com sinal trocado.
      O determinante de uma matriz quadrada de or-                                        Filas paralelas iguais: o determinante é nu-
dem n, n ≥ 2, é igual à soma dos produtos dos ele-                                        lo.
mentos de uma fila qualquer pelos respectivos                                             Filas paralelas proporcionais: o determinan-
cofatores.                                                                                te é nulo.
      Exemplo:                                                                            Matriz transposta: o determinante de uma
   a) tomando como referência a 1a linha, de uma                                          matriz A é igual ao determinante de sua
      matriz de ordem 3, temos:                                                           transposta At.
        det A = a11 . A11 + a12 . A12 + a13 . A13                                         Decomposição de uma fila: se cada elemen-
   b) tomando como referência a 2a coluna, de uma                                         to de uma das filas de um determinante é
      matriz de ordem 3, temos:                                                           uma soma de duas parcelas, então esse de-
        det A = a12 . A12 + a22 . A22 + a32 . A32                                         terminante é a soma de dois outros deter-
                                                                                          minantes, que se obtêm substituindo essa
                                                                                          fila pelas primeiras e pelas segundas parce-

Editora Exato                                                                5
las, respectivamente, e conservando inalte-                                 EXERCÍCIOS RESOLVIDOS
          radas as demais filas.
          Teorema de Cauchy: em toda matriz qua-                                                                                       3 5
          drada de ordem n ≥ 2, a soma dos produtos                      1   Calcule o determinante da matriz A =                           :
                                                                                                                                       -2 -1
          dos elementos de uma fila pelos cofatores                          Resolução:
          dos correspondentes elementos de uma fila
          paralela é zero.
          Teorema de Jacobi: se a uma das filas de
          uma matriz quadrada A de ordem n ≥ 2 adi-
                                                                                                        3
                                                                                                           ( )
                                                                                                           5
                                                                                                     A -2 -1

          cionarmos um múltiplo de outra fila parale-
          la, obteremos uma matriz B tal que det B =                         3. ( −1)  − ( −2) .5 =
                                                                                                 
          det A.
                                                                             [ −3] − [ −10] =
          Teorema de Binet: se A e B são duas matri-
                                                                             −3 + 10 = 7
          zes quadradas de ordem n, então det(A . B)
          = det A . det B.
7. CÁLCULO DA MATRIZ INVERSA                                                                       EXERCÍCIOS
                    1          t                                         1   (MACK-SP) Sendo A=(aij) uma matriz quadrada
         A −1 =         ⋅ (A ')
                  det A                                                      de ordem 2 e aij=j-J2, o determinante da matriz A
      A’ é a matriz dos cofatores dos elementos de                           é:
A.                                                                           a) 0                         d) 3
                                                                             b) 1                         e) 4
      Existe A-1 se, e somente se, detA ≠ 0.                                 c) 2
8. REGRA DE CHIÓ
                                                                                                                   x   -x
        Seja A uma matriz quadrada de ordem n ≥ 2.                       2   A solução da equação                           =0
 A regra de Chió consiste em:                                                                                      -2 x
        1o ) Sendo a11 = 1, eliminar a primeira linha e                      a) S = {−2, −0}
 a primeira coluna de A;                                                     b) S = {0, 2}
       2o ) de cada elemento que sobra em A, subtrair
                                                                             c) S= {2}
o produto dos elementos que se situam nas extremi-
dades das perpendiculares à primeira linha e à pri-                          d) S= {0}
meira coluna de A, traçadas a partir do elemento                             e) S = {−2, 2}
considerado.
9. DETERMINANTE DE VANDERMONDE
                                                                                            2     1        3
      Seja a matriz quadrada A de ordem n, n ≥ 2,                        3   Sendo A = 1 -1
                                                                                       
                                                                                                             
                                                                                                            2 ,   então det A é:
definida por:                                                                                -2   1       -1
                                                                                                            
                        1     1     1      ...1                            a) 8                                           d) 10
                                                                           b) –8                                          e) –10
                        a1    a2    a3    ...an 
                     M= 2            2
                                     a3    ...an 
                                                2                            c) 0
                        a1    a2
                                2                  
                            …

                                   …

                                       …


                                                …




                                                  
                       a1 −1 an −1 an −1 ...an −1 
                       
                         n
                               2     3         n 
                                                                         4   (VUNESP) Considera as matrizes reais:
          O determinante desse tipo de matriz é igual                                               x2 0                       4   z
          ao produto de todas as diferenças possíveis                                            A=   e B=
                                                                                                                  
                                                                                                   2 y + z y − x
          entre os elementos da linha de expoente u-
                                                                                Se a A=Bt (transposta de B), o determinante da
          nitário, com a condição de que, nas diferen-
                                                                                       x  y −1
          ças, o minuendo tenha índice maior que o
          subtraendo.                                                    matriz M =  z 1
                                                                                    
                                                                                               
                                                                                              1          é igual a:
                                                                                        4 5 2
         det(M) = (a 2 − a1 )(a3 − a 2 )(a3 − a1 )...(an − an −1 )                            
                                                                             a) –1                                          d) 2
                                                                             b) 0                                           e) 3
                                                                             c) 1




Editora Exato                                                        6
5   (UFPA) O valor de um determinante é 12. Se di-                      e) 27x=y
    vidirmos a 1.ª linha por 6 e multiplicarmos a 3.ª
    coluna por 4, o novo determinante valerá:
                                                                                        1 2 1     0
    a) 8                        d) 36
                                                                                        1 1 −2    1
    b) 18                       e) 48                               11 (MACK-SP) Se                   =0, então o valor de
    c) 24                                                                               1 −1 2 −1
                                                                                        1 3 3 x
                                                                        x é:
                                                   1    0
                                                                        a) 0
6   (UFSC) Considera as matrizes                   −1 − 1 e
                                                A=                    b) 1
                                                   1 1
                                                                      c) –1
      0 1 2                                                           d) –0,6
    B=            e n=det(AB). Calcule 7n.
      3 4 5                                                           e) 0,6


7   Calcule o valor do determinante                                                               x    0   0
                           2 2 4 5                                  12 (CEFET) Dada a matriz = 0 0 x  e a função
                                                                                                     
                           1 0 3 1                                                                x
                                                                                                       x   x 
                                                                                                              
                           0 4 1 2                                      real definida por f(x)=det(2A), podemos afirmar
                           1 0 −1 1                                     que f(-1) é igual a:
      a) 16                            d) –32                           a) –2
      b) –16                           e) 64                            b) –1
      c) 32                                                             c) 8
                                                                        d) 2
                                                                        e) –8
8   (UFRN)          O       determinante        da     matriz
        1      7 281 
                                                                                     GABARITO
    A = 0      2 200    é igual a:
        0      0 3 
                     
                                                                    1   D
    a) 6
    b) 72                                                           2   B
    c) 81                                                           3   B
    d) 161
    e) 200                                                          4   B
                                                                    5   A
9   (UFSCar-SP) Sejam:                                              6   01
         1 1        0 3            1     0   0    0
                                                                7   C
           0 −2      1 −2             −1 − 2   0    0
       A=                     e   B=
         0 0        1  0           2     1   1    0             8   A
         
         0 0                                       
                    0 3 
                                      −3 5
                                               4    3
                                                                   9   D
    Então, det (A.B) é igual a:
    a) –36                                                          10 D
    b) 12                                                           11 D
    c) 6
    d) 36                                                           12 C
    e) –6

10 (UFBA) Sendo
             12 18 9           12      18   9
       x = 21 17 15       e y = 63 51 45        , então:
           32 60 14             32     60 14
    a) x=y
    b) x=3y
    c) x=27y
    d) 3x=y
Editora Exato                                                   7

Mais conteúdo relacionado

Mais procurados

Ft4 raiz-quadrada-raiz-cubica
Ft4 raiz-quadrada-raiz-cubicaFt4 raiz-quadrada-raiz-cubica
Ft4 raiz-quadrada-raiz-cubicaGabi Slb
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º graudemervalm
 
Semelhança em figuras planas
Semelhança em figuras planasSemelhança em figuras planas
Semelhança em figuras planasSilvana Santos
 
Mat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de talesMat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de talestrigono_metrico
 
1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)
1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)
1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)carlos josé gomes
 
Exercício 01 PA - Resolvido
Exercício 01 PA - ResolvidoExercício 01 PA - Resolvido
Exercício 01 PA - ResolvidoAna Paula Silva
 
Lista de exercícios equações fracionárias e sistema de inequações
Lista de exercícios   equações fracionárias e sistema de inequaçõesLista de exercícios   equações fracionárias e sistema de inequações
Lista de exercícios equações fracionárias e sistema de inequaçõesluisresponde
 
Teoria de conjuntos fichas de exercícios
Teoria de conjuntos   fichas de exercícios Teoria de conjuntos   fichas de exercícios
Teoria de conjuntos fichas de exercícios wilkerfilipel
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOHélio Rocha
 
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDLISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDCriativa Niterói
 
Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)
Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)
Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)Robson S
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulosRodrigo Carvalho
 
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)GernciadeProduodeMat
 

Mais procurados (20)

Ft4 raiz-quadrada-raiz-cubica
Ft4 raiz-quadrada-raiz-cubicaFt4 raiz-quadrada-raiz-cubica
Ft4 raiz-quadrada-raiz-cubica
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Trabalho sobre frações para os 6ºs anos
Trabalho sobre frações para os 6ºs anosTrabalho sobre frações para os 6ºs anos
Trabalho sobre frações para os 6ºs anos
 
TEOREMA DE PITÁGORAS
TEOREMA DE PITÁGORASTEOREMA DE PITÁGORAS
TEOREMA DE PITÁGORAS
 
Matrizes
MatrizesMatrizes
Matrizes
 
Semelhança em figuras planas
Semelhança em figuras planasSemelhança em figuras planas
Semelhança em figuras planas
 
Mat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de talesMat exercicios gabarito semelhança de triângulos e teorema de tales
Mat exercicios gabarito semelhança de triângulos e teorema de tales
 
Pitagoras
PitagorasPitagoras
Pitagoras
 
1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)
1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)
1ª LISTA DE EXERCÍCIOS( PIRÂMIDES)
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Exercício 01 PA - Resolvido
Exercício 01 PA - ResolvidoExercício 01 PA - Resolvido
Exercício 01 PA - Resolvido
 
Lista de exercícios equações fracionárias e sistema de inequações
Lista de exercícios   equações fracionárias e sistema de inequaçõesLista de exercícios   equações fracionárias e sistema de inequações
Lista de exercícios equações fracionárias e sistema de inequações
 
Teoria de conjuntos fichas de exercícios
Teoria de conjuntos   fichas de exercícios Teoria de conjuntos   fichas de exercícios
Teoria de conjuntos fichas de exercícios
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃO
 
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDLISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
 
Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)
Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)
Relações Métricas no Triângulo Retângulo - Teorema de Pitágoras)
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
 
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
 

Semelhante a Apostila 001 determinantes (20)

Determinantes - 2º B
Determinantes - 2º BDeterminantes - 2º B
Determinantes - 2º B
 
Determinantes
Determinantes Determinantes
Determinantes
 
Matrizes 2014
Matrizes 2014Matrizes 2014
Matrizes 2014
 
Apostila De Algebra Linear
Apostila De Algebra LinearApostila De Algebra Linear
Apostila De Algebra Linear
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Matrizes e determinantes
Matrizes e determinantesMatrizes e determinantes
Matrizes e determinantes
 
Objeto
ObjetoObjeto
Objeto
 
Objeto de aprendizagem
Objeto de aprendizagemObjeto de aprendizagem
Objeto de aprendizagem
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamental
 
Lista matrizes 2_ano_2012_pdf
Lista matrizes 2_ano_2012_pdfLista matrizes 2_ano_2012_pdf
Lista matrizes 2_ano_2012_pdf
 
Determinantes 2º ano
Determinantes 2º anoDeterminantes 2º ano
Determinantes 2º ano
 
Potencias
PotenciasPotencias
Potencias
 
Matematica
MatematicaMatematica
Matematica
 
Matrizes
MatrizesMatrizes
Matrizes
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Mat matrizes determinantes 001
Mat matrizes determinantes  001Mat matrizes determinantes  001
Mat matrizes determinantes 001
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Radiciaçâo
 
Aula 03 determinantes
Aula 03   determinantesAula 03   determinantes
Aula 03 determinantes
 

Mais de con_seguir

Transformações geométricas no plano
Transformações geométricas no planoTransformações geométricas no plano
Transformações geométricas no planocon_seguir
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas linearescon_seguir
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulocon_seguir
 
Numeros complexos aula
Numeros complexos aulaNumeros complexos aula
Numeros complexos aulacon_seguir
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexoscon_seguir
 
Matematica raciocinio logico
Matematica raciocinio logicoMatematica raciocinio logico
Matematica raciocinio logicocon_seguir
 
Matematica questões resolvidas i
Matematica questões resolvidas iMatematica questões resolvidas i
Matematica questões resolvidas icon_seguir
 
Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidoscon_seguir
 
Geometria analitica equacao da reta
Geometria analitica equacao da retaGeometria analitica equacao da reta
Geometria analitica equacao da retacon_seguir
 
Fundamentos matematica iv
Fundamentos matematica ivFundamentos matematica iv
Fundamentos matematica ivcon_seguir
 
Fundamentos matematica ii
Fundamentos matematica iiFundamentos matematica ii
Fundamentos matematica iicon_seguir
 
Fundamentos matematica i
Fundamentos matematica iFundamentos matematica i
Fundamentos matematica icon_seguir
 
Fundamentos geometria i
Fundamentos geometria iFundamentos geometria i
Fundamentos geometria icon_seguir
 
Funcao do primeiro grau
Funcao do primeiro grauFuncao do primeiro grau
Funcao do primeiro graucon_seguir
 
Fisica 003 optica
Fisica   003 opticaFisica   003 optica
Fisica 003 opticacon_seguir
 
Exercicios resolvidos poligonos
Exercicios resolvidos   poligonosExercicios resolvidos   poligonos
Exercicios resolvidos poligonoscon_seguir
 
Estudos da reta
Estudos da retaEstudos da reta
Estudos da retacon_seguir
 

Mais de con_seguir (20)

Transformações geométricas no plano
Transformações geométricas no planoTransformações geométricas no plano
Transformações geométricas no plano
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulo
 
Ponto reta
Ponto retaPonto reta
Ponto reta
 
Poliedro
PoliedroPoliedro
Poliedro
 
Numeros complexos aula
Numeros complexos aulaNumeros complexos aula
Numeros complexos aula
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Matematica raciocinio logico
Matematica raciocinio logicoMatematica raciocinio logico
Matematica raciocinio logico
 
Matematica questões resolvidas i
Matematica questões resolvidas iMatematica questões resolvidas i
Matematica questões resolvidas i
 
Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidos
 
Geometria analitica equacao da reta
Geometria analitica equacao da retaGeometria analitica equacao da reta
Geometria analitica equacao da reta
 
Geometria
GeometriaGeometria
Geometria
 
Fundamentos matematica iv
Fundamentos matematica ivFundamentos matematica iv
Fundamentos matematica iv
 
Fundamentos matematica ii
Fundamentos matematica iiFundamentos matematica ii
Fundamentos matematica ii
 
Fundamentos matematica i
Fundamentos matematica iFundamentos matematica i
Fundamentos matematica i
 
Fundamentos geometria i
Fundamentos geometria iFundamentos geometria i
Fundamentos geometria i
 
Funcao do primeiro grau
Funcao do primeiro grauFuncao do primeiro grau
Funcao do primeiro grau
 
Fisica 003 optica
Fisica   003 opticaFisica   003 optica
Fisica 003 optica
 
Exercicios resolvidos poligonos
Exercicios resolvidos   poligonosExercicios resolvidos   poligonos
Exercicios resolvidos poligonos
 
Estudos da reta
Estudos da retaEstudos da reta
Estudos da reta
 

Último

QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNASQUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNASEdinardo Aguiar
 
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxPOETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxJMTCS
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptxpamelacastro71
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfpaulafernandes540558
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresaulasgege
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas BrasileirosMary Alvarenga
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxGislaineDuresCruz
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosAntnyoAllysson
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveaulasgege
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...Martin M Flynn
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoCelianeOliveira8
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLaseVasconcelos1
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdfProfGleide
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira partecoletivoddois
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024GleyceMoreiraXWeslle
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxLuizHenriquedeAlmeid6
 

Último (20)

QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNASQUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
QUIZ DE MATEMATICA SHOW DO MILHÃO PREPARAÇÃO ÇPARA AVALIAÇÕES EXTERNAS
 
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxPOETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptx
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdf
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autores
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas Brasileiros
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteiros
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e feminino
 
(76- ESTUDO MATEUS) A ACLAMAÇÃO DO REI..
(76- ESTUDO MATEUS) A ACLAMAÇÃO DO REI..(76- ESTUDO MATEUS) A ACLAMAÇÃO DO REI..
(76- ESTUDO MATEUS) A ACLAMAÇÃO DO REI..
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdf
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parte
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
 

Apostila 001 determinantes

  • 1. MATEMÁTICA DETERMINANTES 1. INTRODUÇÃO 5. REGRA DE SARRUS Determinante é um número real que se associa 1o ) Repetem-se as duas primeiras colunas à di- a uma matriz quadrada. reita do determinante. 2o ) Multiplicam-se: Determinante de uma matriz A de ordem 1. os elementos da diagonal principal e os e- det A = |a11| = a11 lementos de cada paralela a essa diagonal, Determinante de uma matriz A de ordem 2. conservando o sinal de cada produto obtido; a11 a12 os elementos da diagonal secundária e os det A = = a11 ⋅ a 22 − a12 ⋅ a 21 a 21 a 22 elementos de cada paralela a essa diagonal, invertendo o sinal de cada produto obtido. 2. MENOR COMPLEMENTAR DETERMI- NANTE DA MATRIZ REDUZIDA −a 31 . a 22 . a13 Chama-se menor complementar Dij relativo a −a 32 . a 23 . a11 um elemento aij da matriz A, de ordem n, o determi- −a 33 . a 21 . a12 nante da matriz de ordem n − 1 , que se obtém a partir a11 a12 a13 a11 a12 de A, suprimindo sua linha de ordem i e sua coluna a 21 a 22 a 23 a 21 a 22 de ordem j. a 31 a 32 a 33 a 31 a 32 Exemplo: a13 . a 21 . a 32 2 − 1 3 a12 . a 23 . a 31   Sendo A = 0 1 4 , temos:  5 − 2 1 a11 . a 22 . a 33   0 4 3o) e somam-se os resultados obtidos no 2o. a) D11 = 1 4 =9 b) D12 = = −20 −2 1 5 1 passo, ou seja: det A = a11a22a33 + a12a23a31 + a13a21a32 - 3. COFATOR a31a22a13 -a32a23a11 - a33a21a12 Chama-se cofator do elemento aij, e se indica 6. PROPRIEDADES DOS DETERMINANTES por Aij o seguinte número: Matriz com fila nula: o determinante dessa A ij = (− 1) i + j⋅ Dij matriz é nulo. Exemplo: Matriz triangular: o determinante é igual ao produto dos elementos da sua diagonal O cofator do elemento a21 da matriz principal.  2 1 1   1 1 Multiplicação de uma fila por um número k A = 3 5 4 é: A 21 = ( −1)2 +1 = ( −1)3 (1 ⋅ 3) = −3. real: O determinante da nova matriz é igual 6 0 3 0 3   ao anterior, multiplicado pelo número k. Troca de filas paralelas: o determinante da 4. TEOREMA DE LAPLACE nova matriz é o anterior com sinal trocado. O determinante de uma matriz quadrada de or- Filas paralelas iguais: o determinante é nu- dem n, n ≥ 2, é igual à soma dos produtos dos ele- lo. mentos de uma fila qualquer pelos respectivos Filas paralelas proporcionais: o determinan- cofatores. te é nulo. Exemplo: Matriz transposta: o determinante de uma a) tomando como referência a 1a linha, de uma matriz A é igual ao determinante de sua matriz de ordem 3, temos: transposta At. det A = a11 . A11 + a12 . A12 + a13 . A13 Decomposição de uma fila: se cada elemen- b) tomando como referência a 2a coluna, de uma to de uma das filas de um determinante é matriz de ordem 3, temos: uma soma de duas parcelas, então esse de- det A = a12 . A12 + a22 . A22 + a32 . A32 terminante é a soma de dois outros deter- minantes, que se obtêm substituindo essa fila pelas primeiras e pelas segundas parce- Editora Exato 5
  • 2. las, respectivamente, e conservando inalte- EXERCÍCIOS RESOLVIDOS radas as demais filas. Teorema de Cauchy: em toda matriz qua-  3 5 drada de ordem n ≥ 2, a soma dos produtos 1 Calcule o determinante da matriz A =  :  -2 -1 dos elementos de uma fila pelos cofatores Resolução: dos correspondentes elementos de uma fila paralela é zero. Teorema de Jacobi: se a uma das filas de uma matriz quadrada A de ordem n ≥ 2 adi- 3 ( ) 5 A -2 -1 cionarmos um múltiplo de outra fila parale- la, obteremos uma matriz B tal que det B = 3. ( −1)  − ( −2) .5 =     det A. [ −3] − [ −10] = Teorema de Binet: se A e B são duas matri- −3 + 10 = 7 zes quadradas de ordem n, então det(A . B) = det A . det B. 7. CÁLCULO DA MATRIZ INVERSA EXERCÍCIOS 1 t 1 (MACK-SP) Sendo A=(aij) uma matriz quadrada A −1 = ⋅ (A ') det A de ordem 2 e aij=j-J2, o determinante da matriz A A’ é a matriz dos cofatores dos elementos de é: A. a) 0 d) 3 b) 1 e) 4 Existe A-1 se, e somente se, detA ≠ 0. c) 2 8. REGRA DE CHIÓ x -x Seja A uma matriz quadrada de ordem n ≥ 2. 2 A solução da equação =0 A regra de Chió consiste em: -2 x 1o ) Sendo a11 = 1, eliminar a primeira linha e a) S = {−2, −0} a primeira coluna de A; b) S = {0, 2} 2o ) de cada elemento que sobra em A, subtrair c) S= {2} o produto dos elementos que se situam nas extremi- dades das perpendiculares à primeira linha e à pri- d) S= {0} meira coluna de A, traçadas a partir do elemento e) S = {−2, 2} considerado. 9. DETERMINANTE DE VANDERMONDE 2 1 3 Seja a matriz quadrada A de ordem n, n ≥ 2, 3 Sendo A = 1 -1   2 , então det A é: definida por:  -2 1 -1    1 1 1 ...1  a) 8 d) 10   b) –8 e) –10  a1 a2 a3 ...an  M= 2 2 a3 ...an  2 c) 0  a1 a2 2  … … … …   a1 −1 an −1 an −1 ...an −1   n 2 3 n  4 (VUNESP) Considera as matrizes reais: O determinante desse tipo de matriz é igual  x2 0  4 z ao produto de todas as diferenças possíveis A= e B=   2 y + z y − x entre os elementos da linha de expoente u- Se a A=Bt (transposta de B), o determinante da nitário, com a condição de que, nas diferen- x y −1 ças, o minuendo tenha índice maior que o subtraendo. matriz M =  z 1   1 é igual a:  4 5 2 det(M) = (a 2 − a1 )(a3 − a 2 )(a3 − a1 )...(an − an −1 )   a) –1 d) 2 b) 0 e) 3 c) 1 Editora Exato 6
  • 3. 5 (UFPA) O valor de um determinante é 12. Se di- e) 27x=y vidirmos a 1.ª linha por 6 e multiplicarmos a 3.ª coluna por 4, o novo determinante valerá: 1 2 1 0 a) 8 d) 36 1 1 −2 1 b) 18 e) 48 11 (MACK-SP) Se =0, então o valor de c) 24 1 −1 2 −1 1 3 3 x x é:  1 0 a) 0 6 (UFSC) Considera as matrizes  −1 − 1 e A=  b) 1  1 1   c) –1 0 1 2  d) –0,6 B=  e n=det(AB). Calcule 7n. 3 4 5  e) 0,6 7 Calcule o valor do determinante x 0 0 2 2 4 5 12 (CEFET) Dada a matriz = 0 0 x  e a função   1 0 3 1 x  x x   0 4 1 2 real definida por f(x)=det(2A), podemos afirmar 1 0 −1 1 que f(-1) é igual a: a) 16 d) –32 a) –2 b) –16 e) 64 b) –1 c) 32 c) 8 d) 2 e) –8 8 (UFRN) O determinante da matriz 1 7 281    GABARITO A = 0 2 200  é igual a: 0 0 3    1 D a) 6 b) 72 2 B c) 81 3 B d) 161 e) 200 4 B 5 A 9 (UFSCar-SP) Sejam: 6 01 1 1 0 3 1 0 0 0     7 C 0 −2 1 −2  −1 − 2 0 0 A= e B= 0 0 1 0 2 1 1 0 8 A  0 0     0 3   −3 5  4 3  9 D Então, det (A.B) é igual a: a) –36 10 D b) 12 11 D c) 6 d) 36 12 C e) –6 10 (UFBA) Sendo 12 18 9 12 18 9 x = 21 17 15 e y = 63 51 45 , então: 32 60 14 32 60 14 a) x=y b) x=3y c) x=27y d) 3x=y Editora Exato 7