distanciapontoplano

393 visualizações

Publicada em

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
393
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
2
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

distanciapontoplano

  1. 1. GEOMETRIA DESCRITIVA A 11.º Ano Problemas Métricos Distância entre um Ponto e um Plano
  2. 2. GENERALIDADES A distância de um ponto a um plano é medida numa recta ortogonal ao plano que passa pelo ponto, sendo o comprimento do segmento de recta que tem um extremo no ponto dado e o outro extremo no plano (no ponto de intersecção da recta com o plano). A p d I α
  3. 3. método geral para a determinação da distância de um ponto a um plano consiste em: 1. conduzir, pelo ponto, uma recta ortogonal ao plano; 2. determinar o ponto de intersecção dessa recta com o plano; 3. a distância do ponto ao plano é o comprimento do segmento de recta que tem extremos nos dois pontos – o ponto dado e o ponto de intersecção da recta com o plano.
  4. 4. Distância entre um Ponto e um Plano Projectante Pretende-se as projecções e a V.G. da distância entre o ponto M e o plano α. Primeiro, é conduzido uma recta ortogonal ao plano α, a recta p , passando por M . f α h α É obtido o ponto I , ponto de intersecção da recta p com o plano α, a partir do cruzamento das projecções horizontais da recta com o plano, tendo em conta que o plano α é projectante horizontal. p 2 p 1 V.G. x M 1 M 2 I 1 I 2 A distância de M a I é a distância do ponto M ao plano α. O segmento de recta [ MI ] é um segmento de recta horizontal, pelo que a V.G. de MI está na projecção horizontal de MI , M 1 I 1 .
  5. 5. São dados um plano de topo θ e um ponto A (-2; 3; 2). O plano θ corta o eixo x num ponto com 3 cm de abcissa e faz um diedro de 60º (a.d.) com o Plano Horizontal de Projecção. Determina as projecções e a V.G. da distância entre o ponto A e o plano θ. f θ h θ p 2 p 1 Primeiro, é conduzido uma recta ortogonal ao plano θ, a recta p , passando por A . É obtido o ponto I , ponto de intersecção da recta p com o plano θ, a partir do cruzamento das projecções frontais da recta com o plano, tendo em conta que o plano θ é projectante frontal. V.G. x A 1 A 2 y ≡ z A distância de A a I é a distância do ponto A ao plano θ. O segmento de recta [ AI ] é um segmento de recta frontal, pelo que a V.G. de AI está na projecção frontal de AI , A 2 I 2 . I 1 I 2
  6. 6. São dados um plano horizontal υ e um ponto A (3; 5). O plano υ tem 2 cm de cota. Determina as projecções e a V.G. da distância entre o ponto A e o plano υ. (f υ ) Primeiro, é conduzido uma recta ortogonal ao plano υ, a recta p , passando por A . É obtido o ponto I , ponto de intersecção da recta p com o plano υ, a partir do cruzamento das projecções frontais da recta com o plano, tendo em conta que o plano υ é projectante frontal. p 2 ≡ (p 1 ) ≡ I 1 V.G. x A 1 A 2 A distância de A a I é a distância do ponto A ao plano υ. O segmento de recta [ AI ] é um segmento de recta vertical, pelo que a V.G. de AI está na projecção frontal de AI , A 2 I 2 . I 2
  7. 7. São dados um plano frontal φ e um ponto T (2; 4). O plano φ tem 5 cm de afastamento. Determina as projecções e a V.G. da distância entre o ponto T e o plano φ. Primeiro, é conduzido uma recta ortogonal ao plano φ, a recta p , passando por T . (h φ ) p 1 ≡ (p 2 ) É obtido o ponto I , ponto de intersecção da recta p com o plano φ, a partir do cruzamento das projecções horizontais da recta com o plano, tendo em conta que o plano φ é projectante horizontal. ≡ I 2 V.G. x T 1 T 2 I 1 A distância de T a I é a distância do ponto T ao plano φ. O segmento de recta [ TI ] é um segmento de recta de topo, pelo que a V.G. de TI está na projecção horizontal de TI , T 1 I 1 .
  8. 8. Distância entre um Ponto e um Plano Oblíquo Pretende-se as projecções e a V.G. da distância entre o ponto A e o plano α. f α h α p 2 p 1 Primeiro, é conduzido uma recta ortogonal ao plano α, a recta p , passando por A . É obtido o ponto I , ponto de intersecção da recta p com o plano α; utilizando um plano auxiliar θ, (plano vertical neste caso, plano projectante horizontal da recta p ), e através da recta de intersecção dos dois planos, a recta i . f θ ≡ h θ ≡ i 1 i 2 ≡ e 2 (h φ ) ≡ e 1 ≡ I r V.G. x A 1 A 2 F 1 F 2 H 1 H 2 I 1 I 2 A distância de A a I é a distância do ponto A ao plano α. O segmento de recta [ AI ] é um segmento de recta oblíquo, pelo que a V.G. de MI tem que ser obtida pelo processo de rebatimento. A r
  9. 9. São dados um plano oblíquo γ e um ponto M (0; 4; 5). O plano γ é ortogonal ao β 1,3 e corta o eixo x num ponto com 2 cm de abcissa e o seu traço frontal faz um ângulo de 40º (a.d.) com o eixo x . Determina as projecções e a V.G. da distância entre o ponto M e o plano γ. f γ h γ Primeiro, é conduzido uma recta ortogonal ao plano γ, a recta p , passando por M . p 1 p 2 É obtido o ponto I , ponto de intersecção da recta p com o plano γ; utilizando um plano auxiliar α (plano vertical neste caso, plano projectante horizontal da recta p ), e através da recta de intersecção dos dois planos, a recta i . ≡ h α f α i 2 ≡ i 1 (f υ ) ≡ e 2 ≡ e 1 ≡ I r V.G. x y ≡ z M 1 M 2 H 1 H 2 F 1 F 2 I 1 I 2 A distância de M a I é a distância do ponto M ao plano γ. O segmento de recta [ MI ] é um segmento de recta oblíquo, pelo que a V.G. de MI tem que ser obtida pelo processo de rebatimento. M r
  10. 10. São dados um plano oblíquo α e um ponto P (0; 5; 4). O plano α corta o eixo x num ponto com -2 cm de abcissa, o seu traço horizontal faz um ângulo de 30º (a.d.) com o eixo x e o seu traço frontal faz um ângulo de 50º (a.e.) com o eixo x . Determina as projecções e a V.G. da distância entre o ponto P e o plano α. f α h α Primeiro, é conduzido uma recta ortogonal ao plano α, a recta p , passando por P . p 1 É obtido o ponto I , ponto de intersecção da recta p com o plano α; utilizando um plano auxiliar α (plano de topo neste caso, plano projectante frontal da recta p ), e através da recta de intersecção dos dois planos, a recta i . p 2 ≡ f θ h θ ≡ i 2 i 1 (h φ ) ≡ e 1 ≡ e 2 ≡ I r V.G. x y ≡ z P 1 P 2 H 1 H 2 F 1 F 2 I 1 I 2 A distância de P a I é a distância do ponto P ao plano α. O segmento de recta [ PI ] é um segmento de recta oblíquo, pelo que a V.G. de PI tem que ser obtida pelo processo de rebatimento. P r
  11. 11. Distância entre um Ponto e um Plano de Rampa Pretende-se as projecções e a V.G. da distância entre o ponto A e o plano ρ. f ρ h ρ Primeiro, é conduzido uma recta ortogonal ao plano ρ, a recta p (uma recta de perfil), passando por A . p1 ≡ p 2 ≡ f π ≡ h π ≡ F 1 ≡ i 1 ≡ i 2 ≡ e 1 ≡ (e 2 ) ≡ h πr ≡ f πr ≡ H r i r p r Invertendo o rebatimento do plano π, obtêm-se as projecções do ponto I e do segmento de recta [ AI ]. V.G. x A 1 A 2 F 2 H 2 H 1 F r A r I r É obtido o ponto I , ponto de intersecção da recta p com o plano ρ; utilizando um plano auxiliar π, (plano de perfil), e a recta de intersecção dos dois planos, a recta i . Para se determinar a recta i e o ponto I é necessário recorrer ao processo de rebatimento. A r I r é a V.G. da distância entre A e I , a distância do ponto A ao plano ρ. I 1 I 2
  12. 12. São dados um plano de rampa ρ e um ponto A (4; 4). O traço horizontal do plano ρ tem 5 cm de afastamento, e o traço frontal tem 3 cm de cota. Determina as projecções e a V.G. da distância entre o ponto A e o plano ρ. f ρ h ρ Primeiro, é conduzido uma recta ortogonal ao plano ρ, a recta p (uma recta de perfil), passando por A . p1 ≡ p 2 ≡ f π ≡ h π ≡ i 1 ≡ i 2 ≡ e 2 ≡ f πr ≡ h πr Invertendo o rebatimento do plano π, obtêm-se as projecções do ponto I e do segmento de recta [ AI ]. ≡ F 1 ≡ (e 1 ) ≡ F r i r p r V.G. x A 1 A 2 É obtido o ponto I , ponto de intersecção da recta p com o plano ρ; utilizando um plano auxiliar π, (plano de perfil), e a recta de intersecção dos dois planos, a recta i . Para se determinar a recta i e o ponto I é necessário recorrer ao processo de rebatimento. A r I r é a V.G. da distância entre A e I , a distância do ponto A ao plano ρ. F 2 H 1 H 2 A r H r I r I 1 I 2

×