Apostila 1 – Qi - 3º ano




    Trigonometria
29) Quantos graus mede aproximadamente um
ângulo de 0,105 radianos?

a)2
b)4
c)6
d)8
e)10
29) Quantos graus mede aproximadamente um
ângulo de 0,105 radianos?

a)2
            dados      Ângulo = 0,105 rad
b)4
c)6         O que se        Medida do
d)8          pede?       ângulo em graus
e)10
Solução
     Já sabemos que π rad equivale a 180º. Então,
basta fazer a regra de três:

   π       180º
                             x=
                                180º.0,105
0,105       x                       π

  Como π = 3,14, então temos que :

      180.0,105
   x=           = 6,01         Letra c
        3,14
30) Num relógio que funciona precisamente o
   ponteiro dos minutos desceve um ângulo de
   360º no tempo de 1 hora. Num relógio que está
   atrasando 2 minutos por dia, no tempo de 1
   hora o ponteiro dos minutosdescreve um
   ângulo de:
a) 358º
b) 359º
c) 359º 50’
d) 359º 30’
e) 359º 48’
30) Num relógio que funciona precisamente o
   ponteiro dos minutos descreve um ângulo de
   360º no tempo de 1 hora. Num relógio que está
   atrasando 2 minutos por dia, no tempo de 1
   hora o ponteiro dos minutos descreve um
   ângulo de:
a) 358º                    Relógio atrasa 2
                dados
b) 359º                    minutos por dia
c) 359º 50’
                 O que se       Ângulo que o
d) 359º 30’
                  pede?       relógio descreve
e) 359º 48’                       em 1 hora
Solução
  Pra saber o ângulo que ele descreve em uma
hora, precisamos saber quantos tempo ele atrasa
por hora.
24 h      2 min         2.1
                     x=           x = 5 segundos
 1h        x            24
  Agora é só saber quantos graus correspondem
a 5 segundos:
 60”      6º          5.6
                   x=           x = 0,5º = 30'
  5”      x           60
                                     Letra c
31) (UERJ) Observe a bicicleta e a tabela
  trigonométrica:




  Os centros das rodas estão a uma distância de
PQ igual a 120 cm e os raios PA e QB medem,
respectivamente, 25 cm e 52 cm. De acordo com a
tabela, o ângulo Ô tem o seguinte valor:
     a) 10º      b) 12º     c) 13º     d) 14º
31) (UERJ) Observe a bicicleta e a tabela
  trigonométrica:




  Os centros das rodas estão a uma distância de
PQ igual a 120 cm e os raios PA e QB medem,
respectivamente, 25 cm e 52 cm. De acordo com a
tabela, o ângulo Ô tem o seguinte valor:
     a) 10º      b) 12º     c) 13º     d) 14º
PQ = 120cm
           PA = 25 cm
dados
           QB = 52 cm
           PA e QB são raios


O que se
           Ângulo Ô
 pede?
Solução
   Olhando a figura, sabemos que para achar o ângulo
 Ô, devemos usar as razões trigonométricas, de acordo
 com a tabela. Porém, para isso, temos que achar o
 valor de OP ou AO antes.
                               Q
                         120
                   P
                                   52
           x        25
     O
                   A           B
  Note que os triângulos OAP e OBQ são semelhantes,
então:
               52 120 + x
                  =       ⇒ x = 111,11
               25    x
25
                   120
                         Q            sen Ô =
             P
                                              111,11
    111,11                   52
              25                      sen Ô = 0,225
O
              A          B
      Verificando a tabela, percebemos que do ângulo
    cujo seno vale 0,225 é o que mede 13º.




                    Logo, Ô = 13º  letra c
32) (UNIRIO) Ao ser indagado sobre o valor
              de sen 45º,
           um estudante passou assim:
             30º +60º            sen30º + sen60º
       45º =            sen45º =
                 2                      2
   Continuando como raciocínio o estudante encontrou
como resposta:
a) Um valor menor que o correto, diferente da metade
   do correto
b) O valor correto
c) A metade do valor correto
d) O dobro do valor correto
e) Um valor maior que o correto, diferente do dobro do
   correto
32) (UNIRIO) Ao ser indagado sobre o valor
               de sen 45º,
            um estudante passou assim:
             30º +60º          sen30º + sen60º
       45º =          sen45º =
                 2                    2
   Continuando como raciocínio o estudante encontrou
como resposta:
a) Um valor menor que o correto, diferente da metade
   do correto
b) O valor correto
c) A metade do valor correto
d) O dobro do valor correto
e) Um valor maior que o correto, diferente do dobro do
   correto
Fórmula para
dados
           calcular sen 45º


              Comparação entre o
O que se
            valor calculado e o valor
 pede?
                que conhecemos
Solução
            Resposta do estudante:
              sen 30º + sen 60º
    sen 45º =
                       2
              1      3
                 +
    sen 45º = 2 2 = 1+ 3 ⋅ 1 = 1+ 3
                  2         2   2 4
              1 + 1,7
    sen 45º =         = 0,675
                 4
                       2 1,4
Sabemos que sen 45º =   =    = 0,7
                      2   2
   Logo, a resposta é a letra a: um valor menor que
o correto, diferente da metade do correto.
33) (UFF) Considere os ângulos
            representados no círculo:




Pode-se afirmar que:
a) cos α < cos β
b) cos γ > cos α
c) senα > sen β
d) sen β < cos γ
e) cos β > cos γ
33) (UFF) Considere os ângulos
             representados no círculo:




Pode-se afirmar que:
a) cos α < cos β              Representação dos
                  dados
b) cos γ > cos α               arcos no círculo
c) senα > sen β                   Comparação
                   O que se
d) sen β < cos γ                entre os senos e
                    pede?
e) cos β > cos γ                  os cossenos
Solução
Analisando os senos      Analisando os cossenos




sen γ < sen β < senα        cos β < cos γ < cos α
      a) cos α < cos β   d) sen β < cos γ
      b) cos γ > cos α   e) cos β > cos γ
      c) senα > sen β
34) Se tg x = 3/4 e   π < x < 3π / 2 , o valor de
cos x – sen x é:

a) 7/5
b) - 7/5
c) - 2/5
d) 1/5
e) -1/5
34) Se tg x = 3/4 e   π < x < 3π / 2 , o valor de
cos x – sen x é:


a) 7/5                           tg x = 3/4
b) - 7/5           dados         X está no 3º
c) - 2/5                          quadrante

d) 1/5
                   O que se     cos x – sen x
e) -1/5             pede?
Solução
  Para calcular seno e cosseno de x, precisamos
calcular a hipotenusa.

            a        Pelo Teorema de Pitágora temos:
  3
                            a2 = 3 2 + 4 2  a = 5
            x
        4                            3º quadrante
          3              4
 sen x = − e cos x = −
          5              5
                         4 3    1
 Então, cos x - sen x = − + = −             letra e
                         5 5    5
tg a + tg b
35)                 =
    cotg a + cotg b

a) tg a . tg b
b) cotg a . cotg b
c) 1
d) 2
e) sec a . sec b
Solução
                   sen a sen b
                         +
  tg a + tg b      cos a cos b =
                =
cotg a + cotg b cos a + cos b
                   sen a sen b
  sen a cos b + sen b cos a           sen a sen b
=                           ⋅                           =
         cos a cos b          sen a cos b + sen b cos a
  sen a cos b + sen b cos a           sen a sen b
=                           ⋅                           =
         cos a cos b          sen a cos b + sen b cos a
  sen a sen b
=             = tg a tg b       letra a
  cos a cos b
36) (UFRJ) A figura mostra uma circunferência de 1m
  de raio e centro O, à qual pertencem os pontos A, B
  e P, sendo AO perpendicular BO; BS e AT são
  retas tangentes a essa circunferência.




Determine o perímetro do polígono AOBSTA em
função do ângulo θ .
36) (UFRJ) A figura mostra uma circunferência de 1m
  de raio e centro O, à qual pertencem os pontos A, B
  e P, sendo AO perpendicular BO; BS e AT são
  retas tangentes a essa circunferência.




  Determine o perímetro do polígono AOBSTA em
função do ângulo θ .
Raio = 1m
dados      AO perpendicular a BO

           BS e AT são tangentes


O que se   O perímetro
 pede?     de AOBSTA
Solução
                          1     C
                     B                        S


                    1
                                 T
                          θ
                     O     1     A

Como OA e OB são raios, então OA = OB = 1m.
Também sabemos que OA e OB são perpendiculares.
          Então, OACB é um quadrado e
            OA = OB = BC = AC = 1m
B    1      C                  S
                                            θ
                      1
                                    T
                            θ
                      O            A
                             1

  Como OACB é um quadrado , então BC e OA são
paralelas.
  Sendo AS tansversal a essas duas retas paralelas,
então o ângulo OSC também mede θ
                ˆ
y
          B    1     C                  S
                                    θ
         1                      z
                        T
               θ    x
         O              A
               1
Pelo triângulo OAT, temos :
       x
tg θ = ⇒ x = tgθ
       1
Pelo triângulo OSB, temos :
      1       1
tg θ = ⇒ y =      ⇒ y = cotgθ
      y      tg θ
y
           B      1       C                 S
                                        θ
          1                       z
                             T
                  θ      x
           O       1         A
Se y = cotg θ , então CS = cotg θ − 1
                          cos θ       cos θ − senθ
                                −1
        cotg θ − 1
cos θ =            ⇒ z = sen θ      =     senθ
             z             cos θ          cos θ
    cos θ − senθ     1     cos θ − senθ
z=               ⋅       =
        senθ       cos θ    senθ cos θ
       cos θ         senθ         1      1
z=             −             =        −
    senθ cos θ senθ cos θ senθ cos θ
y
              B     1      C                 S
                                         θ
             1                       z
                              T
                    θ     x
             O      1         A

      1     1
z=      −        = cossecθ − sec θ
    senθ cos θ
Já sabemos que :
OA = OB = 1 e também que y = cotg θ e x = tgθ
Então o prímetro do polígono AOBSTA, em função de θ é :
            2 + cotgθ + tgθ + cossecθ − secθ
37) (UNIRIO) O valor numérico da expressão:
                 π
              sen + cos 240º −[ tg ( − 750º ) ]
                                                2

                 4                                     é:
                               9π           5π 
          ( sec1200º )  cos sec  +  cotg 
                                4             6 

  (
a) 3 + 2 / 6  )
      (
b) − 3 + 2 / 6    )
  (
c) 3 − 2 / 6  )
      (
d) − 3− 2 / 6     )
e)0
Solução
   π             2
sen = sen 45º =
   4            2
                         1
cos 240º = − cos 60º = −
                         2
                                   3
tg ( - 750 ) = tg 330º = tg 30º =
                                  3
                    1           1          1
sec1200º =                =          =−         = −2
                cos 1200º cos 120º      cos 60º
9π          9.180                      1
cossec    = cossec        = cossec 405º =          =
        4          4                      sen 405º
               1      2    2 2
          =         =    =     = 2
            sen 45º    2    2

     5π        5.180 
cotg    = cotg        = cotg 150º = − cotg 30º =
      6        6 
           3     3 3
        =−    =−     =− 3
            3     3
π
    sen + cos 240º −[ tg ( − 750º ) ]
                                      2

       4                                       =
                     9π           5π    
( sec1200º )  cos sec  +  cotg          
                      4             6   

                       2
    2 1  3       2 1 3 3 2 −3− 2
      − −    
                    − −
   2 2  3 
              = 2 2 9=     6
=                                  =
             (
  − 2. 2 + − 3
               2
                   )
                  −2 2 +3 −2 2 +3


  3 2 −5       1       3 2 −5
=        ⋅          =
    6      − 2 2 + 3 − 12 2 + 18
3 2 −5    (
            - 12 2 − 18)=
            (
− 12 2 + 18 - 12 2 − 18)
− 72 − 54 2 + 60 2 + 90
                        =
        288 − 324

18 + 6 2
         =−
            (
            3+ 2   )        letra b
  − 36        6
99π       16π 
38) O valor de cos     + tg  −    é:
                    4        3 


a)  ( 3 − 2)/ 2
b)(3 2 + 2 3 ) / 6
c ) − (3 2 + 2 3 ) / 6
d) − ( 3 + 2) / 2
e) − ( 3 + ( 2 / 2 ) )
Solução
              99π                   99 ⋅180
Transformando     em graus, temos :         = 4455º
               4                       4
        Calculando a MDP de 4455, temos :
                  4455       360
                   135       12

                99π   
      Logo, cos        = cos 4455º = cos 135º =
                4     
                                         2
                        = − cos 45º = −
                                        2
16π                   16 ⋅180
Transformando     em graus, temos :         = 960º
               3                       3
                           16π
       Calculando a MDP de     , temos :
                            3
                 960 360
                 240 2
             16π   
    Logo, tg −      = tg ( − 960º ) = tg ( − 240º )
             3     
                     = tg120º = −tg 60º = − 3
 99π         16π   
cos        + tg −     =
    4           3     
      2       − 2 −2 3
=−      − 3=              =
     2            2
    2      
= −
    2   + 3
            
                  letra e

www.AulasParticularesApoio.Com.Br - Matemática - Exercício de Trigonometria

  • 1.
    Apostila 1 –Qi - 3º ano Trigonometria
  • 2.
    29) Quantos grausmede aproximadamente um ângulo de 0,105 radianos? a)2 b)4 c)6 d)8 e)10
  • 3.
    29) Quantos grausmede aproximadamente um ângulo de 0,105 radianos? a)2 dados Ângulo = 0,105 rad b)4 c)6 O que se Medida do d)8 pede? ângulo em graus e)10
  • 4.
    Solução Já sabemos que π rad equivale a 180º. Então, basta fazer a regra de três: π 180º x= 180º.0,105 0,105 x π Como π = 3,14, então temos que : 180.0,105 x= = 6,01 Letra c 3,14
  • 5.
    30) Num relógioque funciona precisamente o ponteiro dos minutos desceve um ângulo de 360º no tempo de 1 hora. Num relógio que está atrasando 2 minutos por dia, no tempo de 1 hora o ponteiro dos minutosdescreve um ângulo de: a) 358º b) 359º c) 359º 50’ d) 359º 30’ e) 359º 48’
  • 6.
    30) Num relógioque funciona precisamente o ponteiro dos minutos descreve um ângulo de 360º no tempo de 1 hora. Num relógio que está atrasando 2 minutos por dia, no tempo de 1 hora o ponteiro dos minutos descreve um ângulo de: a) 358º Relógio atrasa 2 dados b) 359º minutos por dia c) 359º 50’ O que se Ângulo que o d) 359º 30’ pede? relógio descreve e) 359º 48’ em 1 hora
  • 7.
    Solução Prasaber o ângulo que ele descreve em uma hora, precisamos saber quantos tempo ele atrasa por hora. 24 h 2 min 2.1 x= x = 5 segundos 1h x 24 Agora é só saber quantos graus correspondem a 5 segundos: 60” 6º 5.6 x= x = 0,5º = 30' 5” x 60 Letra c
  • 8.
    31) (UERJ) Observea bicicleta e a tabela trigonométrica: Os centros das rodas estão a uma distância de PQ igual a 120 cm e os raios PA e QB medem, respectivamente, 25 cm e 52 cm. De acordo com a tabela, o ângulo Ô tem o seguinte valor: a) 10º b) 12º c) 13º d) 14º
  • 9.
    31) (UERJ) Observea bicicleta e a tabela trigonométrica: Os centros das rodas estão a uma distância de PQ igual a 120 cm e os raios PA e QB medem, respectivamente, 25 cm e 52 cm. De acordo com a tabela, o ângulo Ô tem o seguinte valor: a) 10º b) 12º c) 13º d) 14º
  • 10.
    PQ = 120cm PA = 25 cm dados QB = 52 cm PA e QB são raios O que se Ângulo Ô pede?
  • 11.
    Solução Olhando a figura, sabemos que para achar o ângulo Ô, devemos usar as razões trigonométricas, de acordo com a tabela. Porém, para isso, temos que achar o valor de OP ou AO antes. Q 120 P 52 x 25 O A B Note que os triângulos OAP e OBQ são semelhantes, então: 52 120 + x = ⇒ x = 111,11 25 x
  • 12.
    25 120 Q sen Ô = P 111,11 111,11 52 25 sen Ô = 0,225 O A B Verificando a tabela, percebemos que do ângulo cujo seno vale 0,225 é o que mede 13º. Logo, Ô = 13º  letra c
  • 13.
    32) (UNIRIO) Aoser indagado sobre o valor de sen 45º, um estudante passou assim: 30º +60º sen30º + sen60º 45º = sen45º = 2 2 Continuando como raciocínio o estudante encontrou como resposta: a) Um valor menor que o correto, diferente da metade do correto b) O valor correto c) A metade do valor correto d) O dobro do valor correto e) Um valor maior que o correto, diferente do dobro do correto
  • 14.
    32) (UNIRIO) Aoser indagado sobre o valor de sen 45º, um estudante passou assim: 30º +60º sen30º + sen60º 45º = sen45º = 2 2 Continuando como raciocínio o estudante encontrou como resposta: a) Um valor menor que o correto, diferente da metade do correto b) O valor correto c) A metade do valor correto d) O dobro do valor correto e) Um valor maior que o correto, diferente do dobro do correto
  • 15.
    Fórmula para dados calcular sen 45º Comparação entre o O que se valor calculado e o valor pede? que conhecemos
  • 16.
    Solução Resposta do estudante: sen 30º + sen 60º sen 45º = 2 1 3 + sen 45º = 2 2 = 1+ 3 ⋅ 1 = 1+ 3 2 2 2 4 1 + 1,7 sen 45º = = 0,675 4 2 1,4 Sabemos que sen 45º = = = 0,7 2 2 Logo, a resposta é a letra a: um valor menor que o correto, diferente da metade do correto.
  • 17.
    33) (UFF) Considereos ângulos representados no círculo: Pode-se afirmar que: a) cos α < cos β b) cos γ > cos α c) senα > sen β d) sen β < cos γ e) cos β > cos γ
  • 18.
    33) (UFF) Considereos ângulos representados no círculo: Pode-se afirmar que: a) cos α < cos β Representação dos dados b) cos γ > cos α arcos no círculo c) senα > sen β Comparação O que se d) sen β < cos γ entre os senos e pede? e) cos β > cos γ os cossenos
  • 19.
    Solução Analisando os senos Analisando os cossenos sen γ < sen β < senα cos β < cos γ < cos α a) cos α < cos β d) sen β < cos γ b) cos γ > cos α e) cos β > cos γ c) senα > sen β
  • 20.
    34) Se tgx = 3/4 e π < x < 3π / 2 , o valor de cos x – sen x é: a) 7/5 b) - 7/5 c) - 2/5 d) 1/5 e) -1/5
  • 21.
    34) Se tgx = 3/4 e π < x < 3π / 2 , o valor de cos x – sen x é: a) 7/5 tg x = 3/4 b) - 7/5 dados X está no 3º c) - 2/5 quadrante d) 1/5 O que se cos x – sen x e) -1/5 pede?
  • 22.
    Solução Paracalcular seno e cosseno de x, precisamos calcular a hipotenusa. a Pelo Teorema de Pitágora temos: 3 a2 = 3 2 + 4 2  a = 5 x 4 3º quadrante 3 4 sen x = − e cos x = − 5 5 4 3 1 Então, cos x - sen x = − + = − letra e 5 5 5
  • 23.
    tg a +tg b 35) = cotg a + cotg b a) tg a . tg b b) cotg a . cotg b c) 1 d) 2 e) sec a . sec b
  • 24.
    Solução sen a sen b + tg a + tg b cos a cos b = = cotg a + cotg b cos a + cos b sen a sen b sen a cos b + sen b cos a sen a sen b = ⋅ = cos a cos b sen a cos b + sen b cos a sen a cos b + sen b cos a sen a sen b = ⋅ = cos a cos b sen a cos b + sen b cos a sen a sen b = = tg a tg b letra a cos a cos b
  • 25.
    36) (UFRJ) Afigura mostra uma circunferência de 1m de raio e centro O, à qual pertencem os pontos A, B e P, sendo AO perpendicular BO; BS e AT são retas tangentes a essa circunferência. Determine o perímetro do polígono AOBSTA em função do ângulo θ .
  • 26.
    36) (UFRJ) Afigura mostra uma circunferência de 1m de raio e centro O, à qual pertencem os pontos A, B e P, sendo AO perpendicular BO; BS e AT são retas tangentes a essa circunferência. Determine o perímetro do polígono AOBSTA em função do ângulo θ .
  • 27.
    Raio = 1m dados AO perpendicular a BO BS e AT são tangentes O que se O perímetro pede? de AOBSTA
  • 28.
    Solução 1 C B S 1 T θ O 1 A Como OA e OB são raios, então OA = OB = 1m. Também sabemos que OA e OB são perpendiculares. Então, OACB é um quadrado e OA = OB = BC = AC = 1m
  • 29.
    B 1 C S θ 1 T θ O A 1 Como OACB é um quadrado , então BC e OA são paralelas. Sendo AS tansversal a essas duas retas paralelas, então o ângulo OSC também mede θ ˆ
  • 30.
    y B 1 C S θ 1 z T θ x O A 1 Pelo triângulo OAT, temos : x tg θ = ⇒ x = tgθ 1 Pelo triângulo OSB, temos : 1 1 tg θ = ⇒ y = ⇒ y = cotgθ y tg θ
  • 31.
    y B 1 C S θ 1 z T θ x O 1 A Se y = cotg θ , então CS = cotg θ − 1 cos θ cos θ − senθ −1 cotg θ − 1 cos θ = ⇒ z = sen θ = senθ z cos θ cos θ cos θ − senθ 1 cos θ − senθ z= ⋅ = senθ cos θ senθ cos θ cos θ senθ 1 1 z= − = − senθ cos θ senθ cos θ senθ cos θ
  • 32.
    y B 1 C S θ 1 z T θ x O 1 A 1 1 z= − = cossecθ − sec θ senθ cos θ Já sabemos que : OA = OB = 1 e também que y = cotg θ e x = tgθ Então o prímetro do polígono AOBSTA, em função de θ é : 2 + cotgθ + tgθ + cossecθ − secθ
  • 33.
    37) (UNIRIO) Ovalor numérico da expressão: π sen + cos 240º −[ tg ( − 750º ) ] 2 4 é:  9π   5π  ( sec1200º )  cos sec  +  cotg   4   6  ( a) 3 + 2 / 6 ) ( b) − 3 + 2 / 6 ) ( c) 3 − 2 / 6 ) ( d) − 3− 2 / 6 ) e)0
  • 34.
    Solução π 2 sen = sen 45º = 4 2 1 cos 240º = − cos 60º = − 2 3 tg ( - 750 ) = tg 330º = tg 30º = 3 1 1 1 sec1200º = = =− = −2 cos 1200º cos 120º cos 60º
  • 35.
     9.180  1 cossec = cossec  = cossec 405º = = 4  4  sen 405º 1 2 2 2 = = = = 2 sen 45º 2 2 5π  5.180  cotg = cotg  = cotg 150º = − cotg 30º = 6  6  3 3 3 =− =− =− 3 3 3
  • 36.
    π sen + cos 240º −[ tg ( − 750º ) ] 2 4 =  9π   5π  ( sec1200º )  cos sec  +  cotg   4   6  2 2 1  3 2 1 3 3 2 −3− 2 − −  − − 2 2  3    = 2 2 9= 6 = = ( − 2. 2 + − 3 2 ) −2 2 +3 −2 2 +3 3 2 −5 1 3 2 −5 = ⋅ = 6 − 2 2 + 3 − 12 2 + 18
  • 37.
    3 2 −5 ( - 12 2 − 18)= ( − 12 2 + 18 - 12 2 − 18) − 72 − 54 2 + 60 2 + 90 = 288 − 324 18 + 6 2 =− ( 3+ 2 ) letra b − 36 6
  • 38.
    99π  16π  38) O valor de cos + tg  −  é: 4  3  a) ( 3 − 2)/ 2 b)(3 2 + 2 3 ) / 6 c ) − (3 2 + 2 3 ) / 6 d) − ( 3 + 2) / 2 e) − ( 3 + ( 2 / 2 ) )
  • 39.
    Solução 99π 99 ⋅180 Transformando em graus, temos : = 4455º 4 4 Calculando a MDP de 4455, temos : 4455 360 135 12  99π  Logo, cos  = cos 4455º = cos 135º =  4  2 = − cos 45º = − 2
  • 40.
    16π 16 ⋅180 Transformando em graus, temos : = 960º 3 3 16π Calculando a MDP de , temos : 3 960 360 240 2  16π  Logo, tg −  = tg ( − 960º ) = tg ( − 240º )  3  = tg120º = −tg 60º = − 3
  • 41.
     99π   16π  cos  + tg − =  4   3  2 − 2 −2 3 =− − 3= = 2 2  2  = −  2 + 3    letra e