O que significa
Produto Notável?
Produto Notável
 Produto:
Resultado de uma multiplicação.

 Notável:
Algo que é importante.
O que vamos estudar
 Quadrado da soma de dois termos

 Quadrado da diferença de dois termos

 Produto da soma pela diferença de dois
  termos
 Cubo da soma de dois termos

 Cubo da diferença de dois termos
Quadrado da soma



Produto   Quadrado da diferença
Notável

          Produto da soma pela diferença



          Cubo da soma



          Cubo da diferença
Quadrado da soma de
                        dois termos


( a + b)            2

Termo a   Termo b
Quadrado da soma           ( a +b ) 2

Produto   Quadrado da diferença
Notável

          Produto da soma pela diferença



          Cubo da soma



          Cubo da diferença
Quadrado da soma de
               dois termos


( a + b)   2
               = ( a + b ).( a + b )
Quadrado da soma de
               dois termos


( a + b)   2
               = ( a + b ).( a + b )
               = a + ab + ab + b
                   2                   2


               = a + 2ab + b
                   2             2
Quadrado da soma           ( a +b ) 2   a 2 + 2ab +b 2


Produto   Quadrado da diferença
Notável

          Produto da soma pela diferença



          Cubo da soma



          Cubo da diferença
Vamos calcular 1

( x + 1)   2
Vamos calcular 1

( x + 1)   2
               = ( x + 1)( x + 1)
Vamos calcular 1

( x + 1)   2
               = ( x + 1)( x + 1)

               = x + x + x +1
                    2               2
Vamos calcular 1

( x + 1)   2
               = ( x + 1)( x + 1)

               = x + x + x +1
                    2               2



               = x + 2x +1
                    2
Vamos calcular 2


(   5+y   )   2
Vamos calcular 2


(   5+y   )   2
                  =   (      )(
                          5+y. 5+y   )
Vamos calcular 2


(   5+y   )   2
                  =   (   5+y. 5+y)(      )
                  =   ( 5)   2
                                 + 5y + 5y + y2
Vamos calcular 2


(   5+y   )   2
                  =   (   5+y. 5+y)(      )
                  =   ( 5)   2
                                 + 5y + 5y + y2

                  = 5 + 2 5y + y              2
Vamos calcular 3

         2
 2 b
a + 
   2
Vamos calcular 3

         2
 2 b          2 b  2 b 
a +        =  a + . a + 
   2             2     2
Vamos calcular 3

         2
 2 b          2 b  2 b 
a +        =  a + . a + 
   2             2     2
                                         2

             = (a    )
                    2 2     b  2 b b
                          +a +a + 
                            2

                            2    2 2
Vamos calcular 3

         2
 2 b          2 b  2 b 
a +        =  a + . a + 
   2             2     2
                                         2

             = (a    )
                    2 2     b  2 b b
                          +a +a + 
                            2

                            2    2 2
                                    2
                      b b
             = a + 2a
                    4
                       +        2

                      2 4
Quadrado da diferença de
                          dois termos



( a − b)            2

Termo a   Termo b
Quadrado da soma           ( a +b ) 2    a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2
Notável

          Produto da soma pela diferença



          Cubo da soma



          Cubo da diferença
Quadrado da diferença de
                 dois termos



( a − b)   2
               = ( a − b ).( a − b )
Quadrado da diferença de
                 dois termos



( a − b)   2
               = ( a − b ).( a − b )
               = a − ab − ab + b
                   2                   2


               = a − 2ab + b
                   2              2
Quadrado da soma           ( a +b ) 2    a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2   a 2 − 2ab +b 2
Notável

          Produto da soma pela diferença



          Cubo da soma



          Cubo da diferença
Vamos calcular 1


( x − 3)   2
Vamos calcular 1


( x − 3)   2
               = ( x − 3)( x − 3)
Vamos calcular 1


( x − 3)   2
               = ( x − 3)( x − 3)
               = x − 3x − 3x + 3
                   2                2
Vamos calcular 1


( x − 3)   2
               = ( x − 3)( x − 3)
               = x − 3x − 3x + 3
                   2                    2



               = x − 2.3 x + 3
                   2                2
Vamos calcular 1


( x − 3)   2
               = ( x − 3)( x − 3)
               = x − 3x − 3x + 3        2



               = x − 2.3 x + 3
                   2                2



               = x − 6x + 9
                   2
Vamos calcular 2


( 2ab − c )   2
Vamos calcular 2


( 2ab − c )   2
                   = ( 2ab − c ) .( 2ab − c )
Vamos calcular 2


( 2ab − c )   2
                   = ( 2ab − c ) .( 2ab − c )

                   = ( 2ab ) − 2abc − 2abc + c
                            2                    2
Vamos calcular 2


( 2ab − c )   2
                   = ( 2ab − c ) .( 2ab − c )

                   = ( 2ab ) − 2abc − 2abc + c
                            2                       2




                   = 4a b − 4abc + c
                          2 2                   2
Vamos calcular 3

        2
a b
 − 
2 8
Vamos calcular 3

        2
a b          a b  a b 
            =  − . − 
 −           2 8  2 8 
2 8
Vamos calcular 3

        2
a b          a b  a b 
            =  − . − 
 −           2 8  2 8 
2 8
                2                     2
              a a b b a b
            =   − . − . + 
               2  2 8 8 2 8
Vamos calcular 3

        2
a b          a b  a b 
            =  − . − 
 −           2 8  2 8 
2 8
                2                     2
              a a b b a b
            =   − . − . + 
               2  2 8 8 2 8
               a 2 ab ab b 2
            =     −   −   +
                4 16 16 64
Vamos calcular 3

        2
a b          a b  a b 
            =  − . − 
 −           2 8  2 8 
2 8
                 2                    2
              a a b b a b
            =   − . − . + 
               2  2 8 8 2 8
               a 2 ab ab b 2
            =     −   −   +
                4 16 16 64
               a2    ab b 2
             =    −2   +
               4     16 64
Vamos calcular 3

        2
a b          a b  a b 
            =  − . − 
 −           2 8  2 8 
2 8
                 2                    2
              a a b b a b
            =   − . − . + 
               2  2 8 8 2 8
               a 2 ab ab b 2
            =     −   −   +
                4 16 16 64
               a2    ab b 2
             =    −2   +
               4     16 64
Vamos calcular 3

        2
a b          a b  a b 
            =  − . − 
 −           2 8  2 8 
2 8
                 2                    2
              a a b b a b
            =   − . − . + 
               2  2 8 8 2 8
               a 2 ab ab b 2
            =     −   −   +
                4 16 16 64
               a2    ab b 2
             =    −2   +
               4     16 64

               a 2 ab b 2
             =    −  +
               4    8 64
Produto da soma pela
                              diferença de dois termos



( a + b ).( a − b )
Termo a   Termo b   Termo a    Termo b
Quadrado da soma           ( a +b ) 2        a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2       a 2 − 2ab +b 2
Notável

          Produto da soma pela diferença      ( a +b )( a −b )

          Cubo da soma



          Cubo da diferença
Produto da soma pela
               diferença de dois termos



( a + b ).( a − b )   = a − ab + ab − b
                         2                2


                      = a −b
                         2     2
Quadrado da soma           ( a +b ) 2        a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2       a 2 − 2ab +b 2
Notável

          Produto da soma pela diferença      ( a +b )( a −b )   a 2 −b 2


          Cubo da soma



          Cubo da diferença
Vamos calcular 1


( a + 5)( a − 5)
Vamos calcular 1


( a + 5)( a − 5)   = a − 5a + 5a − 5
                      2                2
Vamos calcular 1


( a + 5)( a − 5)   = a − 5a + 5a − 5
                      2                2
Vamos calcular 1


( a + 5)( a − 5)   = a − 5a + 5a − 5
                      2                2



                          = a − 25
                            2
Vamos calcular 2


(y   2
            )(
         − 3z y + 3z
                 2
                       )
Vamos calcular 2


(y   2
            )(   2
                      )
         − 3z y + 3z = ( y    )
                             2 2
                                   + 3zy − 3zy − ( 3z )
                                        2      2          2
Vamos calcular 2


(y   2
            )(   2
                      )
         − 3z y + 3z = ( y    )
                             2 2
                                   + 3zy − 3zy − ( 3z )
                                        2      2          2
Vamos calcular 2


(y   2
            )(   2
                      )
         − 3z y + 3z = ( y   2 2
                                 )   + 3zy − 3zy − ( 3z )
                                            2    2          2



                          = y − 9z
                             4          2
Vamos calcular 3


 2 1  2 1 
 x + 2  x − 2 
    x      x 
Vamos calcular 3


 2 1  2 1                                                 2
 x + 2  x − 2  = ( x 2 ) 2 − x 2 . 12 + x 2 . 12 −  12 
                                                        
    x      x                       x          x x 
Vamos calcular 3


 2 1  2 1                                                 2
 x + 2  x − 2  = ( x 2 ) 2 − x 2 . 12 + x 2 . 12 −  12 
                                                        
    x      x                       x          x x 
Vamos calcular 3


 2 1  2 1                                                 2
 x + 2  x − 2  = ( x 2 ) 2 − x 2 . 12 + x 2 . 12 −  12 
                                                        
    x      x                       x          x x 

                                1
                           =x − 44

                               x
Cubo da soma de dois
                      termos


( a + b)            3

Termo a   Termo b
Quadrado da soma           ( a +b ) 2         a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2        a 2 − 2ab +b 2
Notável

          Produto da soma pela diferença       ( a +b )( a −b )   a 2 −b 2


          Cubo da soma            ( a +b ) 3

          Cubo da diferença
Cubo da soma de dois
                     termos


( a + b)   3
               = ( a +b ).( a +b )
                                     2
Cubo da soma de dois
                     termos


( a + b)   3
               = ( a +b ).( a +b )
                                                     2



                         (
               = ( a + b ) . a + 2ab + b
                                 2           2
                                                 )
               = a + 2a b + ab + a b + 2ab + b
                  3          2       2       2           2   3


               = a + 3a b + 3ab + b
                  3          2           2       3
Quadrado da soma           ( a +b ) 2         a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2        a 2 − 2ab +b 2
Notável

          Produto da soma pela diferença       ( a +b )( a −b )   a 2 −b 2


          Cubo da soma            ( a +b ) 2       a 3 +3a 2b +3ab 2 +b 3


          Cubo da diferença
Vamos calcular 1

( x + 2)   3
Vamos calcular 1

( x + 2)   3
               = ( x + 2) .( x + 2)
                                      2
Vamos calcular 1

( x + 2)   3
               = ( x + 2) .( x + 2)
                                      2



                          (
               = ( x + 2). x + 4 x + 4
                              2
                                          )
Vamos calcular 1

( x + 2)   3
               = ( x + 2) .( x + 2)
                                      2



                             (
               = ( x + 2). x + 4 x + 4
                                 2
                                              )
               = x +4 x + 4 x + 2 x + 8 x + 8
                  3      2                2
Vamos calcular 1

( x + 2)   3
               = ( x + 2) .( x + 2)
                                      2



                              (
               = ( x + 2). x + 4 x + 4
                                  2
                                              )
               = x +4 x + 4 x + 2 x + 8 x + 8
                  3       2               2



                = x + 6 x + 12 x + 8
                      3           2
Vamos calcular 2

( x + 2 y)   3
Vamos calcular 2

( x + 2 y)   3
                 = ( x + 2 y ).( x + 2 y )
                                             2
Vamos calcular 2

( x + 2 y)   3
                 = ( x + 2 y ).( x + 2 y )
                                             2



                              (
                 = ( x + 2 y ) . x + 4 xy + 4 y
                                  2               2
                                                      )
Vamos calcular 2

( x + 2 y)   3
                 = ( x + 2 y ).( x + 2 y )
                                             2



                               (
                 = ( x + 2 y ) . x + 4 xy + 4 y
                                   2                 2
                                                         )
                 = x + 4 x y + 4 xy + 2 x y + 8 xy + 8 y
                    3      2           2         2           2   3
Vamos calcular 2

( x + 2 y)   3
                 = ( x + 2 y ).( x + 2 y )
                                             2



                               (
                 = ( x + 2 y ) . x + 4 xy + 4 y
                                   2                     2
                                                             )
                 = x + 4 x y + 4 xy + 2 x y + 8 xy + 8 y
                    3      2           2             2               2   3




                 = x + 6 x y + 12 xy + 8 y
                     3         2                 2               3
Vamos calcular 3


( 2 + 3z )
        2 3
Vamos calcular 3


( 2 + 3z ) = (2 + 3z ).(2 + 3z )
       2 3          2         2 2
Vamos calcular 3


( 2 + 3z ) = (2 + 3z ).(2 + 3z )
       2 3               2           2 2



               (         )(
             = 2 + 3 z 2 . 4 + 12 z 2 + 9 z 4   )
Vamos calcular 3


( 2 + 3z ) = (2 + 3z ).(2 + 3z )
       2 3                 2         2 2



               (           )(
             = 2 + 3 z 2 . 4 + 12 z 2 + 9 z 4   )
             = 8 + 24 z + 18 z + 12 z + 36 z + 27 z
                       2        4       2           4   6
Vamos calcular 3


( 2 + 3z ) = (2 + 3z ).(2 + 3z )
       2 3                 2            2 2



               (           )(
             = 2 + 3 z 2 . 4 + 12 z 2 + 9 z 4     )
             = 8 + 24 z + 18 z + 12 z + 36 z + 27 z
                       2        4        2            4   6



             = 8 + 36 z + 54 z + 27 z
                           2        4         6
Cubo da diferença de dois
                       termos


( a − b)            3

Termo a   Termo b
Quadrado da soma           ( a +b ) 2         a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2        a 2 − 2ab +b 2
Notável

          Produto da soma pela diferença       ( a +b )( a −b )   a 2 −b 2


          Cubo da soma            ( a +b ) 2       a 3 +3a 2b +3ab 2 +b 3


          Cubo da diferença       ( a −b ) 3
Cubo da diferença de dois
                       termos



( a − b)   3
               = ( a −b ).( a −b )
                                     2
Cubo da diferença de dois
                       termos



( a − b)   3
               = ( a −b ).( a −b )
                                                     2



                         (
               = ( a − b ) . a − 2ab + b
                                 2           2
                                                 )
               = a − 2a b + ab − a b + 2ab − b
                  3          2       2       2           2   3


               = a − 3a b + 3ab − b
                  3          2           2       3
Quadrado da soma           ( a +b ) 2         a 2 + 2ab +b 2


Produto   Quadrado da diferença       ( a −b ) 2        a 2 − 2ab +b 2
Notável

          Produto da soma pela diferença       ( a +b )( a −b )   a 2 −b 2


          Cubo da soma            ( a +b ) 2       a 3 +3a 2b +3ab 2 +b 3


          Cubo da diferença       ( a −b ) 3        a 3 −3a 2b +3ab 2 −b 3
Vamos calcular 1


( x − 2)   3
Vamos calcular 1


( x − 2)   3
                = ( x − 2 ).( x − 2 )
                                        2
Vamos calcular 1


( x − 2)   3
                = ( x − 2 ).( x − 2 )
                                        2



                          (
                = ( x − 2). x − 4 x + 4
                              2
                                            )
Vamos calcular 1


( x − 2)   3
                = ( x − 2 ).( x − 2 )
                                        2



                          (
                = ( x − 2). x − 4 x + 4
                              2
                                            )
                = x − 4 x + 4 x − 2 x + 8x − 8
                    3         2                 2
Vamos calcular 1


( x − 2)   3
                = ( x − 2 ).( x − 2 )
                                        2



                          (
                = ( x − 2). x − 4 x + 4
                              2
                                            )
                = x − 4 x + 4 x − 2 x + 8x − 8
                    3         2                 2



                = x − 6 x + 12 x − 8
                     3        2
Vamos calcular 2

( ax − y )   3
Vamos calcular 2

( ax − y )   3
                 = ( ax − y ) .( ax − y )
                                            2
Vamos calcular 2

( ax − y )   3
                 = ( ax − y ) .( ax − y )
                                            2




                              (
                 = ( ax − y ). a 2 x 2 − 2axy + y 2   )
Vamos calcular 2

( ax − y )   3
                 = ( ax − y ) .( ax − y )
                                            2




                              (
                 = ( ax − y ). a 2 x 2 − 2axy + y 2   )
                 = a x − 2a x y + axy − a x y + 2axy − y
                     3 3          2 2           2   2 2   2   3
Vamos calcular 2

( ax − y )   3
                 = ( ax − y ) .( ax − y )
                                            2




                              (
                 = ( ax − y ). a 2 x 2 − 2axy + y 2   )
                 = a x − 2a x y + axy − a x y + 2axy − y
                     3 3          2 2           2   2 2   2   3




                 = a 3 x 3 − 3a 2 x 2 y + 3axy 2 − y 3
Vamos calcular 3

(2x − y )
       2 3
Vamos calcular 3

(2x − y )
       2 3
              (          )(
             = 2x − y . 2x − y
                     2
                                  )
                                 2 2
Vamos calcular 3

(2x − y )
       2 3
               (            )(
             = 2x − y . 2x − y
                        2
                                    )
                                   2 2




               (            )(
             = 2 x − y 2 . 4 x 2 − 4 xy 2 + y 4   )
Vamos calcular 3

(2x − y )
       2 3
               (
             = 2x − y . 2x − y
                           2
                               )(        )
                                        2 2




               (               )(
             = 2 x − y 2 . 4 x 2 − 4 xy 2 + y 4       )
             = 8 x − 8 x y + 2 xy − 4 x y + 4 xy − y
                   3   2       2    4         2   2       4   6
Vamos calcular 3

(2x − y )
       2 3
               (
             = 2x − y . 2x − y
                           2
                               )(        2 2
                                             )
               (               )(
             = 2 x − y 2 . 4 x 2 − 4 xy 2 + y 4          )
             = 8 x − 8 x y + 2 xy − 4 x y + 4 xy − y
                   3   2       2     4           2   2       4   6




             = 8 x − 12 x y + 6 xy − y
                   3           2 2       4       6
Resumindo…

                                       ( a +b ) 2   = a 2 + 2ab +b 2
          Quadrado de um
          binômio
                                      ( a −b ) 2    = a 2 − 2ab +b 2


Produto
Notável
          Produto da soma pela diferença            ( a +b )( a −b ) = a 2 −b 2

                                       ( a +b ) 3 = a 3 +3a 2b +3ab 2 +b 3
          Cubo de um binômio

                                           ( a −b ) 3 = a 3 −3a 2b +3ab 2 −b 3
Bibliografia

 Tempo de Matemática, 7a série; NAME,
  Miguel Assis. 1996, Editora do Brasil S/A,
  São Paulo. Páginas pesquisadas 69 a 78.

 Matemática e Realidade, 8o ano; IEZZI,
  Gelson; DOLCE, Osvaldo; MACHADO,
  Antonio. 2009, 6a edição, Atual Editora,
  São Paulo. Páginas pesquisadas 186 a 194.

www.AulasParticulares.Info - Matemática - Produto Notável

  • 2.
  • 3.
    Produto Notável  Produto: Resultadode uma multiplicação.  Notável: Algo que é importante.
  • 4.
    O que vamosestudar  Quadrado da soma de dois termos  Quadrado da diferença de dois termos  Produto da soma pela diferença de dois termos  Cubo da soma de dois termos  Cubo da diferença de dois termos
  • 5.
    Quadrado da soma Produto Quadrado da diferença Notável Produto da soma pela diferença Cubo da soma Cubo da diferença
  • 6.
    Quadrado da somade dois termos ( a + b) 2 Termo a Termo b
  • 7.
    Quadrado da soma ( a +b ) 2 Produto Quadrado da diferença Notável Produto da soma pela diferença Cubo da soma Cubo da diferença
  • 8.
    Quadrado da somade dois termos ( a + b) 2 = ( a + b ).( a + b )
  • 9.
    Quadrado da somade dois termos ( a + b) 2 = ( a + b ).( a + b ) = a + ab + ab + b 2 2 = a + 2ab + b 2 2
  • 10.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença Notável Produto da soma pela diferença Cubo da soma Cubo da diferença
  • 11.
  • 12.
    Vamos calcular 1 (x + 1) 2 = ( x + 1)( x + 1)
  • 13.
    Vamos calcular 1 (x + 1) 2 = ( x + 1)( x + 1) = x + x + x +1 2 2
  • 14.
    Vamos calcular 1 (x + 1) 2 = ( x + 1)( x + 1) = x + x + x +1 2 2 = x + 2x +1 2
  • 15.
  • 16.
    Vamos calcular 2 ( 5+y ) 2 = ( )( 5+y. 5+y )
  • 17.
    Vamos calcular 2 ( 5+y ) 2 = ( 5+y. 5+y)( ) = ( 5) 2 + 5y + 5y + y2
  • 18.
    Vamos calcular 2 ( 5+y ) 2 = ( 5+y. 5+y)( ) = ( 5) 2 + 5y + 5y + y2 = 5 + 2 5y + y 2
  • 19.
    Vamos calcular 3 2  2 b a +   2
  • 20.
    Vamos calcular 3 2  2 b  2 b  2 b  a +  =  a + . a +   2  2  2
  • 21.
    Vamos calcular 3 2  2 b  2 b  2 b  a +  =  a + . a +   2  2  2 2 = (a ) 2 2 b 2 b b +a +a +  2 2 2 2
  • 22.
    Vamos calcular 3 2  2 b  2 b  2 b  a +  =  a + . a +   2  2  2 2 = (a ) 2 2 b 2 b b +a +a +  2 2 2 2 2 b b = a + 2a 4 + 2 2 4
  • 23.
    Quadrado da diferençade dois termos ( a − b) 2 Termo a Termo b
  • 24.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 Notável Produto da soma pela diferença Cubo da soma Cubo da diferença
  • 25.
    Quadrado da diferençade dois termos ( a − b) 2 = ( a − b ).( a − b )
  • 26.
    Quadrado da diferençade dois termos ( a − b) 2 = ( a − b ).( a − b ) = a − ab − ab + b 2 2 = a − 2ab + b 2 2
  • 27.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 a 2 − 2ab +b 2 Notável Produto da soma pela diferença Cubo da soma Cubo da diferença
  • 28.
  • 29.
    Vamos calcular 1 (x − 3) 2 = ( x − 3)( x − 3)
  • 30.
    Vamos calcular 1 (x − 3) 2 = ( x − 3)( x − 3) = x − 3x − 3x + 3 2 2
  • 31.
    Vamos calcular 1 (x − 3) 2 = ( x − 3)( x − 3) = x − 3x − 3x + 3 2 2 = x − 2.3 x + 3 2 2
  • 32.
    Vamos calcular 1 (x − 3) 2 = ( x − 3)( x − 3) = x − 3x − 3x + 3 2 = x − 2.3 x + 3 2 2 = x − 6x + 9 2
  • 33.
    Vamos calcular 2 (2ab − c ) 2
  • 34.
    Vamos calcular 2 (2ab − c ) 2 = ( 2ab − c ) .( 2ab − c )
  • 35.
    Vamos calcular 2 (2ab − c ) 2 = ( 2ab − c ) .( 2ab − c ) = ( 2ab ) − 2abc − 2abc + c 2 2
  • 36.
    Vamos calcular 2 (2ab − c ) 2 = ( 2ab − c ) .( 2ab − c ) = ( 2ab ) − 2abc − 2abc + c 2 2 = 4a b − 4abc + c 2 2 2
  • 37.
    Vamos calcular 3 2 a b  −  2 8
  • 38.
    Vamos calcular 3 2 a b  a b  a b  =  − . −   −   2 8  2 8  2 8
  • 39.
    Vamos calcular 3 2 a b  a b  a b  =  − . −   −   2 8  2 8  2 8 2 2 a a b b a b =   − . − . +   2  2 8 8 2 8
  • 40.
    Vamos calcular 3 2 a b  a b  a b  =  − . −   −   2 8  2 8  2 8 2 2 a a b b a b =   − . − . +   2  2 8 8 2 8 a 2 ab ab b 2 = − − + 4 16 16 64
  • 41.
    Vamos calcular 3 2 a b  a b  a b  =  − . −   −   2 8  2 8  2 8 2 2 a a b b a b =   − . − . +   2  2 8 8 2 8 a 2 ab ab b 2 = − − + 4 16 16 64 a2 ab b 2 = −2 + 4 16 64
  • 42.
    Vamos calcular 3 2 a b  a b  a b  =  − . −   −   2 8  2 8  2 8 2 2 a a b b a b =   − . − . +   2  2 8 8 2 8 a 2 ab ab b 2 = − − + 4 16 16 64 a2 ab b 2 = −2 + 4 16 64
  • 43.
    Vamos calcular 3 2 a b  a b  a b  =  − . −   −   2 8  2 8  2 8 2 2 a a b b a b =   − . − . +   2  2 8 8 2 8 a 2 ab ab b 2 = − − + 4 16 16 64 a2 ab b 2 = −2 + 4 16 64 a 2 ab b 2 = − + 4 8 64
  • 44.
    Produto da somapela diferença de dois termos ( a + b ).( a − b ) Termo a Termo b Termo a Termo b
  • 45.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 a 2 − 2ab +b 2 Notável Produto da soma pela diferença ( a +b )( a −b ) Cubo da soma Cubo da diferença
  • 46.
    Produto da somapela diferença de dois termos ( a + b ).( a − b ) = a − ab + ab − b 2 2 = a −b 2 2
  • 47.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 a 2 − 2ab +b 2 Notável Produto da soma pela diferença ( a +b )( a −b ) a 2 −b 2 Cubo da soma Cubo da diferença
  • 48.
    Vamos calcular 1 (a + 5)( a − 5)
  • 49.
    Vamos calcular 1 (a + 5)( a − 5) = a − 5a + 5a − 5 2 2
  • 50.
    Vamos calcular 1 (a + 5)( a − 5) = a − 5a + 5a − 5 2 2
  • 51.
    Vamos calcular 1 (a + 5)( a − 5) = a − 5a + 5a − 5 2 2 = a − 25 2
  • 52.
    Vamos calcular 2 (y 2 )( − 3z y + 3z 2 )
  • 53.
    Vamos calcular 2 (y 2 )( 2 ) − 3z y + 3z = ( y ) 2 2 + 3zy − 3zy − ( 3z ) 2 2 2
  • 54.
    Vamos calcular 2 (y 2 )( 2 ) − 3z y + 3z = ( y ) 2 2 + 3zy − 3zy − ( 3z ) 2 2 2
  • 55.
    Vamos calcular 2 (y 2 )( 2 ) − 3z y + 3z = ( y 2 2 ) + 3zy − 3zy − ( 3z ) 2 2 2 = y − 9z 4 2
  • 56.
    Vamos calcular 3 2 1  2 1   x + 2  x − 2   x  x 
  • 57.
    Vamos calcular 3 2 1  2 1  2  x + 2  x − 2  = ( x 2 ) 2 − x 2 . 12 + x 2 . 12 −  12     x  x  x x x 
  • 58.
    Vamos calcular 3 2 1  2 1  2  x + 2  x − 2  = ( x 2 ) 2 − x 2 . 12 + x 2 . 12 −  12     x  x  x x x 
  • 59.
    Vamos calcular 3 2 1  2 1  2  x + 2  x − 2  = ( x 2 ) 2 − x 2 . 12 + x 2 . 12 −  12     x  x  x x x  1 =x − 44 x
  • 60.
    Cubo da somade dois termos ( a + b) 3 Termo a Termo b
  • 61.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 a 2 − 2ab +b 2 Notável Produto da soma pela diferença ( a +b )( a −b ) a 2 −b 2 Cubo da soma ( a +b ) 3 Cubo da diferença
  • 62.
    Cubo da somade dois termos ( a + b) 3 = ( a +b ).( a +b ) 2
  • 63.
    Cubo da somade dois termos ( a + b) 3 = ( a +b ).( a +b ) 2 ( = ( a + b ) . a + 2ab + b 2 2 ) = a + 2a b + ab + a b + 2ab + b 3 2 2 2 2 3 = a + 3a b + 3ab + b 3 2 2 3
  • 64.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 a 2 − 2ab +b 2 Notável Produto da soma pela diferença ( a +b )( a −b ) a 2 −b 2 Cubo da soma ( a +b ) 2 a 3 +3a 2b +3ab 2 +b 3 Cubo da diferença
  • 65.
  • 66.
    Vamos calcular 1 (x + 2) 3 = ( x + 2) .( x + 2) 2
  • 67.
    Vamos calcular 1 (x + 2) 3 = ( x + 2) .( x + 2) 2 ( = ( x + 2). x + 4 x + 4 2 )
  • 68.
    Vamos calcular 1 (x + 2) 3 = ( x + 2) .( x + 2) 2 ( = ( x + 2). x + 4 x + 4 2 ) = x +4 x + 4 x + 2 x + 8 x + 8 3 2 2
  • 69.
    Vamos calcular 1 (x + 2) 3 = ( x + 2) .( x + 2) 2 ( = ( x + 2). x + 4 x + 4 2 ) = x +4 x + 4 x + 2 x + 8 x + 8 3 2 2 = x + 6 x + 12 x + 8 3 2
  • 70.
  • 71.
    Vamos calcular 2 (x + 2 y) 3 = ( x + 2 y ).( x + 2 y ) 2
  • 72.
    Vamos calcular 2 (x + 2 y) 3 = ( x + 2 y ).( x + 2 y ) 2 ( = ( x + 2 y ) . x + 4 xy + 4 y 2 2 )
  • 73.
    Vamos calcular 2 (x + 2 y) 3 = ( x + 2 y ).( x + 2 y ) 2 ( = ( x + 2 y ) . x + 4 xy + 4 y 2 2 ) = x + 4 x y + 4 xy + 2 x y + 8 xy + 8 y 3 2 2 2 2 3
  • 74.
    Vamos calcular 2 (x + 2 y) 3 = ( x + 2 y ).( x + 2 y ) 2 ( = ( x + 2 y ) . x + 4 xy + 4 y 2 2 ) = x + 4 x y + 4 xy + 2 x y + 8 xy + 8 y 3 2 2 2 2 3 = x + 6 x y + 12 xy + 8 y 3 2 2 3
  • 75.
    Vamos calcular 3 (2 + 3z ) 2 3
  • 76.
    Vamos calcular 3 (2 + 3z ) = (2 + 3z ).(2 + 3z ) 2 3 2 2 2
  • 77.
    Vamos calcular 3 (2 + 3z ) = (2 + 3z ).(2 + 3z ) 2 3 2 2 2 ( )( = 2 + 3 z 2 . 4 + 12 z 2 + 9 z 4 )
  • 78.
    Vamos calcular 3 (2 + 3z ) = (2 + 3z ).(2 + 3z ) 2 3 2 2 2 ( )( = 2 + 3 z 2 . 4 + 12 z 2 + 9 z 4 ) = 8 + 24 z + 18 z + 12 z + 36 z + 27 z 2 4 2 4 6
  • 79.
    Vamos calcular 3 (2 + 3z ) = (2 + 3z ).(2 + 3z ) 2 3 2 2 2 ( )( = 2 + 3 z 2 . 4 + 12 z 2 + 9 z 4 ) = 8 + 24 z + 18 z + 12 z + 36 z + 27 z 2 4 2 4 6 = 8 + 36 z + 54 z + 27 z 2 4 6
  • 80.
    Cubo da diferençade dois termos ( a − b) 3 Termo a Termo b
  • 81.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 a 2 − 2ab +b 2 Notável Produto da soma pela diferença ( a +b )( a −b ) a 2 −b 2 Cubo da soma ( a +b ) 2 a 3 +3a 2b +3ab 2 +b 3 Cubo da diferença ( a −b ) 3
  • 82.
    Cubo da diferençade dois termos ( a − b) 3 = ( a −b ).( a −b ) 2
  • 83.
    Cubo da diferençade dois termos ( a − b) 3 = ( a −b ).( a −b ) 2 ( = ( a − b ) . a − 2ab + b 2 2 ) = a − 2a b + ab − a b + 2ab − b 3 2 2 2 2 3 = a − 3a b + 3ab − b 3 2 2 3
  • 84.
    Quadrado da soma ( a +b ) 2 a 2 + 2ab +b 2 Produto Quadrado da diferença ( a −b ) 2 a 2 − 2ab +b 2 Notável Produto da soma pela diferença ( a +b )( a −b ) a 2 −b 2 Cubo da soma ( a +b ) 2 a 3 +3a 2b +3ab 2 +b 3 Cubo da diferença ( a −b ) 3 a 3 −3a 2b +3ab 2 −b 3
  • 85.
  • 86.
    Vamos calcular 1 (x − 2) 3 = ( x − 2 ).( x − 2 ) 2
  • 87.
    Vamos calcular 1 (x − 2) 3 = ( x − 2 ).( x − 2 ) 2 ( = ( x − 2). x − 4 x + 4 2 )
  • 88.
    Vamos calcular 1 (x − 2) 3 = ( x − 2 ).( x − 2 ) 2 ( = ( x − 2). x − 4 x + 4 2 ) = x − 4 x + 4 x − 2 x + 8x − 8 3 2 2
  • 89.
    Vamos calcular 1 (x − 2) 3 = ( x − 2 ).( x − 2 ) 2 ( = ( x − 2). x − 4 x + 4 2 ) = x − 4 x + 4 x − 2 x + 8x − 8 3 2 2 = x − 6 x + 12 x − 8 3 2
  • 90.
    Vamos calcular 2 (ax − y ) 3
  • 91.
    Vamos calcular 2 (ax − y ) 3 = ( ax − y ) .( ax − y ) 2
  • 92.
    Vamos calcular 2 (ax − y ) 3 = ( ax − y ) .( ax − y ) 2 ( = ( ax − y ). a 2 x 2 − 2axy + y 2 )
  • 93.
    Vamos calcular 2 (ax − y ) 3 = ( ax − y ) .( ax − y ) 2 ( = ( ax − y ). a 2 x 2 − 2axy + y 2 ) = a x − 2a x y + axy − a x y + 2axy − y 3 3 2 2 2 2 2 2 3
  • 94.
    Vamos calcular 2 (ax − y ) 3 = ( ax − y ) .( ax − y ) 2 ( = ( ax − y ). a 2 x 2 − 2axy + y 2 ) = a x − 2a x y + axy − a x y + 2axy − y 3 3 2 2 2 2 2 2 3 = a 3 x 3 − 3a 2 x 2 y + 3axy 2 − y 3
  • 95.
  • 96.
    Vamos calcular 3 (2x− y ) 2 3 ( )( = 2x − y . 2x − y 2 ) 2 2
  • 97.
    Vamos calcular 3 (2x− y ) 2 3 ( )( = 2x − y . 2x − y 2 ) 2 2 ( )( = 2 x − y 2 . 4 x 2 − 4 xy 2 + y 4 )
  • 98.
    Vamos calcular 3 (2x− y ) 2 3 ( = 2x − y . 2x − y 2 )( ) 2 2 ( )( = 2 x − y 2 . 4 x 2 − 4 xy 2 + y 4 ) = 8 x − 8 x y + 2 xy − 4 x y + 4 xy − y 3 2 2 4 2 2 4 6
  • 99.
    Vamos calcular 3 (2x− y ) 2 3 ( = 2x − y . 2x − y 2 )( 2 2 ) ( )( = 2 x − y 2 . 4 x 2 − 4 xy 2 + y 4 ) = 8 x − 8 x y + 2 xy − 4 x y + 4 xy − y 3 2 2 4 2 2 4 6 = 8 x − 12 x y + 6 xy − y 3 2 2 4 6
  • 100.
    Resumindo… ( a +b ) 2 = a 2 + 2ab +b 2 Quadrado de um binômio ( a −b ) 2 = a 2 − 2ab +b 2 Produto Notável Produto da soma pela diferença ( a +b )( a −b ) = a 2 −b 2 ( a +b ) 3 = a 3 +3a 2b +3ab 2 +b 3 Cubo de um binômio ( a −b ) 3 = a 3 −3a 2b +3ab 2 −b 3
  • 101.
    Bibliografia  Tempo deMatemática, 7a série; NAME, Miguel Assis. 1996, Editora do Brasil S/A, São Paulo. Páginas pesquisadas 69 a 78.  Matemática e Realidade, 8o ano; IEZZI, Gelson; DOLCE, Osvaldo; MACHADO, Antonio. 2009, 6a edição, Atual Editora, São Paulo. Páginas pesquisadas 186 a 194.