Revisão
Sistema
Volume de controle
Pressão
• Há dois tipos de escala para a pressão:
• Pressão absoluta e Pressão manométrica ou relativa.
• Pabs ou P é a pressão total exercida em uma dada
  superfície (sistema).
• PM é a pressão manométrica
Calor e Trabalho
Trabalho líquido de um ciclo
Outros tipos de Trabalho
Resumo
Repetindo o processo de aquecimento para diferentes
               pressões do sistema...
      Serão obtidos outros caminhos similares.
Região de saturação
• Quem define a fração mássica de vapor saturado em uma
  mistura líquido-vapor é uma propriedade intensiva chamada
  título (x), que é definido por:




• Quando o título for igual a   0: apenas líquido saturado está
  presente;

• Quando o título for igual a   1:   apenas vapor saturado está
  presente.
Relações com o título (x)
Região de saturação




                                v – vl
                             x=
                                vv - vl

   “Pode-se trocar os v por h, u ou s para calcular o título”
Região de saturação
Região de líquido sub-resfriado
• Corresponde à região em que a temperatura é menor que a
  de saturação para a pressão em que se encontra o sistema.
  Também é conhecida como região de líquido comprimido.

• Nem todas as substâncias têm tabelas para essa região:
  – Nesses casos, deve-se usar os dados do líquido saturado à
  mesma temperatura;
  – Quando há tabelas para essa região, as propriedades são
  tabeladas em função da temperatura e da pressão.

• Como nessa região toda substância se encontra na fase
  líquida, não há sentido falar em título.
  – As propriedades são obtidas diretamente na tabela.
Região de vapor superaquecido
• Corresponde à região na qual a temperatura do
  sistema é maior que a temperatura de saturação na
  pressão do sistema.
• Além disso, toda a massa do sistema se encontra na
  forma de vapor.
• Por isto, não tem sentido se falar em título (assim
  como na região de líquido sub-resfriado).
• As propriedades dessa região são tabeladas em
  função da pressão e da temperatura.
• A temperatura tabelada começa na temperatura de
  saturação.
Gás ideal
A equação de estado do gás ideal pode aparecer de diversas
                          formas:
Três maneiras de se obter ∆u e ∆h
Resumo de processos politrópicos
 PVn = Constante



             n-1
              n
 T2    P2
 T1    P1

                                   PVx

             n-1
 T2     V1              Para n=0 ; W = P (V2 –V1)
 T1     V2              Já que P1 = P2 ; Processo isobárico

PS: Essas relações valem também para n = 
Ciclo de Carnot


1                            n=1                  3               P
                1   2                                     4   3

QH                                  QL
TH                                  TL
              Processo 1-2                        Processo 3-4

2                   2   3           4                 1   4
                                        Isolado
    Isolado




              Processo 2-3                        Processo 4-1
                             n =
Ciclo de Carnot
• Independentemente da substância de
  trabalho, a máquina térmica que opera
  num Ciclo de Carnot consiste em 4             4                1
  processos externamente reversíveis:
                                                    (Caldeira)
     – Processo isotérmico reversível de
    1 transferência de calor, QH, do
       reservatório TH para o sistema;
     – Processo adiabático reversível de
2
   abaixamento de temperatura (TH→TL);
     – Processo isotérmico reversível de                             2
 3 transferência de calor, QL, do sistema   3
             ao reservatório TL;
     – Processo adiabático reversível de
  4 aumento de temperatura (TL→TH).
Ciclo de Carnot
  para vapor
• Neste caso o ciclo de Carnot
    continua composto de 2
   processos adiabáticos e 2
 processos isotérmicos, porém
      envolve duas fases.

• Por isto, nos processos 2-3 e
 4-1 (isotérmicos) eles ocorrem
 dentro da região de saturação
 (mudança de fase), ou seja, se
  constituem em uma mistura
         líquida-gasosa.

          Portanto: Pressão e Temperatura   Dados na Tabela de Saturação
           são propriedades dependentes
Enunciados da segunda lei
• Enunciado de Clausius:

   É impossível construir um dispositivo que
    opere em um ciclo termodinâmico e não
  produza outros efeitos além da transferência
    de calor de um corpo frio para um corpo
                    quente.
• O que este enunciado quer dizer?
Enunciado de Clausius

• Agora imaginem dois reservatórios
  térmicos (alta e baixa temperatura)
    sujeitos a um processo em que,
   naturalmente, uma determinada
  quantidade de calor é transferida do
    sistema de baixa para o de alta:

         • Isto é possível?
     – Não!! Apesar de não ferir a
    primeira lei da termodinâmica.
Enunciados da segunda lei
• Enunciado de Kelvin-Planck:

   É impossível construir um dispositivo que
    opere em um ciclo termodinâmico e não
  produza outros efeitos além da produção de
     trabalho e troca de calor com um único
              reservatório térmico.

• E o que este enunciado quer dizer?
Enunciado de Kelvin-Planck
• É impossível construir um dispositivo que opere em um ciclo
  termodinâmico e não produza outros efeitos além da
  produção de trabalho e troca de calor com um único
  reservatório térmico.
Rendimento do ciclo de Carnot
• Primeiro Corolário:
  – É impossível construir uma máquina que opere entre dois
  reservatórios térmicos e tenha maior rendimento que uma
  máquina reversível, operando entre os mesmos reservatórios;

• Segundo Corolário:
  – Todas as máquinas que operam segundo o ciclo de Carnot,
  entre os dois reservatórios térmicos, têm o mesmo
  rendimento, independente da natureza da substância de
  trabalho ou da série de processos.
Eficiência do ciclo de Carnot
• Assim, todas as máquinas térmicas externamente
    reversíveis operando entre dois reservatórios
            possuem a eficiência máxima:
Eficiência do ciclo de Carnot
 • Considerando os sistemas de refrigeração e as
bombas de calor operando como máquinas térmicas
    externamente reversíveis, o coeficiente de
            desempenho máximo será:
Variação de entropia entre dois
                 estado
• A variação de entropia de um sistema entre um estado e outro
  pode ser obtida como:




• Para se integrar esta equação é necessário se conhecer a
  relação entre T e Q.

  • Com esta equação só é possível determinar variações de
  entropia, não sendo possível determinar os valores absolutos
                         da entropia.
Entropia da Tabela Termodinâmica
Variação de entropia no ciclo de
            Carnot




 Processos 2-3 e 4-1 são adiabáticos reversíveis.
           Portanto são isoentrópicos
Onde δI representa a entropia gerada no processo
 devido às irreversibilidades (atrito, resistência
  elétrica, reações químicas espontâneas, etc.).
Entropia da Equação de Estado
Gás perfeito
Variação de entropia para um gás perfeito




 • Usando a segunda
  equação TdS para um
   gás perfeito tem-se:

Revisão p1

  • 1.
  • 2.
  • 3.
  • 5.
    Pressão • Há doistipos de escala para a pressão: • Pressão absoluta e Pressão manométrica ou relativa. • Pabs ou P é a pressão total exercida em uma dada superfície (sistema). • PM é a pressão manométrica
  • 6.
  • 8.
  • 9.
  • 10.
  • 12.
    Repetindo o processode aquecimento para diferentes pressões do sistema... Serão obtidos outros caminhos similares.
  • 15.
    Região de saturação •Quem define a fração mássica de vapor saturado em uma mistura líquido-vapor é uma propriedade intensiva chamada título (x), que é definido por: • Quando o título for igual a 0: apenas líquido saturado está presente; • Quando o título for igual a 1: apenas vapor saturado está presente.
  • 16.
    Relações com otítulo (x)
  • 17.
    Região de saturação v – vl x= vv - vl “Pode-se trocar os v por h, u ou s para calcular o título”
  • 18.
  • 19.
    Região de líquidosub-resfriado • Corresponde à região em que a temperatura é menor que a de saturação para a pressão em que se encontra o sistema. Também é conhecida como região de líquido comprimido. • Nem todas as substâncias têm tabelas para essa região: – Nesses casos, deve-se usar os dados do líquido saturado à mesma temperatura; – Quando há tabelas para essa região, as propriedades são tabeladas em função da temperatura e da pressão. • Como nessa região toda substância se encontra na fase líquida, não há sentido falar em título. – As propriedades são obtidas diretamente na tabela.
  • 20.
    Região de vaporsuperaquecido • Corresponde à região na qual a temperatura do sistema é maior que a temperatura de saturação na pressão do sistema. • Além disso, toda a massa do sistema se encontra na forma de vapor. • Por isto, não tem sentido se falar em título (assim como na região de líquido sub-resfriado). • As propriedades dessa região são tabeladas em função da pressão e da temperatura. • A temperatura tabelada começa na temperatura de saturação.
  • 23.
    Gás ideal A equaçãode estado do gás ideal pode aparecer de diversas formas:
  • 24.
    Três maneiras dese obter ∆u e ∆h
  • 25.
    Resumo de processospolitrópicos PVn = Constante n-1 n T2 P2 T1 P1 PVx n-1 T2 V1 Para n=0 ; W = P (V2 –V1) T1 V2 Já que P1 = P2 ; Processo isobárico PS: Essas relações valem também para n = 
  • 35.
    Ciclo de Carnot 1 n=1 3 P 1 2 4 3 QH QL TH TL Processo 1-2 Processo 3-4 2 2 3 4 1 4 Isolado Isolado Processo 2-3 Processo 4-1 n =
  • 36.
    Ciclo de Carnot •Independentemente da substância de trabalho, a máquina térmica que opera num Ciclo de Carnot consiste em 4 4 1 processos externamente reversíveis: (Caldeira) – Processo isotérmico reversível de 1 transferência de calor, QH, do reservatório TH para o sistema; – Processo adiabático reversível de 2 abaixamento de temperatura (TH→TL); – Processo isotérmico reversível de 2 3 transferência de calor, QL, do sistema 3 ao reservatório TL; – Processo adiabático reversível de 4 aumento de temperatura (TL→TH).
  • 37.
    Ciclo de Carnot para vapor • Neste caso o ciclo de Carnot continua composto de 2 processos adiabáticos e 2 processos isotérmicos, porém envolve duas fases. • Por isto, nos processos 2-3 e 4-1 (isotérmicos) eles ocorrem dentro da região de saturação (mudança de fase), ou seja, se constituem em uma mistura líquida-gasosa. Portanto: Pressão e Temperatura Dados na Tabela de Saturação são propriedades dependentes
  • 38.
    Enunciados da segundalei • Enunciado de Clausius: É impossível construir um dispositivo que opere em um ciclo termodinâmico e não produza outros efeitos além da transferência de calor de um corpo frio para um corpo quente. • O que este enunciado quer dizer?
  • 39.
    Enunciado de Clausius •Agora imaginem dois reservatórios térmicos (alta e baixa temperatura) sujeitos a um processo em que, naturalmente, uma determinada quantidade de calor é transferida do sistema de baixa para o de alta: • Isto é possível? – Não!! Apesar de não ferir a primeira lei da termodinâmica.
  • 40.
    Enunciados da segundalei • Enunciado de Kelvin-Planck: É impossível construir um dispositivo que opere em um ciclo termodinâmico e não produza outros efeitos além da produção de trabalho e troca de calor com um único reservatório térmico. • E o que este enunciado quer dizer?
  • 41.
    Enunciado de Kelvin-Planck •É impossível construir um dispositivo que opere em um ciclo termodinâmico e não produza outros efeitos além da produção de trabalho e troca de calor com um único reservatório térmico.
  • 42.
    Rendimento do ciclode Carnot • Primeiro Corolário: – É impossível construir uma máquina que opere entre dois reservatórios térmicos e tenha maior rendimento que uma máquina reversível, operando entre os mesmos reservatórios; • Segundo Corolário: – Todas as máquinas que operam segundo o ciclo de Carnot, entre os dois reservatórios térmicos, têm o mesmo rendimento, independente da natureza da substância de trabalho ou da série de processos.
  • 43.
    Eficiência do ciclode Carnot • Assim, todas as máquinas térmicas externamente reversíveis operando entre dois reservatórios possuem a eficiência máxima:
  • 44.
    Eficiência do ciclode Carnot • Considerando os sistemas de refrigeração e as bombas de calor operando como máquinas térmicas externamente reversíveis, o coeficiente de desempenho máximo será:
  • 45.
    Variação de entropiaentre dois estado • A variação de entropia de um sistema entre um estado e outro pode ser obtida como: • Para se integrar esta equação é necessário se conhecer a relação entre T e Q. • Com esta equação só é possível determinar variações de entropia, não sendo possível determinar os valores absolutos da entropia.
  • 46.
    Entropia da TabelaTermodinâmica
  • 47.
    Variação de entropiano ciclo de Carnot Processos 2-3 e 4-1 são adiabáticos reversíveis. Portanto são isoentrópicos
  • 48.
    Onde δI representaa entropia gerada no processo devido às irreversibilidades (atrito, resistência elétrica, reações químicas espontâneas, etc.).
  • 50.
  • 51.
  • 52.
    Variação de entropiapara um gás perfeito • Usando a segunda equação TdS para um gás perfeito tem-se: