Ensino Superior
Matemática Básica
Unidade 11 - Ângulos
Amintas Paiva Afonso
β αO
A
B
ÂNGULO – é a abertura formada por dois raios
divergentes que têm um extremo comum que se
denomina vértice.
ELEMENTOS DE UM ÂNGULO:
α
0º < α < 180º0º < α < 180º
0º < β < 90º0º < β < 90ºβ
CLASSIFICAÇÃO SEGUNDO A SUA MEDIDA
a) ÂNGULO CONVEXO
a.1) ÂNGULO AGUDO
θ = 90ºθ = 90º
α
90º < α < 180º90º < α < 180º
θ
a.2) ÂNGULO RETO
a.3) ÂNGULO OBTUSO
α + β = 90ºα + β = 90º
θ + δ = 180ºθ + δ = 180º
δθ
α
β
CLASSIFICAÇÃO SEGUNDO A SOMA
a) ÂNGULOS COMPLEMENTARES
b) ÂNGULOS SUPLEMENTARES
α
β δ ε
φ
α α
CLASSIFICAÇÃO SEGUNDO A SUA POSIÇÃO
a) ÂNGULOS ADJACENTES b) ÂNGULOS CONSECUTIVOS
ÂNGULOS OPOSTOS PELO VÉRTICE
são congruentes
Pode formar mais ângulosUn lado comum
01. Ângulos alternos internos:
m ∠3 = m ∠5; m ∠4 = m ∠6
02. Ângulos alternos externos:
m ∠1 = m ∠7; m ∠2 = m
∠8
03. Ângulos conjugados internos:
m ∠3+m ∠6=m ∠4+m ∠5=180°
04. Ângulos conjugados externos:
m ∠1+m ∠8=m ∠2+m ∠7=180°
05. Ângulos correspondentes:
m ∠1 = m ∠5; m ∠4 = m ∠8
m ∠2 = m ∠6; m ∠3 = m ∠7
ÂNGULOS ENTRE DUAS RETAS PARALELAS
E UMA RETA SECANTE
1 2
34
5 6
78
α + β + θ = x + yα + β + θ = x + y
α
β
θ
x
y
01- Ângulos que se formam por uma linha poligonal entre
duas retas paralelas.
PROPRIEDADES DOS ÂNGULOS
α
β
θ
δ
ε
α + β + θ + δ + ε = 180°α + β + θ + δ + ε = 180°
02- ÂNGULOS ENTRE DUAS RETAS PARALELAS
α + β = 180°α + β = 180°
α β
03- ÂNGULOS DE LADOS PERPENDICULARES
O complemento da diferença entre o suplemento e o
complemento de um ângulo “X” é igual ao dobro
do complemento do ângulo “X”. Calcule a medida do
ângulo “X”.
90 - { ( ) - ( ) } = ( )180° - X 90° - X 90° - X2
90° - { 180° - X - 90° + X } = 180° - 2X
90° - 90° = 180° - 2X
2X = 180° X = 90°X = 90°
RESOLUÇÃO
Problema Nº 01
A estrutura segundo o enunciado:
Desenvolvendo se obtem:
Logo se reduz a:
A soma das medidas dos ângulos é 80° e o
complemento do primeiro ângulo é o dobro da
medida do segundo ângulo. Calcule a diferença
das medidas desses ângulos.
Sejam os ângulos: α e β
α + β = 80°Dado: β = 80° - α ( 1 )
( 90° - α ) = 2β ( 2 )
Substituindo (1) em (2):
( 90° - α ) = 2 ( 80° - α )
90° - α = 160° -2α
β = 10°
α = 70°
α - β = 70°-10°
= 60°
Problema Nº 02
RESOLUÇÃO
Dado:
Diferença das medidas
Resolvendo
A soma de seus complementos dos ângulos é 130°
e a diferença de seus suplementos dos mesmos
ângulos é 10°. Calcule a medida destes ângulos.
Sejam os ângulos: α e β
( 90° - α ) ( 90° - β ) = 130°+
β + α = 50° ( 1 )
( 180° - α ) ( 180° - β ) = 10°-
β - α = 10° ( 2 )
Resolvendo: (1) e (2)
β + α = 50°
β - α = 10°
(+)
2β = 60°
β = 30°
α = 20°
Problema Nº 03
RESOLUÇÃO
Do enunciado:
Do enunciado:
Se têm ângulos adjacentes AOB e BOC
(AOB<BOC), se traça a bissetriz OM dol ângulo
AOC; se os ângulos BOC e BOM medem 60° e 20°
respectivamente. Calcule a medida do ângulo AOB.
A B
O
C
M
α
α
60°
20°X
Da figura:
α = 60° - 20°
Logo:
X = 40° - 20°
α = 40°
X = 20°X = 20°
Problema Nº 04
RESOLUÇÃO
A diferença das medidas dos ângulos adjacentes
AOB e BOC é 30°. Calcule a medida do ângulo
formado pela bissetriz do ângulo AOC com o lado
OB.
A
O
B
C
θ
θ
X
(θ- X)
( θ + X) (θ - X)= 30º
2X=30º
X = 15°X = 15°
Problema Nº 05
RESOLUÇÃO
M
Construção do gráfico segundo o
enunciado
Do enunciado:
AOB - OBC = 30°
-
Logo se substitui pelo que
se observa no gráfico
Se têm os ângulos consecutivos AOB, BOC e COD
tal que a m∠AOC = m∠BOD = 90°. Calcule a
medida do ângulo formado pelas bissetrizes dos
ângulos AOB e COD.
A
C
B
D
M
N
αα
β
β
θ
X
Da figura:
2α + θ = 90°
θ + 2β = 90°
( + )
2α + 2θ + 2β = 180°
α + θ + β = 90°
X = α + θ + βX = α + θ + β
X = 90°X = 90°
Problema Nº 06
RESOLUÇÃO
Construção do gráfico segundo o enunciado
Se m // n . Calcule a medida do ângulo “X”
80°
30°
α
α
θ
θ
X
m
n
Problema Nº 07
2α + 2θ = 80° + 30°
Pela propriedade
Propriedade do quadrilátero
côncavo
α + θ = 55° (1)
80° = α + θ + X (2)
Substituindo (1) em (2)
80° = 55° + X
X = 25°X = 25°
80°
30°
α
α
θ
θ
X
m
n
RESOLUÇÃO
Se m // n . Calcular a medida do ângulo “X”
5α
4α 65°
X
m
n
Problema Nº 08
5α
4α 65°
X
m
n
Pela propiedad:
4α + 5α = 90°
α = 10°α = 10°
Ângulo exterior do triângulo
40° 65°
X = 40° + 65°
X = 105°X = 105°
RESOLUÇÃO
Se m // n . Calcule a medida do ângulo ”X”
α
2α
x
m
n
θ
2θ
Problema Nº 09
3α + 3θ = 180°
α + θ = 60°α + θ = 60°
Ângulos entre línhas poligonais
X = α + θ X = 60°X = 60°
RESOLUÇÃO
α
2α
x
m
n
θ
2θ
x
Ângulos conjugados
internos
PROBLEMA 01- Se L1 // L2 . Calcule a m ∠ x
A) 10° B) 20° C) 30° D) 40° E) 50°
x
α
α
β
β
4x
3x
L1
L2
m
n
30°
X
PROBLEMA 02- Se m // n. Calcule a m ∠ x
A) 18° B) 20° C) 30° D) 36° E) 48°
PROBLEMA 03- Se m // n. Calcule a m ∠ α
A) 15° B) 22° C) 27° D) 38° E) 45°
3α
3α
3α
α
m
n
PROBLEMA 04- Se m // n. Calcule o valor de “x”
A) 10° B) 15° C) 20° D) 25° E) 30°
40°
95°
α
α
2x
m
n
PROBLEMA 05- Calcule m ∠ x
A) 99° B) 100° C) 105° D) 110° E) 120°
3α
6α
x
α
4θ
4α
θ
X
m
n
PROBLEMA 06- Se m // n. Calcule m ∠ x
A) 22° B) 28° C) 30° D) 36° E) 60°
A) 24° B) 25° C) 32° D) 35° E) 45°
PROBLEMA 07- Se. Calcule m ∠ x
88°
24°
x
α
α
θ
θ
m
n
PROBLEMA 08- Se m // n. Calcule m ∠ x
20°
30°
X
m
n
A) 50° B) 60° C) 70° D) 80° E) 30°
PROBLEMA 09- Se m//n e θ - α = 80°. Calcule m∠x
A) 60° B) 65° C) 70° D) 75° E) 80°
θ
θ
x
α
α
m
n
PROBLEMA 10- Se m // n. Calcule m ∠ x
A) 20° B) 30° C) 40° D) 50° E) 60°
x
x
x
m
n
PROBLEMA 11- Se m // n. Calcule m ∠ α
A) 46° B) 48° C) 50° D) 55° E) 60°
180°-2α
α
2α
m
n
PROBLEMA 12- Se m // n. Calcule m ∠ x
A) 30° B) 36° C) 40° D) 45° E) 50°
α
α
θ
θ
x
80°
m
n
PROBLEMA 13- Se m // n. Calcule m ∠ x
A) 30° B) 40° C) 50° D) 60° E) 70°
80°
α
α
β
β
m
n
x
REPOSTAS DOS PROBLEMAS PROPOSTOS
1. 20º 8. 50º
2. 30º 9. 80º
3. 45º 10. 30º
4. 10º 11. 60º
5. 120º 12. 40º
6. 36º 13. 50º
7. 32º
Doc matematica _1182035541

Doc matematica _1182035541

  • 1.
    Ensino Superior Matemática Básica Unidade11 - Ângulos Amintas Paiva Afonso
  • 2.
    β αO A B ÂNGULO –é a abertura formada por dois raios divergentes que têm um extremo comum que se denomina vértice. ELEMENTOS DE UM ÂNGULO:
  • 3.
    α 0º < α< 180º0º < α < 180º 0º < β < 90º0º < β < 90ºβ CLASSIFICAÇÃO SEGUNDO A SUA MEDIDA a) ÂNGULO CONVEXO a.1) ÂNGULO AGUDO
  • 4.
    θ = 90ºθ= 90º α 90º < α < 180º90º < α < 180º θ a.2) ÂNGULO RETO a.3) ÂNGULO OBTUSO
  • 5.
    α + β= 90ºα + β = 90º θ + δ = 180ºθ + δ = 180º δθ α β CLASSIFICAÇÃO SEGUNDO A SOMA a) ÂNGULOS COMPLEMENTARES b) ÂNGULOS SUPLEMENTARES
  • 6.
    α β δ ε φ αα CLASSIFICAÇÃO SEGUNDO A SUA POSIÇÃO a) ÂNGULOS ADJACENTES b) ÂNGULOS CONSECUTIVOS ÂNGULOS OPOSTOS PELO VÉRTICE são congruentes Pode formar mais ângulosUn lado comum
  • 7.
    01. Ângulos alternosinternos: m ∠3 = m ∠5; m ∠4 = m ∠6 02. Ângulos alternos externos: m ∠1 = m ∠7; m ∠2 = m ∠8 03. Ângulos conjugados internos: m ∠3+m ∠6=m ∠4+m ∠5=180° 04. Ângulos conjugados externos: m ∠1+m ∠8=m ∠2+m ∠7=180° 05. Ângulos correspondentes: m ∠1 = m ∠5; m ∠4 = m ∠8 m ∠2 = m ∠6; m ∠3 = m ∠7 ÂNGULOS ENTRE DUAS RETAS PARALELAS E UMA RETA SECANTE 1 2 34 5 6 78
  • 8.
    α + β+ θ = x + yα + β + θ = x + y α β θ x y 01- Ângulos que se formam por uma linha poligonal entre duas retas paralelas. PROPRIEDADES DOS ÂNGULOS
  • 9.
    α β θ δ ε α + β+ θ + δ + ε = 180°α + β + θ + δ + ε = 180° 02- ÂNGULOS ENTRE DUAS RETAS PARALELAS
  • 10.
    α + β= 180°α + β = 180° α β 03- ÂNGULOS DE LADOS PERPENDICULARES
  • 12.
    O complemento dadiferença entre o suplemento e o complemento de um ângulo “X” é igual ao dobro do complemento do ângulo “X”. Calcule a medida do ângulo “X”. 90 - { ( ) - ( ) } = ( )180° - X 90° - X 90° - X2 90° - { 180° - X - 90° + X } = 180° - 2X 90° - 90° = 180° - 2X 2X = 180° X = 90°X = 90° RESOLUÇÃO Problema Nº 01 A estrutura segundo o enunciado: Desenvolvendo se obtem: Logo se reduz a:
  • 13.
    A soma dasmedidas dos ângulos é 80° e o complemento do primeiro ângulo é o dobro da medida do segundo ângulo. Calcule a diferença das medidas desses ângulos. Sejam os ângulos: α e β α + β = 80°Dado: β = 80° - α ( 1 ) ( 90° - α ) = 2β ( 2 ) Substituindo (1) em (2): ( 90° - α ) = 2 ( 80° - α ) 90° - α = 160° -2α β = 10° α = 70° α - β = 70°-10° = 60° Problema Nº 02 RESOLUÇÃO Dado: Diferença das medidas Resolvendo
  • 14.
    A soma deseus complementos dos ângulos é 130° e a diferença de seus suplementos dos mesmos ângulos é 10°. Calcule a medida destes ângulos. Sejam os ângulos: α e β ( 90° - α ) ( 90° - β ) = 130°+ β + α = 50° ( 1 ) ( 180° - α ) ( 180° - β ) = 10°- β - α = 10° ( 2 ) Resolvendo: (1) e (2) β + α = 50° β - α = 10° (+) 2β = 60° β = 30° α = 20° Problema Nº 03 RESOLUÇÃO Do enunciado: Do enunciado:
  • 15.
    Se têm ângulosadjacentes AOB e BOC (AOB<BOC), se traça a bissetriz OM dol ângulo AOC; se os ângulos BOC e BOM medem 60° e 20° respectivamente. Calcule a medida do ângulo AOB. A B O C M α α 60° 20°X Da figura: α = 60° - 20° Logo: X = 40° - 20° α = 40° X = 20°X = 20° Problema Nº 04 RESOLUÇÃO
  • 16.
    A diferença dasmedidas dos ângulos adjacentes AOB e BOC é 30°. Calcule a medida do ângulo formado pela bissetriz do ângulo AOC com o lado OB. A O B C θ θ X (θ- X) ( θ + X) (θ - X)= 30º 2X=30º X = 15°X = 15° Problema Nº 05 RESOLUÇÃO M Construção do gráfico segundo o enunciado Do enunciado: AOB - OBC = 30° - Logo se substitui pelo que se observa no gráfico
  • 17.
    Se têm osângulos consecutivos AOB, BOC e COD tal que a m∠AOC = m∠BOD = 90°. Calcule a medida do ângulo formado pelas bissetrizes dos ângulos AOB e COD. A C B D M N αα β β θ X Da figura: 2α + θ = 90° θ + 2β = 90° ( + ) 2α + 2θ + 2β = 180° α + θ + β = 90° X = α + θ + βX = α + θ + β X = 90°X = 90° Problema Nº 06 RESOLUÇÃO Construção do gráfico segundo o enunciado
  • 18.
    Se m //n . Calcule a medida do ângulo “X” 80° 30° α α θ θ X m n Problema Nº 07
  • 19.
    2α + 2θ= 80° + 30° Pela propriedade Propriedade do quadrilátero côncavo α + θ = 55° (1) 80° = α + θ + X (2) Substituindo (1) em (2) 80° = 55° + X X = 25°X = 25° 80° 30° α α θ θ X m n RESOLUÇÃO
  • 20.
    Se m //n . Calcular a medida do ângulo “X” 5α 4α 65° X m n Problema Nº 08
  • 21.
    5α 4α 65° X m n Pela propiedad: 4α+ 5α = 90° α = 10°α = 10° Ângulo exterior do triângulo 40° 65° X = 40° + 65° X = 105°X = 105° RESOLUÇÃO
  • 22.
    Se m //n . Calcule a medida do ângulo ”X” α 2α x m n θ 2θ Problema Nº 09
  • 23.
    3α + 3θ= 180° α + θ = 60°α + θ = 60° Ângulos entre línhas poligonais X = α + θ X = 60°X = 60° RESOLUÇÃO α 2α x m n θ 2θ x Ângulos conjugados internos
  • 25.
    PROBLEMA 01- SeL1 // L2 . Calcule a m ∠ x A) 10° B) 20° C) 30° D) 40° E) 50° x α α β β 4x 3x L1 L2
  • 26.
    m n 30° X PROBLEMA 02- Sem // n. Calcule a m ∠ x A) 18° B) 20° C) 30° D) 36° E) 48°
  • 27.
    PROBLEMA 03- Sem // n. Calcule a m ∠ α A) 15° B) 22° C) 27° D) 38° E) 45° 3α 3α 3α α m n
  • 28.
    PROBLEMA 04- Sem // n. Calcule o valor de “x” A) 10° B) 15° C) 20° D) 25° E) 30° 40° 95° α α 2x m n
  • 29.
    PROBLEMA 05- Calculem ∠ x A) 99° B) 100° C) 105° D) 110° E) 120° 3α 6α x
  • 30.
    α 4θ 4α θ X m n PROBLEMA 06- Sem // n. Calcule m ∠ x A) 22° B) 28° C) 30° D) 36° E) 60°
  • 31.
    A) 24° B)25° C) 32° D) 35° E) 45° PROBLEMA 07- Se. Calcule m ∠ x 88° 24° x α α θ θ m n
  • 32.
    PROBLEMA 08- Sem // n. Calcule m ∠ x 20° 30° X m n A) 50° B) 60° C) 70° D) 80° E) 30°
  • 33.
    PROBLEMA 09- Sem//n e θ - α = 80°. Calcule m∠x A) 60° B) 65° C) 70° D) 75° E) 80° θ θ x α α m n
  • 34.
    PROBLEMA 10- Sem // n. Calcule m ∠ x A) 20° B) 30° C) 40° D) 50° E) 60° x x x m n
  • 35.
    PROBLEMA 11- Sem // n. Calcule m ∠ α A) 46° B) 48° C) 50° D) 55° E) 60° 180°-2α α 2α m n
  • 36.
    PROBLEMA 12- Sem // n. Calcule m ∠ x A) 30° B) 36° C) 40° D) 45° E) 50° α α θ θ x 80° m n
  • 37.
    PROBLEMA 13- Sem // n. Calcule m ∠ x A) 30° B) 40° C) 50° D) 60° E) 70° 80° α α β β m n x
  • 38.
    REPOSTAS DOS PROBLEMASPROPOSTOS 1. 20º 8. 50º 2. 30º 9. 80º 3. 45º 10. 30º 4. 10º 11. 60º 5. 120º 12. 40º 6. 36º 13. 50º 7. 32º