SlideShare uma empresa Scribd logo
Teoria dos Grafos - Exercícios do Capítulo 9
Michel Alves dos Santos ∗
Junho de 2011
Conteúdo
Lista de Figuras 1
1 Construa um grafo com a sequência de graus (4,4,3,3,3,3): (a) que seja planar,
(b) que não seja planar. 1
2 Um grafo é autodual se GD
é isomorfo a G. 2
3 Mostre que um grafo planar é bipartido se e só se GD
for euleriano. 2
4 A cintura de um grafo, notação g(G) é o comprimento do seu menor ciclo.
Mostre que em um grafo planar temos: m [(n − 2)g]/(g − 2) 2
5 (a) Seja G um grafo maximal planar com n > 4. Mostre que os vértices de grau
3, se existirem, formam um subconjunto independente dos vértices de G. (b)
Seja G um grafo maximal planar com 5 vértices. Quantas faces triangulares
tem G. (c) Seja G no item b. Produzimos um grafo G’, incluindo um vértice de
grau 3 em cada face triangular, como sugere a figura a seguir. Quantos vértices
tem G’? Quantos vértices de grau 3 tem G’? Mostre que G’ não é hamiltoniano.
(d) Adapte a construção mostrada acima e construa um grafo planar maximal
sem vértices de grau 3. 4
Lista de Figuras
1 A esquerda grafo planar, a direita grafo não planar. . . . . . . . . . . . . . . . . . . 2
2 Grafo planar maximal sem vértices de grau 3. . . . . . . . . . . . . . . . . . . . . . 4
1 Construa um grafo com a sequência de graus (4,4,3,3,3,3):
(a) que seja planar, (b) que não seja planar.
Ver figura 1.
∗Bacharelando em Ciência da Computação, Universidade Federal do Estado de Alagoas(UFAL). E-mails: mi-
chel.mas@gmail.com, michelalavessantos@hotmail.com. Disciplina: Teoria dos Grafos. Docente Responsável: Leo-
nardo Viana Pereira.
1
Figura 1: A esquerda grafo planar, a direita grafo não planar.
2 Um grafo é autodual se GD
é isomorfo a G.
a) Mostre que se G é autodual então 2n = m + 2
b) Mostre que os grafos roda Rn são autoduais.
• a)
Se G é autodual, então GD
é isomorfo a G, pelo Teorema de Euler, temos que se um grafo
G é planar, então f − m + n = 2. Reformulando temos que o número de faces desse grafo é
f = m − n + 2. Analisando agora o grafo dual de G, GD
, pela definição de dualidade, possui
um vértice associado para cada face de G, logo o numero de vértices de GD
será igual ao
numero de faces de G, como pela hipótese os dois são isomorfos (então possuem o mesmo
número de arestas e vértices), se substituirmos f = n em f = m − n + 2, temos 2n = m + 2.
Provando o que queríamos.
• b)
Sabemos que o número de faces de uma Roda Rn será igual ao número de vértices, logo pela
definição de dualidade, o grafo GD
dual a roda, será também uma roda, pois ela possui o
número de faces de uma roda é o seu número de vértices. Dessa forma, o grafo dual da roda
é isomórfico à ela, mostrando então que qualquer roda é autodual.
3 Mostre que um grafo planar é bipartido se e só se GD
for
euleriano.
Se GD
é euleriano então ele só terá ciclos pares, cada ciclo par corresponde à uma face par em
um grafo planar. Se cada face é par no dual de G, então em G cada vértice terá grau par, o que
corresponde à todos os ciclos de G serem pares. Pelo teorema de grafo bipartido: um grafo G é
bipartido se e somente se não possuir ciclos impares. Como G possui apenas ciclos pares então ele
é bipartido.
4 A cintura de um grafo, notação g(G) é o comprimento do
seu menor ciclo. Mostre que em um grafo planar temos:
m [(n − 2)g]/(g − 2)
Para demonstrar tal propriedade devemos recorrer ao conceito de gêneros de superfícies e
grafos. O gênero de uma superfície é o número de alças e furos que ela possui; por exemplo, o
plano e a esfera têm gênero zero e o toro, gênero 1.
O gênero l(G) de um grafo é o da superfície de menor gênero que admita uma imersão de G.
Os grafos planares tem portanto gênero zero. A discussão sobre gênero de superfícies e de grafos
permite a generalização de diversos resultados de grafos planares para grafos quaisquer. Um desses
resultados é exibido a seguir:
Teorema 1. (Relação entre Cintura e Gênero) Se a cintura (comprimento do menor ciclo)
2
de um grafo G for g(G), então
l(G)
m
2
1 −
2
g(G)
−
n
2
+ 1
Executando as devidas transformações teremos:
l(G)
m
2
1 −
2
g(G)
−
n
2
+ 1
l(G)
m
2
g(G)
g(G)
−
2
g(G)
−
n
2
+ 1
l(G)
m
2
g(G) − 2
g(G)
−
n
2
+ 1
l(G)
m
2
g(G) − 2
g(G)
−
n
2
+
2
2
l(G)
m
2
g(G) − 2
g(G)
+
2 − n
2
l(G)
m
2
·
[g(G) − 2]
g(G)
+
2 − n
2
l(G)
m
2
·
[g(G) − 2]
g(G)
+
g(G)
g(G)
·
[2 − n]
2
l(G)
m · [g(G) − 2]
2 · g(G)
+
g(G) · [2 − n]
2 · g(G)
l(G)
m · [g(G) − 2] + g(G) · [2 − n]
2 · g(G)
l(G) · 2 · g(G) m · [g(G) − 2] + g(G) · [2 − n]
2 · l(G) · g(G) m · [g(G) − 2] + g(G) · [2 − n]
2 · l(G) · g(G) m · [g(G) − 2] − g(G) · [n − 2]
Como os grafos planares possuem gênero zero, logo:
2 · l(G) · g(G) m · [g(G) − 2] − g(G) · [n − 2]
2 · 0 · g(G) m · [g(G) − 2] − g(G) · [n − 2]
0 m · [g(G) − 2] − g(G) · [n − 2]
−m · [g(G) − 2] −g(G) · [n − 2]
−m · [g(G) − 2] −g(G) · [n − 2] × (−1)
m · [g(G) − 2] g(G) · [n − 2]
m (g(G) · [n − 2])/[g(G) − 2]
Executando as devidas substituições, que nesse caso seria apenas a troca de notação de g(G) por
apenas g, teremos finalmente:
m [(n − 2) · g]/(g − 2)
3
5 (a) Seja G um grafo maximal planar com n > 4. Mos-
tre que os vértices de grau 3, se existirem, formam um
subconjunto independente dos vértices de G. (b) Seja G
um grafo maximal planar com 5 vértices. Quantas faces
triangulares tem G. (c) Seja G no item b. Produzimos
um grafo G’, incluindo um vértice de grau 3 em cada face
triangular, como sugere a figura a seguir. Quantos vér-
tices tem G’? Quantos vértices de grau 3 tem G’? Mos-
tre que G’ não é hamiltoniano. (d) Adapte a construção
mostrada acima e construa um grafo planar maximal sem
vértices de grau 3.
a)
b) Para grafo planar maximal temos: m=3n-6, com n=5, temos m=9, aplicando o teorema de
euler temos f-m+n=2, substituindo m e n, temos f=6.
c) 11 vértices. 6 vértices de grau 3. Ao tentar construir um ciclo hamiltoniano, veremos que
sempre vai sobrar ao menos um vértice. Dessa forma, o grafo G’ é não hamiltoniano.
d) Solução deste quesito:
Figura 2: Grafo planar maximal sem vértices de grau 3.
4

Mais conteúdo relacionado

Mais procurados

Exercícios de revisão.geometria analítica do ponto
Exercícios de revisão.geometria analítica do pontoExercícios de revisão.geometria analítica do ponto
Exercícios de revisão.geometria analítica do ponto
iran rodrigues
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
leilamaluf
 
Mat estudo do ponto resolvidos
Mat estudo do ponto resolvidosMat estudo do ponto resolvidos
Mat estudo do ponto resolvidos
trigono_metrico
 
PARTE 3 - Progressao Geometrica
PARTE 3 - Progressao GeometricaPARTE 3 - Progressao Geometrica
PARTE 3 - Progressao Geometrica
Estatisticas Ciepe
 
Introdução à Teoria dos Grafos
Introdução à Teoria dos GrafosIntrodução à Teoria dos Grafos
Introdução à Teoria dos Grafos
Bianca Dantas
 

Mais procurados (20)

P.a e p.g.
P.a e p.g.P.a e p.g.
P.a e p.g.
 
Exercícios de revisão.geometria analítica do ponto
Exercícios de revisão.geometria analítica do pontoExercícios de revisão.geometria analítica do ponto
Exercícios de revisão.geometria analítica do ponto
 
Exercícios pontos no plano
Exercícios pontos no planoExercícios pontos no plano
Exercícios pontos no plano
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
 
P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
 
Matemática - PA e PG
Matemática - PA e PGMatemática - PA e PG
Matemática - PA e PG
 
Pg
PgPg
Pg
 
A Utilização da Operação Módulo
A Utilização da Operação MóduloA Utilização da Operação Módulo
A Utilização da Operação Módulo
 
Progressao Aritmetica (PA)
Progressao Aritmetica (PA)Progressao Aritmetica (PA)
Progressao Aritmetica (PA)
 
Mat estudo do ponto resolvidos
Mat estudo do ponto resolvidosMat estudo do ponto resolvidos
Mat estudo do ponto resolvidos
 
Terceira parte
Terceira parteTerceira parte
Terceira parte
 
PARTE 3 - Progressao Geometrica
PARTE 3 - Progressao GeometricaPARTE 3 - Progressao Geometrica
PARTE 3 - Progressao Geometrica
 
Ep3 gai aluno
Ep3 gai alunoEp3 gai aluno
Ep3 gai aluno
 
Introdução a Teoria dos Grafos
Introdução a Teoria dos GrafosIntrodução a Teoria dos Grafos
Introdução a Teoria dos Grafos
 
Exercícios Resolvidos: Aplicação da integral
Exercícios Resolvidos: Aplicação da integralExercícios Resolvidos: Aplicação da integral
Exercícios Resolvidos: Aplicação da integral
 
Estudo das funções trigonométricas básicas
Estudo das funções trigonométricas básicasEstudo das funções trigonométricas básicas
Estudo das funções trigonométricas básicas
 
PA e PG 2015 termo geral e soma
PA e PG 2015 termo geral e somaPA e PG 2015 termo geral e soma
PA e PG 2015 termo geral e soma
 
Teoria dos Grafos
Teoria dos GrafosTeoria dos Grafos
Teoria dos Grafos
 
Introdução à Teoria dos Grafos
Introdução à Teoria dos GrafosIntrodução à Teoria dos Grafos
Introdução à Teoria dos Grafos
 
PA e PG
PA e PGPA e PG
PA e PG
 

Destaque

Destaque (9)

Graph Theory - Exercises - Chapter 6
Graph Theory - Exercises - Chapter 6Graph Theory - Exercises - Chapter 6
Graph Theory - Exercises - Chapter 6
 
Graph Theory - Exercises - Chapter 3
Graph Theory - Exercises - Chapter 3Graph Theory - Exercises - Chapter 3
Graph Theory - Exercises - Chapter 3
 
Graph Theory - Exercises - Chapter 4
Graph Theory - Exercises - Chapter 4Graph Theory - Exercises - Chapter 4
Graph Theory - Exercises - Chapter 4
 
Graph Theory - Exercises - Chapter 5
Graph Theory - Exercises - Chapter 5Graph Theory - Exercises - Chapter 5
Graph Theory - Exercises - Chapter 5
 
Graph Theory - Exercises - Chapter 3 - Algorithms of Dijkstra and Bellman-Ford
Graph Theory - Exercises - Chapter 3 - Algorithms of Dijkstra and Bellman-FordGraph Theory - Exercises - Chapter 3 - Algorithms of Dijkstra and Bellman-Ford
Graph Theory - Exercises - Chapter 3 - Algorithms of Dijkstra and Bellman-Ford
 
Graph Theory - Exercises - Chapter 2
Graph Theory - Exercises - Chapter 2Graph Theory - Exercises - Chapter 2
Graph Theory - Exercises - Chapter 2
 
Graph Theory - Exercises - Chapters 2, 3, 4, 5, 6, 7, 8, and 9
Graph Theory - Exercises - Chapters 2, 3, 4, 5, 6, 7, 8, and 9Graph Theory - Exercises - Chapters 2, 3, 4, 5, 6, 7, 8, and 9
Graph Theory - Exercises - Chapters 2, 3, 4, 5, 6, 7, 8, and 9
 
Graph Theory - Exercises - Chapter 4 - Part II
Graph Theory - Exercises - Chapter 4 - Part IIGraph Theory - Exercises - Chapter 4 - Part II
Graph Theory - Exercises - Chapter 4 - Part II
 
Cap1 limites e continuidade
Cap1   limites e continuidadeCap1   limites e continuidade
Cap1 limites e continuidade
 

Semelhante a Graph Theory - Exercises - Chapter 9

2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito
profzwipp
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
GuiVogt
 
Mat trigonometria exercicios
Mat trigonometria exerciciosMat trigonometria exercicios
Mat trigonometria exercicios
trigono_metrico
 
Números complexos
Números complexosNúmeros complexos
Números complexos
Daniel Muniz
 
2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito
2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito
2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito
profzwipp
 

Semelhante a Graph Theory - Exercises - Chapter 9 (15)

2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito
2010 volume3 cadernodoaluno_matematica_ensinofundamentalii_8aserie_gabarito
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
Mat trigonometria exercicios
Mat trigonometria exerciciosMat trigonometria exercicios
Mat trigonometria exercicios
 
96166676 introd-algebra-exercicios-resolvidos-3-lenimar-n-andrade
96166676 introd-algebra-exercicios-resolvidos-3-lenimar-n-andrade96166676 introd-algebra-exercicios-resolvidos-3-lenimar-n-andrade
96166676 introd-algebra-exercicios-resolvidos-3-lenimar-n-andrade
 
Metricas riemannianas
Metricas riemannianasMetricas riemannianas
Metricas riemannianas
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Trigonometria básica
Trigonometria básicaTrigonometria básica
Trigonometria básica
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Funções de várias variáveis.pptx
Funções de várias variáveis.pptxFunções de várias variáveis.pptx
Funções de várias variáveis.pptx
 
Gabarito
GabaritoGabarito
Gabarito
 
Composição de Funções
Composição de FunçõesComposição de Funções
Composição de Funções
 
2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito
2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito
2010 volume1 cadernodoaluno_matematica_ensinomedio_1aserie_gabarito
 
Ficha nº18 trigonometria
Ficha nº18 trigonometriaFicha nº18 trigonometria
Ficha nº18 trigonometria
 
Ficha nº18 trigonometria
Ficha nº18 trigonometriaFicha nº18 trigonometria
Ficha nº18 trigonometria
 

Mais de Michel Alves

Mais de Michel Alves (20)

Texture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU UseTexture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU Use
 
Intelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color PalettesIntelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color Palettes
 
A Framework for Harmonic Color Measures
A Framework for Harmonic Color MeasuresA Framework for Harmonic Color Measures
A Framework for Harmonic Color Measures
 
Effectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment IndexesEffectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment Indexes
 
Introduction to Kernel Functions
Introduction to Kernel FunctionsIntroduction to Kernel Functions
Introduction to Kernel Functions
 
About Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV SpaceAbout Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV Space
 
Color Harmonization - Results
Color Harmonization - ResultsColor Harmonization - Results
Color Harmonization - Results
 
Wave Simulation Using Perlin Noise
Wave Simulation Using Perlin NoiseWave Simulation Using Perlin Noise
Wave Simulation Using Perlin Noise
 
Similarity Maps Using SSIM Index
Similarity Maps Using SSIM IndexSimilarity Maps Using SSIM Index
Similarity Maps Using SSIM Index
 
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color HarmonizationQualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
 
TMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and ReportsTMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and Reports
 
Month Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJMonth Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJ
 
Color Palettes in R
Color Palettes in RColor Palettes in R
Color Palettes in R
 
Sigmoid Curve Erf
Sigmoid Curve ErfSigmoid Curve Erf
Sigmoid Curve Erf
 
Hue Wheel Prototype
Hue Wheel PrototypeHue Wheel Prototype
Hue Wheel Prototype
 
Cosine Curve
Cosine CurveCosine Curve
Cosine Curve
 
Triangle Mesh Plot
Triangle Mesh PlotTriangle Mesh Plot
Triangle Mesh Plot
 
Triangle Plot
Triangle PlotTriangle Plot
Triangle Plot
 
Capacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video SlidesCapacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video Slides
 
Capacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function CatalogCapacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function Catalog
 

Último

OFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdf
OFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdfOFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdf
OFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdf
AndriaNascimento27
 
Instrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdf
Instrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdfInstrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdf
Instrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdf
ssuserbb4ac2
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
rarakey779
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
rarakey779
 
O QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkk
O QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkkO QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkk
O QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkk
LisaneWerlang
 

Último (20)

Curso de Direito do Trabalho - Maurício Godinho Delgado - 2019.pdf
Curso de Direito do Trabalho - Maurício Godinho Delgado - 2019.pdfCurso de Direito do Trabalho - Maurício Godinho Delgado - 2019.pdf
Curso de Direito do Trabalho - Maurício Godinho Delgado - 2019.pdf
 
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
 
OFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdf
OFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdfOFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdf
OFICINA - CAFETERIA DAS HABILIDADES.pdf_20240516_002101_0000.pdf
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdf
 
Instrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdf
Instrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdfInstrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdf
Instrucoes_A_M_Pranchas_01_a_33_Encadern (4).pdf
 
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
 
DIFERENÇA DO INGLES BRITANICO E AMERICANO.pptx
DIFERENÇA DO INGLES BRITANICO E AMERICANO.pptxDIFERENÇA DO INGLES BRITANICO E AMERICANO.pptx
DIFERENÇA DO INGLES BRITANICO E AMERICANO.pptx
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
 
Evangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdfEvangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdf
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
 
O QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkk
O QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkkO QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkk
O QUINZE.pdf livro lidokkkkkkkkkkkkkkkkkkkk
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
 
Recurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorRecurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/Acumulador
 
Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anos
 
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptxSlides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
Slides Lição 9, CPAD, Resistindo à Tentação no Caminho, 2Tr24.pptx
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leite
 

Graph Theory - Exercises - Chapter 9

  • 1. Teoria dos Grafos - Exercícios do Capítulo 9 Michel Alves dos Santos ∗ Junho de 2011 Conteúdo Lista de Figuras 1 1 Construa um grafo com a sequência de graus (4,4,3,3,3,3): (a) que seja planar, (b) que não seja planar. 1 2 Um grafo é autodual se GD é isomorfo a G. 2 3 Mostre que um grafo planar é bipartido se e só se GD for euleriano. 2 4 A cintura de um grafo, notação g(G) é o comprimento do seu menor ciclo. Mostre que em um grafo planar temos: m [(n − 2)g]/(g − 2) 2 5 (a) Seja G um grafo maximal planar com n > 4. Mostre que os vértices de grau 3, se existirem, formam um subconjunto independente dos vértices de G. (b) Seja G um grafo maximal planar com 5 vértices. Quantas faces triangulares tem G. (c) Seja G no item b. Produzimos um grafo G’, incluindo um vértice de grau 3 em cada face triangular, como sugere a figura a seguir. Quantos vértices tem G’? Quantos vértices de grau 3 tem G’? Mostre que G’ não é hamiltoniano. (d) Adapte a construção mostrada acima e construa um grafo planar maximal sem vértices de grau 3. 4 Lista de Figuras 1 A esquerda grafo planar, a direita grafo não planar. . . . . . . . . . . . . . . . . . . 2 2 Grafo planar maximal sem vértices de grau 3. . . . . . . . . . . . . . . . . . . . . . 4 1 Construa um grafo com a sequência de graus (4,4,3,3,3,3): (a) que seja planar, (b) que não seja planar. Ver figura 1. ∗Bacharelando em Ciência da Computação, Universidade Federal do Estado de Alagoas(UFAL). E-mails: mi- chel.mas@gmail.com, michelalavessantos@hotmail.com. Disciplina: Teoria dos Grafos. Docente Responsável: Leo- nardo Viana Pereira. 1
  • 2. Figura 1: A esquerda grafo planar, a direita grafo não planar. 2 Um grafo é autodual se GD é isomorfo a G. a) Mostre que se G é autodual então 2n = m + 2 b) Mostre que os grafos roda Rn são autoduais. • a) Se G é autodual, então GD é isomorfo a G, pelo Teorema de Euler, temos que se um grafo G é planar, então f − m + n = 2. Reformulando temos que o número de faces desse grafo é f = m − n + 2. Analisando agora o grafo dual de G, GD , pela definição de dualidade, possui um vértice associado para cada face de G, logo o numero de vértices de GD será igual ao numero de faces de G, como pela hipótese os dois são isomorfos (então possuem o mesmo número de arestas e vértices), se substituirmos f = n em f = m − n + 2, temos 2n = m + 2. Provando o que queríamos. • b) Sabemos que o número de faces de uma Roda Rn será igual ao número de vértices, logo pela definição de dualidade, o grafo GD dual a roda, será também uma roda, pois ela possui o número de faces de uma roda é o seu número de vértices. Dessa forma, o grafo dual da roda é isomórfico à ela, mostrando então que qualquer roda é autodual. 3 Mostre que um grafo planar é bipartido se e só se GD for euleriano. Se GD é euleriano então ele só terá ciclos pares, cada ciclo par corresponde à uma face par em um grafo planar. Se cada face é par no dual de G, então em G cada vértice terá grau par, o que corresponde à todos os ciclos de G serem pares. Pelo teorema de grafo bipartido: um grafo G é bipartido se e somente se não possuir ciclos impares. Como G possui apenas ciclos pares então ele é bipartido. 4 A cintura de um grafo, notação g(G) é o comprimento do seu menor ciclo. Mostre que em um grafo planar temos: m [(n − 2)g]/(g − 2) Para demonstrar tal propriedade devemos recorrer ao conceito de gêneros de superfícies e grafos. O gênero de uma superfície é o número de alças e furos que ela possui; por exemplo, o plano e a esfera têm gênero zero e o toro, gênero 1. O gênero l(G) de um grafo é o da superfície de menor gênero que admita uma imersão de G. Os grafos planares tem portanto gênero zero. A discussão sobre gênero de superfícies e de grafos permite a generalização de diversos resultados de grafos planares para grafos quaisquer. Um desses resultados é exibido a seguir: Teorema 1. (Relação entre Cintura e Gênero) Se a cintura (comprimento do menor ciclo) 2
  • 3. de um grafo G for g(G), então l(G) m 2 1 − 2 g(G) − n 2 + 1 Executando as devidas transformações teremos: l(G) m 2 1 − 2 g(G) − n 2 + 1 l(G) m 2 g(G) g(G) − 2 g(G) − n 2 + 1 l(G) m 2 g(G) − 2 g(G) − n 2 + 1 l(G) m 2 g(G) − 2 g(G) − n 2 + 2 2 l(G) m 2 g(G) − 2 g(G) + 2 − n 2 l(G) m 2 · [g(G) − 2] g(G) + 2 − n 2 l(G) m 2 · [g(G) − 2] g(G) + g(G) g(G) · [2 − n] 2 l(G) m · [g(G) − 2] 2 · g(G) + g(G) · [2 − n] 2 · g(G) l(G) m · [g(G) − 2] + g(G) · [2 − n] 2 · g(G) l(G) · 2 · g(G) m · [g(G) − 2] + g(G) · [2 − n] 2 · l(G) · g(G) m · [g(G) − 2] + g(G) · [2 − n] 2 · l(G) · g(G) m · [g(G) − 2] − g(G) · [n − 2] Como os grafos planares possuem gênero zero, logo: 2 · l(G) · g(G) m · [g(G) − 2] − g(G) · [n − 2] 2 · 0 · g(G) m · [g(G) − 2] − g(G) · [n − 2] 0 m · [g(G) − 2] − g(G) · [n − 2] −m · [g(G) − 2] −g(G) · [n − 2] −m · [g(G) − 2] −g(G) · [n − 2] × (−1) m · [g(G) − 2] g(G) · [n − 2] m (g(G) · [n − 2])/[g(G) − 2] Executando as devidas substituições, que nesse caso seria apenas a troca de notação de g(G) por apenas g, teremos finalmente: m [(n − 2) · g]/(g − 2) 3
  • 4. 5 (a) Seja G um grafo maximal planar com n > 4. Mos- tre que os vértices de grau 3, se existirem, formam um subconjunto independente dos vértices de G. (b) Seja G um grafo maximal planar com 5 vértices. Quantas faces triangulares tem G. (c) Seja G no item b. Produzimos um grafo G’, incluindo um vértice de grau 3 em cada face triangular, como sugere a figura a seguir. Quantos vér- tices tem G’? Quantos vértices de grau 3 tem G’? Mos- tre que G’ não é hamiltoniano. (d) Adapte a construção mostrada acima e construa um grafo planar maximal sem vértices de grau 3. a) b) Para grafo planar maximal temos: m=3n-6, com n=5, temos m=9, aplicando o teorema de euler temos f-m+n=2, substituindo m e n, temos f=6. c) 11 vértices. 6 vértices de grau 3. Ao tentar construir um ciclo hamiltoniano, veremos que sempre vai sobrar ao menos um vértice. Dessa forma, o grafo G’ é não hamiltoniano. d) Solução deste quesito: Figura 2: Grafo planar maximal sem vértices de grau 3. 4