1
                FRAÇÕES DECIMAIS E NÚMEROS DECIMAIS
     1. FRAÇÃO DECIMAL
Toda fração cujo denominador é potência de 10 (10, 100, 1000, 10000,...) chama-
se fração decimal.
Exemplos:
      3                                        4       4
1)      (lê-se “três décimos”)           2)      2 ou     (lê-se quatro centésimos”.)
     10                                       10      100

2. NÚMERO DECIMAL – Para representar, sob a forma decimal, quantidades que
não são inteiras, utilizamos os números decimais, que se caracterizam pela
presença de uma vírgula.
       A vírgula separa a parte inteira da parte decimal:
                                                   décimos  centésimos milioné-
Inteiros , décimos centésimos milésimos            de        de        simos
                                                  milésimos  milésimos
Exemplos: 1) 1,04 (lê-se: “um inteiro e quatro centésimos”.)
             2) 0,005 (lê-se: “cinco milésimos”.)

3. TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL
                                                            3
       Observando os exemplos anteriores, vemos que           é igual a 0,3. Fazemos
                                                           10
essa transformação da seguinte forma:
  • Compomos o número decimal com o numerador da fração (3)
  • Contamos o número de zeros do denominador (um zero).
  • Colocamos a vírgula de modo que o número decimal tenha tantos algarismos
      decimais quantos forem esses zeros do denominador: ,3 (1 zero= 1 algarismo
      decimal).
  • Como não ficou nenhum algarismo na parte inteira, colocamos o zero (0,3).
Exemplos:
     2
1)      = 0,2 (Para 1 zero no denominador, um número com 1 algarismo decimal.)
    10
     51
2)       = 0,051 (Para 3 zeros no denominador, um número com 3 algarismos
   1000
                decimais.)
       Como eram necessárias três casas, completamos com 0 (zero).
                                  EXERCÍCIOS

     1) Faça a leitura dos seguintes números decimais:

     a) 0,7                                   d) 0,001
     b) 0,8                                   e) 2,4
     c) 0,09                                  f) 6,8
2
  2) Transforme as frações decimais em números decimais:
       4                             9                                   81
  a)                             c)                                  e)
     100                            100                                  10
      8                               1                                   63
  b)                             d)                                  f)
     10                             1000                                1000

  4. TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO DECIMAL
       A fração decimal é formada da seguinte maneira;
     • numerador: o próprio número decimal, sem a vírgula;
     • denominador: o algarismo 1, acompanhado de tantos zeros quantos forem
       os algarismos da parte decimal.
                      3                                35
Exemplos: 1) 0,3 =                          2) 3,5 =
                     10                                10
                                 EXERCÍCIOS
1) Transforme em frações decimais os seguintes números decimais:
   a) 0,8                 c) 0,04                       e) 1,7
   b) 0,6                 d) 0,26                        f) 3,18
5. PROPRIEDADES DOS NÚMEROS DECIMAIS
1ª) Zero à direita não altera o valor
O numeral decimal não se modifica quando acrescentamos um ou mais zeros à
direita de sua parte decimal.

Exemplo:
 0,3
 0,30    são iguais ou 0,3     = 0,30      = 0,300 =      0,3000
 0,300                  três     trinta      trezentos três mil décimos
 0,3000                décimos   centésimos milésimos de milésimos

2ª) Zero à esquerda altera o valor
O numeral decimal não se modifica quando acrescentamos um ou mais zeros à
esquerda, em sua parte decimal.

Exemplo:

0,3
0,03 são diferentes ou 0,3    ≠               0,03    ≠      0,003    ≠   0,0003
0,003                   três                  três            três      três décimos
0,0003                décimos              centésimos       milésimos   de milésimos


3ª) Na multiplicação por potência de 10, a vírgula se desloca para a direita
3
Quando multiplicamos o número decimal por 10,100, 1000, 000 (potências de 10),
deslocamos a vírgula para a direita, de acordo com o número de zeros dessa
potência.

Exemplos:
1) 0,41 . 10 = 4,1 → A vírgula “andou” um algarismo para a direita, pois o numeral
                     10 tem 1 zero.
2) 0,05 . 100 = 5  → A vírgula “andou” dois algarismos para a direita, pois
                     0,05 . 100 = 5,00 = 5.
Note que 5,0 = 5 , pois é um número inteiro.

3) 0,2157 . 1000 = 215,7
4) 0,31 . 10000 = 3100
      Note que como neste caso faltaram algarismos, completamos com zero.

                                   EXERCÍCIO

1) Efetue as seguintes multiplicações:
   a) 0,23 . 10                          e) 1,03 . 10
   b) 1,37 . 10                          f) 3,196 . 1000
   c) 0,5 . 100                          g) 0,0605 . 100
   d) 0,0001 . 1000

4ª) Na divisão por potência de 10, a vírgula se desloca para a esquerda.
Quando dividimos o número decimal por 10, 100, 1000, ... (potências de 10),
deslocamos a vírgula para a esquerda, de acordo com o número de zeros dessa
potência.

Exemplos:
1) 25,8 : 10 = 2, 58 → A vírgula “andou” um algarismo para a esquerda, pois o
                       numeral 10 tem 1 zero.

2) 0,8 : 100 = 0,008 → Como neste caso faltaram algarismos, completamos com
                       zeros.
                                 EXERCÍCIO
1) Efetue as seguintes divisões:

   a) 1,58 : 10   c) 158,9 : 100  e) 1,85 : 100                       g) 0,06 : 100
   b) 1,83 : 10   d) 0,99 : 10    f) 13,16 : 10
6. OPERAÇÕES COM NÚMEROS DECIMAIS
4
ADIÇÃO E SUBTRAÇÃO

      Para somar ou subtrair números decimais, devemos:
   • igualar o número de casas decimais, completando com zeros, se necessário;
   • colocar os números na posição vertical e efetuar a operação.
Exemplos:                                       3,51
1) 3,51 + 12,7 + 5 = 21,21                     12,70
                                                5,00 +
                                               21,21
ATENÇÃO: Os números são sempre alinhados pela vírgula.

2) 13,8 – 5,41 = 8,39                      13,80
                                             5,41   –
                                             8,39
                                   EXERCÍCIO
1) Efetue as operações indicadas:
a) 1,5 + 6,8 =            e) 13,21 – 8,5 =           i) 2,03 – 1,53 =
b) 6,5 + 3,4 =            f) 6,84 – 5,23 =           j) 3,56 + 2,41 – 1,35 =
c) 8,1 + 1,32 =           g) 35,61 – 0,12 =          l) 103,52 – 83,51 =
d) 9,58 + 6,3 =           h) 1,04 – 0,03 =          m) 12,44 + 13,56 + 1,23 =

MULTIPLICAÇÃO
Multiplicamos normalmente os números decimais, omitindo a vírgula.
No resultado final, colocamos a vírgula, da seguinte forma:
  • contamos o total de casas decimais dos fatores;
  • colocamos a vírgula no produto, de modo que esse total seja o número de
      casas decimais.
Exemplo: 3,21 . 1,4 = 4,494
                                    3,21        2 casas +
                                 x 1,4         + 1 casa = 3 casas decimais
                                   1284
                                   321
                                  4,494          3 casas




                                   EXERCÍCIO
5
1) Efetue as seguintes multiplicações:
   a) 3,4 . 5 =             e) 1,23 . 2,5 =             i) 1,2 . 5 =
   b) 2,8 . 8 =              f) 0,12 . 5,8 =            j) 2,31 . 2,4 =
   c) 5,6 . 1,7 =           g) 0,2 . 0,02 =             l) 0,02 . 0,002 =
   d) 3,5 . 1,6 =           h) 3,9 . 0,06 =            m) 3,41 . 0,12

DIVISÃO
Igualamos o número de casas decimais e eliminamos a vírgula, efetuando a divisão
normalmente.
1º CASO: 4 : 0,80                  400 80
4,00 : 0,80                       00   5
2º CASO: 3,21 : 3                 321 300
 3,21 : 3,00                  - 300 1
                                   21
Para continuarmos essa divisão, acrescentamos 0 no resto e vírgula no quociente:
321 300
300 1,
  210
Como a divisão ainda não é possível, acrescentamos outro 0 no resto e um 0 no
quociente, ou seja, 210 : 300 = 0
 321 300
-300 1, 07
   2100
  -2100
    000
3º CASO: 0,18 : 3
0,18 : 3, 00
18     300 → A divisão de 18 por 300 dá zero inteiros (18 é menor que 300).
        0

180     300 → Acrescentamos 0 no dividendo e vírgula no quociente.
       0,

1800     300 → Como a divisão ainda não é possível, ou seja, 180 : 300 = 0, acres-
        0,0    centamos outro 0 no dividendo e no quociente.

                                     EXERCÍCIO
1) Efetue as seguintes divisões:
   a) 1,44 : 1,2 =           f) 6,76 : 2,6 =          l) 3,15 : 0,21 =
   b) 4,84 : 0,2 =          g) 0,064 : 0,8 =         m) 83,04 : 3,46 =
6
  c) 6,56 : 0,4 =          h) 8,10 : 0,009 =       n) 21,614 : 2,14 =
  d) 1,96 : 0,14 =         i ) 8,46 : 0,2 =        o) 0,081 : 0,9 =
  e) 8,26 : 0,02 =         j ) 10,56 : 0,8 =

7. DÍZIMA PERIÓDICA
É o número decimal que possui INFINITOS algarismos que se repetem na sua
parte decimal.
           7
Exemplo:     em número decimal é igual a 7 : 3
           3
7      3
10 2,333...
  10
    10
      1...
Representa-se por 2,333... ou 2, 3 .
       Podemos observar que essa divisão é infinita, ou seja, continuaremos
obtendo no quociente o algarismo 3 e nunca chegaremos ao resto 0.
       O quociente, neste caso, chama-se DÍZIMA PERIÓDICA (2,333...).
       O número que se repete chama-se período (nesta dízima, o período é 3).
OBSERVAÇÃO:
Para evitar repetir os algarismos do período de uma dízima, utilizamos um traço
horizontal (—) sobre esses algarismos, escritos uma única vez.
Exemplos:
           1) 0,572727272... = 0,572 (período: 72)
              Note que 5 não faz parte do período (não se repete).
           2) 12,666... = 12, 6 (período: 6)

DÍZIMAS PERIÓDICAS SIMPLES E COMPOSTA
Quando o período começa logo após a vírgula, dizemos que a dízima periódica é
SIMPLES.

Exemplo: 0,535353... (período: 53)
Quando o período não começa logo após a vírgula, dizemos que a dízima periódica
é COMPOSTA.
Exemplo: 35,2751 (período: 51; não-período: 27).
                                   EXERCÍCIOS
1) Classifique as dízimas periódicas em simples ou compostas:
a) 0, 23              b) 1,05          c) 3,204141...     d) 2,0606...
7
2) Identifique o período de cada dízima:
a) 0,6838383... ____ b) 1,414141... ____ c) 0,632424... ___ d) 3,0737373... ___

        TRANSFORMAÇÃO DE DÍZIMA PERIÓDICA SIMPLES EM FRAÇÃO

A fração que corresponde a uma dízima periódica chama-se FRAÇÃO GERATRIZ.
Vejamos como determinar a fração geratriz de uma dízima periódica simples:
   • numerador: é o período da dízima;
   • denominador: é o número 9 repetido tantas vezes quantos forem os
      algarismos do período.
                                 período: 8 (um algarismo)
                            8
Exemplos: 1) 1,888... = 1          período de um algarismo (um nove)
                            9
                                   período: 13 (dois algarismos)
                            13
           2) 0,1313... =
                            99
                                    período de dois algarismos (dois noves)

                                 EXERCÍCIOS
1) Transforme as frações em dízimas periódicas:
    3                    2                       20                    2
a)                   c)                      e)                 g)
    9                    9                       99                   11
   4                     15                      5                    7
b)                    d)                      f)                   I)
   9                     99                      9                    9

2) Encontre a fração geratriz das dízimas periódicas simples:
a) 2,18
b) 0, 3
c) 0,1
d) 0,313131...
e) 1,535353...
f) 3,191919...

Frações decimais e números decimais 2 recuperada

  • 1.
    1 FRAÇÕES DECIMAIS E NÚMEROS DECIMAIS 1. FRAÇÃO DECIMAL Toda fração cujo denominador é potência de 10 (10, 100, 1000, 10000,...) chama- se fração decimal. Exemplos: 3 4 4 1) (lê-se “três décimos”) 2) 2 ou (lê-se quatro centésimos”.) 10 10 100 2. NÚMERO DECIMAL – Para representar, sob a forma decimal, quantidades que não são inteiras, utilizamos os números decimais, que se caracterizam pela presença de uma vírgula. A vírgula separa a parte inteira da parte decimal: décimos centésimos milioné- Inteiros , décimos centésimos milésimos de de simos milésimos milésimos Exemplos: 1) 1,04 (lê-se: “um inteiro e quatro centésimos”.) 2) 0,005 (lê-se: “cinco milésimos”.) 3. TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL 3 Observando os exemplos anteriores, vemos que é igual a 0,3. Fazemos 10 essa transformação da seguinte forma: • Compomos o número decimal com o numerador da fração (3) • Contamos o número de zeros do denominador (um zero). • Colocamos a vírgula de modo que o número decimal tenha tantos algarismos decimais quantos forem esses zeros do denominador: ,3 (1 zero= 1 algarismo decimal). • Como não ficou nenhum algarismo na parte inteira, colocamos o zero (0,3). Exemplos: 2 1) = 0,2 (Para 1 zero no denominador, um número com 1 algarismo decimal.) 10 51 2) = 0,051 (Para 3 zeros no denominador, um número com 3 algarismos 1000 decimais.) Como eram necessárias três casas, completamos com 0 (zero). EXERCÍCIOS 1) Faça a leitura dos seguintes números decimais: a) 0,7 d) 0,001 b) 0,8 e) 2,4 c) 0,09 f) 6,8
  • 2.
    2 2)Transforme as frações decimais em números decimais: 4 9 81 a) c) e) 100 100 10 8 1 63 b) d) f) 10 1000 1000 4. TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO DECIMAL A fração decimal é formada da seguinte maneira; • numerador: o próprio número decimal, sem a vírgula; • denominador: o algarismo 1, acompanhado de tantos zeros quantos forem os algarismos da parte decimal. 3 35 Exemplos: 1) 0,3 = 2) 3,5 = 10 10 EXERCÍCIOS 1) Transforme em frações decimais os seguintes números decimais: a) 0,8 c) 0,04 e) 1,7 b) 0,6 d) 0,26 f) 3,18 5. PROPRIEDADES DOS NÚMEROS DECIMAIS 1ª) Zero à direita não altera o valor O numeral decimal não se modifica quando acrescentamos um ou mais zeros à direita de sua parte decimal. Exemplo: 0,3 0,30 são iguais ou 0,3 = 0,30 = 0,300 = 0,3000 0,300 três trinta trezentos três mil décimos 0,3000 décimos centésimos milésimos de milésimos 2ª) Zero à esquerda altera o valor O numeral decimal não se modifica quando acrescentamos um ou mais zeros à esquerda, em sua parte decimal. Exemplo: 0,3 0,03 são diferentes ou 0,3 ≠ 0,03 ≠ 0,003 ≠ 0,0003 0,003 três três três três décimos 0,0003 décimos centésimos milésimos de milésimos 3ª) Na multiplicação por potência de 10, a vírgula se desloca para a direita
  • 3.
    3 Quando multiplicamos onúmero decimal por 10,100, 1000, 000 (potências de 10), deslocamos a vírgula para a direita, de acordo com o número de zeros dessa potência. Exemplos: 1) 0,41 . 10 = 4,1 → A vírgula “andou” um algarismo para a direita, pois o numeral 10 tem 1 zero. 2) 0,05 . 100 = 5 → A vírgula “andou” dois algarismos para a direita, pois 0,05 . 100 = 5,00 = 5. Note que 5,0 = 5 , pois é um número inteiro. 3) 0,2157 . 1000 = 215,7 4) 0,31 . 10000 = 3100 Note que como neste caso faltaram algarismos, completamos com zero. EXERCÍCIO 1) Efetue as seguintes multiplicações: a) 0,23 . 10 e) 1,03 . 10 b) 1,37 . 10 f) 3,196 . 1000 c) 0,5 . 100 g) 0,0605 . 100 d) 0,0001 . 1000 4ª) Na divisão por potência de 10, a vírgula se desloca para a esquerda. Quando dividimos o número decimal por 10, 100, 1000, ... (potências de 10), deslocamos a vírgula para a esquerda, de acordo com o número de zeros dessa potência. Exemplos: 1) 25,8 : 10 = 2, 58 → A vírgula “andou” um algarismo para a esquerda, pois o numeral 10 tem 1 zero. 2) 0,8 : 100 = 0,008 → Como neste caso faltaram algarismos, completamos com zeros. EXERCÍCIO 1) Efetue as seguintes divisões: a) 1,58 : 10 c) 158,9 : 100 e) 1,85 : 100 g) 0,06 : 100 b) 1,83 : 10 d) 0,99 : 10 f) 13,16 : 10 6. OPERAÇÕES COM NÚMEROS DECIMAIS
  • 4.
    4 ADIÇÃO E SUBTRAÇÃO Para somar ou subtrair números decimais, devemos: • igualar o número de casas decimais, completando com zeros, se necessário; • colocar os números na posição vertical e efetuar a operação. Exemplos: 3,51 1) 3,51 + 12,7 + 5 = 21,21 12,70 5,00 + 21,21 ATENÇÃO: Os números são sempre alinhados pela vírgula. 2) 13,8 – 5,41 = 8,39 13,80 5,41 – 8,39 EXERCÍCIO 1) Efetue as operações indicadas: a) 1,5 + 6,8 = e) 13,21 – 8,5 = i) 2,03 – 1,53 = b) 6,5 + 3,4 = f) 6,84 – 5,23 = j) 3,56 + 2,41 – 1,35 = c) 8,1 + 1,32 = g) 35,61 – 0,12 = l) 103,52 – 83,51 = d) 9,58 + 6,3 = h) 1,04 – 0,03 = m) 12,44 + 13,56 + 1,23 = MULTIPLICAÇÃO Multiplicamos normalmente os números decimais, omitindo a vírgula. No resultado final, colocamos a vírgula, da seguinte forma: • contamos o total de casas decimais dos fatores; • colocamos a vírgula no produto, de modo que esse total seja o número de casas decimais. Exemplo: 3,21 . 1,4 = 4,494 3,21 2 casas + x 1,4 + 1 casa = 3 casas decimais 1284 321 4,494 3 casas EXERCÍCIO
  • 5.
    5 1) Efetue asseguintes multiplicações: a) 3,4 . 5 = e) 1,23 . 2,5 = i) 1,2 . 5 = b) 2,8 . 8 = f) 0,12 . 5,8 = j) 2,31 . 2,4 = c) 5,6 . 1,7 = g) 0,2 . 0,02 = l) 0,02 . 0,002 = d) 3,5 . 1,6 = h) 3,9 . 0,06 = m) 3,41 . 0,12 DIVISÃO Igualamos o número de casas decimais e eliminamos a vírgula, efetuando a divisão normalmente. 1º CASO: 4 : 0,80 400 80 4,00 : 0,80 00 5 2º CASO: 3,21 : 3 321 300 3,21 : 3,00 - 300 1 21 Para continuarmos essa divisão, acrescentamos 0 no resto e vírgula no quociente: 321 300 300 1, 210 Como a divisão ainda não é possível, acrescentamos outro 0 no resto e um 0 no quociente, ou seja, 210 : 300 = 0 321 300 -300 1, 07 2100 -2100 000 3º CASO: 0,18 : 3 0,18 : 3, 00 18 300 → A divisão de 18 por 300 dá zero inteiros (18 é menor que 300). 0 180 300 → Acrescentamos 0 no dividendo e vírgula no quociente. 0, 1800 300 → Como a divisão ainda não é possível, ou seja, 180 : 300 = 0, acres- 0,0 centamos outro 0 no dividendo e no quociente. EXERCÍCIO 1) Efetue as seguintes divisões: a) 1,44 : 1,2 = f) 6,76 : 2,6 = l) 3,15 : 0,21 = b) 4,84 : 0,2 = g) 0,064 : 0,8 = m) 83,04 : 3,46 =
  • 6.
    6 c)6,56 : 0,4 = h) 8,10 : 0,009 = n) 21,614 : 2,14 = d) 1,96 : 0,14 = i ) 8,46 : 0,2 = o) 0,081 : 0,9 = e) 8,26 : 0,02 = j ) 10,56 : 0,8 = 7. DÍZIMA PERIÓDICA É o número decimal que possui INFINITOS algarismos que se repetem na sua parte decimal. 7 Exemplo: em número decimal é igual a 7 : 3 3 7 3 10 2,333... 10 10 1... Representa-se por 2,333... ou 2, 3 . Podemos observar que essa divisão é infinita, ou seja, continuaremos obtendo no quociente o algarismo 3 e nunca chegaremos ao resto 0. O quociente, neste caso, chama-se DÍZIMA PERIÓDICA (2,333...). O número que se repete chama-se período (nesta dízima, o período é 3). OBSERVAÇÃO: Para evitar repetir os algarismos do período de uma dízima, utilizamos um traço horizontal (—) sobre esses algarismos, escritos uma única vez. Exemplos: 1) 0,572727272... = 0,572 (período: 72) Note que 5 não faz parte do período (não se repete). 2) 12,666... = 12, 6 (período: 6) DÍZIMAS PERIÓDICAS SIMPLES E COMPOSTA Quando o período começa logo após a vírgula, dizemos que a dízima periódica é SIMPLES. Exemplo: 0,535353... (período: 53) Quando o período não começa logo após a vírgula, dizemos que a dízima periódica é COMPOSTA. Exemplo: 35,2751 (período: 51; não-período: 27). EXERCÍCIOS 1) Classifique as dízimas periódicas em simples ou compostas: a) 0, 23 b) 1,05 c) 3,204141... d) 2,0606...
  • 7.
    7 2) Identifique operíodo de cada dízima: a) 0,6838383... ____ b) 1,414141... ____ c) 0,632424... ___ d) 3,0737373... ___ TRANSFORMAÇÃO DE DÍZIMA PERIÓDICA SIMPLES EM FRAÇÃO A fração que corresponde a uma dízima periódica chama-se FRAÇÃO GERATRIZ. Vejamos como determinar a fração geratriz de uma dízima periódica simples: • numerador: é o período da dízima; • denominador: é o número 9 repetido tantas vezes quantos forem os algarismos do período. período: 8 (um algarismo) 8 Exemplos: 1) 1,888... = 1 período de um algarismo (um nove) 9 período: 13 (dois algarismos) 13 2) 0,1313... = 99 período de dois algarismos (dois noves) EXERCÍCIOS 1) Transforme as frações em dízimas periódicas: 3 2 20 2 a) c) e) g) 9 9 99 11 4 15 5 7 b) d) f) I) 9 99 9 9 2) Encontre a fração geratriz das dízimas periódicas simples: a) 2,18 b) 0, 3 c) 0,1 d) 0,313131... e) 1,535353... f) 3,191919...