SlideShare uma empresa Scribd logo
1 de 16
Baixar para ler offline
Noções de Cálculo Vetorial
Prof. Alberto Ricardo Präss
Linguagem e conceitos
Linguagem é um ingrediente essencial do pensamento abstrato. É difícil pensar
clara e facilmente sobre conceitos sofisticados e abstratos, numa linguagem que
não tem palavras apropriadas a tais conceitos. Para exprimir novos conceitos
científicos novas palavras são inventadas e adicionadas às línguas.
Um vetor é uma quantidade que tem direção e sentido além de magnitude.
Notação Vetorial
Uma vez que símbolos são os componentes da linguagem matemática, uma parte
importante da arte da análise matemática é a técnica de usar uma boa notação. A
notação vetorial tem duas grandes propriedades:
1. A formulação de uma lei física em termos de vetores é independente da
escolha dos eixos de coordenadas. A notação vetorial oferece uma linguagem na
qual enunciados têm um conteúdo físico independente do sistema de
coordenadas.
2. A notação vetorial é concisa. Muitas leis físicas têm formas simples e
transparentes, que são pouco aparentes quando estas leis são escritas em termos
de um sistema particular de coordenadas.
Algumas das leis mais complicadas, que não podem ser expressas em
forma vetorial, podem ser expressas em termos de tensores. Um tensor é uma
generalização de um vetor e inclui um vetor como um caso especial. A análise
vetorial que conhecemos hoje é em grande parte o resultado do trabalho feito no
fim do século XIX por Josiah Willard Gibbs e Oliver Heaviside.
A notação vetorial que adotamos é a seguinte:
r
A.
A utilidade e aplicabilidade de vetores em problemas físicos é baseada, em
parte, na geometria Euclidiana. O enunciado de uma lei em termos de vetores
usualmente acarreta a hipótese de que a geometria de Euclides é válida. Se a
geometria não for Euclidiana, a adição de dois vetores de uma forma simples e
inequívoca pode não ser possível. Para o espaço curvo existe uma linguagem
mais geral, a geometria diferencial métrica, que é a linguagem da Teoria da
Relatividade Geral, domínio da Física no qual a geometria Euclidiana não é mais
válida.
Consideramos um vetor como sendo uma grandeza tendo direção, sentido e
intensidade. Esta propriedade não tem nenhuma relação com um sistema
particular de referência1
. Um escalar é definido como sendo uma quantidade cujo
valor não depende do sistema de coordenadas. O módulo de um vetor é um
escalar.
As principais grandezas físicas e a sua classificação como escalar ou vetorial
são:
Grandezas Escalares Grandezas Vetoriais
Grandeza Símbolo Unidade Grandeza Símb
olo
Unidade
Comprimento L m Posição
r
x m
Área A m2
Deslocamento ∆∆
r
x m
Volume V m3
Velocidade
r
v m/s
Massa m kg Aceleração
r
a m/s2
Pressão p Pa Força
r
F N
Densidade d kg/m3
Momentum
r
Q N.kg/s
Tempo t s Impulso
r
I N.s
Temperatura T K Campo Elétrico
r
E V/m
Energia E J Campo Magnético
r
B T
Potência P W
Corrente Elétrica i A
Potencial Elétrico V V
Resistência Elétrica R Ω
Resistividade Elétrica ρ Ω.m
Igualdade de vetores
Dois vetores A e B
r r
são definidos como sendo iguais se tiverem o mesmo
módulo, direção e sentido. Um vetor não tem, necessariamente, uma localização,
apesar de que um vetor possa se referir a uma quantidade definida em um ponto.
Dois vetores podem ser comparados, mesmo que meçam quantidades físicas
definidas, em diferentes pontos do espaço e de tempo.
Operações com Vetores
Vamos estudar agora a maneira de operar com as grandezas físicas vetoriais (ou
com vetores). Já estamos bastante familiarizados em somar ou subtrair
grandezas escalares de uma mesma espécie:
a) assim, a adição de um comprimento de 20 m de tecido com 40 m de outro nos
fornece cerca de 20 m + 40 m = 60 m;
b) b) um volume de 5 litros somado com um outro de 10 litros nos fornece um
volume resultante de 15 litros;
c) se subtrairmos 4 horas, de um intervalo de tempo de 15 horas, obteremos 15
h – 4 h = 11 h;
d) já a operação 10 litros + 2 horas não é possível ser efetuada visto tratar-se de
grandezas de espécies diferentes.
E com os vetores, de que forma podemos operar? Existem métodos gráficos e
analíticos. Veremos os métodos gráficos.
Adição de Vetores2
O vetor resultante ou soma
r r r
R A B== ++ é obtido da seguinte maneira:
a) escolhe-se um ponto qualquer (ponto P).
b) desloca-se em qualquer ordem todos os vetores que se deseja somar de modo
que a origem do primeiro fique sobre o ponto P e os demais fiquem dispostos
de tal forma que a origem de um coincida com o vértice de outro.
c) o vetor que vai da origem do primeiro (ponto P) à extremidade do último
(ponto Q) é, por definição, o vetor resultante
r r r
R A B== ++ .
1º Caso: dois vetores de mesma direção e sentido.
r
A u== 4
r
B u== 3
P
r
A u== 4
r
B u== 3 Q
r
R u== 7
2º Caso: dois vetores de mesma direção e sentidos opostos.
r
A u== 4
r
B u== 3
P Q
r
A u== 4
r
B u== 3
r
R u== 1
3º Caso: dois vetores de direções perpendiculares.
r
A u== 4
r
B u== 3
P
r
A u== 4
r
B u== 3
r
R == ?
Para achar o módulo do vetor resultante R
v
, usa-se o Teorema de Pitágoras:
r
A u== 4
r
B u== 3
r
R == ?
r r r
R A B
2 2 2
== ++
r r r
R A B== ++
2 2
r
R == ++4 32 2
r
R == ++16 9
r
R == 25 è
r
R u== 5
Também estaria correto se ao invés de começar com
r
A começássemos com
r
B :
P
r
B u== 3
r
R u== 5
Q
r
A u== 4
Podemos usar a “Regra do Paralelogramo”.
*Escolhe-se um ponto qualquer (ponto P).
*Coloca-se a origem dos dois vetores nesse ponto.
*Completa-se o paralelogramo usando linhas imaginárias.
*O vetor resultante tem origem no ponto P e tem a mesma direção da diagonal
que parte de P.
P
r
A u== 4
r
R u== 5
r
B u== 3
4º Caso: dois vetores com direções oblíquas.
r
A
30º
r
B
r
B u== 3 Q
r
A u== 4
P
r
R == ?
Utilizando-se a Lei dos Cossenos pode-se deduzir que:
r r r r r
R A B A B== ++ ++
2 2
2. . .cosθθ , onde θθ é o ângulo entre as direções dos dois vetores.
No exemplo em questão temos:
2 2
R 4 3 2.4.3.cos30º R 16 9 12 3 R 6,77u= + + → = + + → ≅
r r r
Também estaria correto se ao invés de começar com
r
A começássemos com
r
B :
Q
r
R r
A
P 30º
r
B
Poderíamos usar a “Regra do Paralelogramo”.
r
Rr
A
P
r
B
5º Caso: vários vetores com direções quaisquer.
r
A
r
B
r
C
37º
P
r
A
r
R
Q
r
B
r
C
Subtração de Vetores
Seja o vetor
r
Achamamos de vetor oposto −−
r
A a um vetor de mesmo
módulo, direção e sentido oposto.
r
A
−−
r
A
Exemplo:
Dados os vetores A e B
r r
, o vetor diferença
r r r
D A B== −− é obtido fazendo-se a
adição de
r
A com −−
r
B, ou seja: (( ))
r r r r r r
D A B D A B== −− ⇒⇒ == ++ −−
r
A
r
B
r
A
−−
r
B
r
D −−
r
B
r
A
Produto de um número real por um vetor
O produto de um vetor
r
A por um número real “n” é um vetor de mesma
direção que
r
A, com o mesmo sentido de
r
A se “n” for positivo e sentido contrário
ao de
r
A se “n” for negativo. Seu módulo é n A.
r
.
Exemplos:
r
A 2.
r
A
r
B −− 1.
r
B
Produto escalar de dois vetores
Definição:
O produto escalar de A e B
r r
é definido como uma grandeza “escalar” que é
obtida tomando o produto do módulo de
r
A pelo de
r
B , vezes o cosseno do ângulo
entre eles:
A B A.B.cos• = θ
r r r r
onde θ é o ângulo entre os dois vetores.
Lemos
r r
A B•• como " A ponto B "
r r
.
O exemplo mais importante é o cálculo do trabalho ( )τ feito por uma força (F)
r
ao
longo de um deslocamento ( x)∆
r
:
F x F . x.cosτ = • ∆ ⇒ τ = ∆ θ
r rr r
Outro exemplo é o cálculo da potência (P) de uma força
r
F quando a velocidade é
(v)
r
:
P F v F.v.cos= • = θ
r rr r
Produto vetorial de dois vetores
Definição:
o “produto vetorial”
r r
A B×× é definido como sendo um vetor (C)
r
perpendicular ao
plano que inclui A e B
r r
e que tem módulo :
C A B C A.B.sen= × ⇒ = θ
r rr r r r
O sentido de
r
C é determinado por uma convenção que é a regra do saca-rolhas
(também pode-se usar a regra da mão esquerda ou a regra do tapa).
REGRA DO TAPA REGRA DA MÃO ESQUERDA
O exemplo mais importante é o da determinação da força (F)
r
que atua sobre uma
carga elétrica (q) que se move com uma velocidade (v)
r
em um campo magnético
(B):
r
F qv B F q.v.B.sen= × ⇒ = θ
r r r rr r
Decomposição de Vetores
Seja um vetor
r
F inclinado de αα em relação ao eixo Ox e inclinado de ββ em
relação ao eixo Oy.
y
r
F
r
Fy
β
α xr
Fx
x
y
F componente de F segundo Ox
F componente de F segundo Oy
→
→
r r
r r
Da figura temos:
sen αα ==
r
r
F
F
y
cosαα ==
r
r
F
F
x
sen ββ ==
r
r
F
F
x
cos ββ ==
r
r
F
F
y
Portanto:
r r r
r r r
F F F
F F F
x
y
== ==
== ==
.cos .sen
.cos .sen
αα ββ
ββ αα
OBSERVAÇÕES:
Admitimos que a direção de um vetor pode ser definida. Para algumas
finalidades podemos referir a sua direção ao laboratório e para outras às estrelas
fixas ou à Terra.
Nem todas as quantidades que tem intensidade e direção são
necessariamente vetoriais (por exemplo, corrente elétrica).
Os valores usados como módulo são apenas para exemplificar. A unidade
“u” é arbitrária.
Admitimos que a direção de um vetor pode ser definida. Para algumas
finalidades podemos referir a sua direção ao laboratório e para outras às estrelas
fixas ou à Terra.
Nem todas as quantidades que tem intensidade e direção são
necessariamente vetoriais (por exemplo, corrente elétrica).
EXERCÍCIOS PROPOSTOS
1.Duas forças
r
F N1 40== e
r
F N2 30== atuam num corpo conforme a figura.
Determinar a força resultante
r
R (módulo, direção e sentido).
r
F2
r
F1
2. Duas forças
r
F N1 40== e
r
F N2 30== atuam num corpo conforme a figura.
Determinar a força única que produz o mesmo efeito que as duas juntas.
r
F2
60º
r
F1
3. Num ponto atuam 3 forças conforme o esquema anexo. Determine a
resultante.
r r r
F N F N F N1 2 340 30 30== == ==, ,
r
F2
53º
r
F3
r
F1
4. Um barco sob a ação do motor fica sujeito a uma velocidade
r
v1 ; a correnteza
puxa o barco com velocidade
r
v m s2 3 0== , / rio abaixo. O barco deve cruzar o rio de
modo que fique sujeito a uma velocidade
r
v m s== 4 0, / , perpendicular a correnteza.
Veja a figura e determine o módulo de
r
v1 .
5. Na figura temos um avião voando a 600 km/h. num determinado instante
passa a soprar um vento com velocidade de 100 km/h, conforme indica a figura.
Determinar a velocidade resultante do avião.
6. Na figura anexa a velocidade do barco é vB=8 m/s dirigida perpendicularmente
à correnteza que tem velocidade vC=6 m/s.
Determine a velocidade resultante no barco e o ângulo que esta resultante faz
com a correnteza. (Este ângulo é a direção do deslocamento do barco.)
7. O diagrama vetorial mostra, em escala, duas forças atuando num objeto de
massa m.
O módulo da resultante dessas forças que estão atuando no objeto é, em
newtons:
(A) 2,0
(B) 10
(C) 4,0
(D) 6,0
(E) 8,0
8. Considere os vetores deslocamentos
r
a ,
r
b ,
r
c e
r
d desenhados a seguir:
Os vetores
r
a ,
r
b ,
r
c e
r
d satisfazem a relação:
(A)
r r r r
a b c d++ ++ ==
(B)
r r r
b c d−− ==
(C)
r r r
a b c++ ==
(D)
r r r
b c d++ ==
(E)
r r r
a c b++ ==
9. Um jogador de futebol encontra-se no ponto P, a 50m de distância do centro
do gol e a 30m da linha de fundo. Em um dado momento, o jogador avança com
uma velocidade de módulo v = 5,0m/s , em direção ao gol. Nesse instante, a
velocidade com que ele se aproxima da linha de fundo tem módulo igual a:
(A) 5,0 m/s
(B) 2,5 m/s
(C) 50 m/s
(D) 3,0 m/s
(E) 30 m/s
10. Dois alunos estão no Shopping Center Bongo. Os alunos A e B estão subindo
e descendo, respectivamente, duas escadas rolantes. Cada escada tem
velocidade constante de módulo 1,0 m/s e estão inclinadas de 45º em relação à
horizontal, conforme indica a figura.
11. A figura representa um carro que percorre a trajetória ABC em 50 s.
Sabendo-se que AB = 200 m e BC = 150 m, pede-se:
a) representar os vetores deslocamentos correspondentes aos trechos AB e BC e
o deslocamento resultante.
b) determine o valor do deslocamento resultante do percurso.
c) determine a velocidade escalar média.
d) determine o módulo da velocidade vetorial média.
12. Num ponto atuam as forças F1 = 25 N; F2 = 20 N e F3 = 15 N, conforme
ilustra o esquema. Determine a resultante delas.
13. Num corpo atuam duas forças conforme o esquema.
Determinar a resultante (módulo, direção e sentido) destas forças.
14. No ponto A atuam as forças indicadas. A resultante deve ser vertical para
baixo; e apresentar intensidade R = 15 N.
Determinar o valor de
r
F3 e o ângulo θ que ela faz com a horizontal.
15. Duas forças de intensidade F1 = F2 = 50N estão aplicadas num corpo,
conforme indica a figura. Determine a força
r
F3 que aplicada no corpo torne a
resultante
r r r r
R F F F== ++ ++1 2 3 nula.
16. Uma pessoa desloca-se 200 m para o norte, em seguida 300 m para leste e
finalmente 400 m para o sul. Escolha a escala conveniente e represente os
deslocamentos; determine o deslocamento resultante.
17. Uma partícula está sujeita a duas forças, conforme a figura.
y
r
F2
r
F1
53o
37o
x
O
Considere sen53º = 0,80; cos 53º = 0,60 e F1 = F2 = 10N.
Determine:
a) as componentes da força resultante nas direções Ox e Oy.
b) a intensidade da força resultante.
18. No esquema ao lado uma bola atinge uma parede com velocidade v1 = 10
m/s e volta com velocidade v2 = 10 m/s. Determinar a variação de velocidade
∆∆
r r r
v v v== −−2 1 , sofrida pela bola nesta interação com a parede.

Mais conteúdo relacionado

Mais procurados

Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analíticaprofluizgustavo
 
Microsoft power point motores e geradores cc 2011-2a
Microsoft power point   motores e geradores cc 2011-2aMicrosoft power point   motores e geradores cc 2011-2a
Microsoft power point motores e geradores cc 2011-2aTiago Santiago
 
Simbologia para instrumentação
Simbologia para instrumentaçãoSimbologia para instrumentação
Simbologia para instrumentaçãophasetronik
 
Apostila hidráulica aplicada - Engenharia Civil
Apostila hidráulica aplicada - Engenharia CivilApostila hidráulica aplicada - Engenharia Civil
Apostila hidráulica aplicada - Engenharia CivilBelquior Prado
 
Relatório diodos
Relatório diodos Relatório diodos
Relatório diodos Victor Said
 
Experimento 2 velocidade média
Experimento 2  velocidade médiaExperimento 2  velocidade média
Experimento 2 velocidade médialuciano batello
 
Aula10 medidores vazao
Aula10 medidores vazaoAula10 medidores vazao
Aula10 medidores vazaocarlomitro
 
Relatório pêndulo simples turma t5
Relatório pêndulo simples   turma t5Relatório pêndulo simples   turma t5
Relatório pêndulo simples turma t5Roberto Leao
 
movimentos de projéteis
movimentos de projéteismovimentos de projéteis
movimentos de projéteisRui Foles
 
Óptica Geométrica - Estudo das lentes esféricas
Óptica Geométrica - Estudo das lentes esféricasÓptica Geométrica - Estudo das lentes esféricas
Óptica Geométrica - Estudo das lentes esféricasMarco Antonio Sanches
 

Mais procurados (20)

Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
Aula 07 derivadas - regras de derivação - parte 1
Aula 07   derivadas - regras de derivação - parte 1Aula 07   derivadas - regras de derivação - parte 1
Aula 07 derivadas - regras de derivação - parte 1
 
Física mru
Física  mruFísica  mru
Física mru
 
mecanica dos fluidos
mecanica dos fluidosmecanica dos fluidos
mecanica dos fluidos
 
Tensão média e tensão eficaz
Tensão média e tensão eficazTensão média e tensão eficaz
Tensão média e tensão eficaz
 
Algebra
AlgebraAlgebra
Algebra
 
Álgebra de Boole
Álgebra de BooleÁlgebra de Boole
Álgebra de Boole
 
Microsoft power point motores e geradores cc 2011-2a
Microsoft power point   motores e geradores cc 2011-2aMicrosoft power point   motores e geradores cc 2011-2a
Microsoft power point motores e geradores cc 2011-2a
 
Vetores
VetoresVetores
Vetores
 
Simbologia para instrumentação
Simbologia para instrumentaçãoSimbologia para instrumentação
Simbologia para instrumentação
 
Cones
ConesCones
Cones
 
Apostila hidráulica aplicada - Engenharia Civil
Apostila hidráulica aplicada - Engenharia CivilApostila hidráulica aplicada - Engenharia Civil
Apostila hidráulica aplicada - Engenharia Civil
 
Relatório diodos
Relatório diodos Relatório diodos
Relatório diodos
 
Experimento 2 velocidade média
Experimento 2  velocidade médiaExperimento 2  velocidade média
Experimento 2 velocidade média
 
Aula 21 vetores
Aula 21   vetoresAula 21   vetores
Aula 21 vetores
 
Aula10 medidores vazao
Aula10 medidores vazaoAula10 medidores vazao
Aula10 medidores vazao
 
Relatório pêndulo simples turma t5
Relatório pêndulo simples   turma t5Relatório pêndulo simples   turma t5
Relatório pêndulo simples turma t5
 
movimentos de projéteis
movimentos de projéteismovimentos de projéteis
movimentos de projéteis
 
Aula 05 derivadas - conceitos iniciais
Aula 05   derivadas - conceitos iniciaisAula 05   derivadas - conceitos iniciais
Aula 05 derivadas - conceitos iniciais
 
Óptica Geométrica - Estudo das lentes esféricas
Óptica Geométrica - Estudo das lentes esféricasÓptica Geométrica - Estudo das lentes esféricas
Óptica Geométrica - Estudo das lentes esféricas
 

Semelhante a Noções de Cálculo Vetorial: Conceitos, Notação e Operações

Fisica vetores
Fisica vetoresFisica vetores
Fisica vetorescomentada
 
03 Mecânica - Vetores
03 Mecânica - Vetores03 Mecânica - Vetores
03 Mecânica - VetoresEletrons
 
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Carlos Andrade
 
Apostila geometria analítica plana 2º ed.
Apostila geometria analítica plana   2º ed.Apostila geometria analítica plana   2º ed.
Apostila geometria analítica plana 2º ed.day ....
 
Aula 03 mecância - vetores
Aula 03   mecância - vetoresAula 03   mecância - vetores
Aula 03 mecância - vetoresJonatas Carlos
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)day ....
 
Prova 1 2014-1 (site)
Prova 1 2014-1 (site)Prova 1 2014-1 (site)
Prova 1 2014-1 (site)almeidacisco
 
Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4Karla Danielle Ferreira
 

Semelhante a Noções de Cálculo Vetorial: Conceitos, Notação e Operações (20)

Fisica vetores
Fisica vetoresFisica vetores
Fisica vetores
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorial
 
03 grandezas e vetores
03 grandezas e vetores03 grandezas e vetores
03 grandezas e vetores
 
03 Mecânica - Vetores
03 Mecânica - Vetores03 Mecânica - Vetores
03 Mecânica - Vetores
 
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
 
Apostila geometria analítica plana 2º ed.
Apostila geometria analítica plana   2º ed.Apostila geometria analítica plana   2º ed.
Apostila geometria analítica plana 2º ed.
 
Aula 03 mecância - vetores
Aula 03   mecância - vetoresAula 03   mecância - vetores
Aula 03 mecância - vetores
 
Aula1.pdf
Aula1.pdfAula1.pdf
Aula1.pdf
 
Aula fisica vetores
Aula fisica   vetoresAula fisica   vetores
Aula fisica vetores
 
Vetores oficina - teoria
Vetores  oficina - teoriaVetores  oficina - teoria
Vetores oficina - teoria
 
Trabalho2
Trabalho2Trabalho2
Trabalho2
 
Vetores2
Vetores2Vetores2
Vetores2
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Aula de vetores
Aula de vetoresAula de vetores
Aula de vetores
 
Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)Apostila de geometria analítica espacial (1)
Apostila de geometria analítica espacial (1)
 
Apostila estatica
Apostila estaticaApostila estatica
Apostila estatica
 
Vetores
VetoresVetores
Vetores
 
Prova 1 2014-1 (site)
Prova 1 2014-1 (site)Prova 1 2014-1 (site)
Prova 1 2014-1 (site)
 
Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4Reproducao sp-matematica-1-unidade-2-capitulo-4
Reproducao sp-matematica-1-unidade-2-capitulo-4
 
Física vetores
Física  vetoresFísica  vetores
Física vetores
 

Último

Literatura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptLiteratura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptMaiteFerreira4
 
Discurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptxDiscurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptxferreirapriscilla84
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.silves15
 
Dicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim RangelDicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim RangelGilber Rubim Rangel
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
PROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdf
PROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdfPROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdf
PROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdfMarianaMoraesMathias
 
Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManuais Formação
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfMárcio Azevedo
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.Mary Alvarenga
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinhaMary Alvarenga
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdfLeloIurk1
 
análise de redação completa - Dissertação
análise de redação completa - Dissertaçãoanálise de redação completa - Dissertação
análise de redação completa - DissertaçãoMaiteFerreira4
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxBeatrizLittig1
 
Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Ilda Bicacro
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...azulassessoria9
 

Último (20)

Literatura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptLiteratura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.ppt
 
Discurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptxDiscurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptx
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.
 
Dicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim RangelDicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim Rangel
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
PROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdf
PROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdfPROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdf
PROGRAMA DE AÇÃO 2024 - MARIANA DA SILVA MORAES.pdf
 
Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envio
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdf
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinha
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
análise de redação completa - Dissertação
análise de redação completa - Dissertaçãoanálise de redação completa - Dissertação
análise de redação completa - Dissertação
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docx
 
Bullying, sai pra lá
Bullying,  sai pra láBullying,  sai pra lá
Bullying, sai pra lá
 
Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
 

Noções de Cálculo Vetorial: Conceitos, Notação e Operações

  • 1. Noções de Cálculo Vetorial Prof. Alberto Ricardo Präss Linguagem e conceitos Linguagem é um ingrediente essencial do pensamento abstrato. É difícil pensar clara e facilmente sobre conceitos sofisticados e abstratos, numa linguagem que não tem palavras apropriadas a tais conceitos. Para exprimir novos conceitos científicos novas palavras são inventadas e adicionadas às línguas. Um vetor é uma quantidade que tem direção e sentido além de magnitude. Notação Vetorial Uma vez que símbolos são os componentes da linguagem matemática, uma parte importante da arte da análise matemática é a técnica de usar uma boa notação. A notação vetorial tem duas grandes propriedades: 1. A formulação de uma lei física em termos de vetores é independente da escolha dos eixos de coordenadas. A notação vetorial oferece uma linguagem na qual enunciados têm um conteúdo físico independente do sistema de coordenadas. 2. A notação vetorial é concisa. Muitas leis físicas têm formas simples e transparentes, que são pouco aparentes quando estas leis são escritas em termos de um sistema particular de coordenadas. Algumas das leis mais complicadas, que não podem ser expressas em forma vetorial, podem ser expressas em termos de tensores. Um tensor é uma generalização de um vetor e inclui um vetor como um caso especial. A análise vetorial que conhecemos hoje é em grande parte o resultado do trabalho feito no fim do século XIX por Josiah Willard Gibbs e Oliver Heaviside. A notação vetorial que adotamos é a seguinte: r A. A utilidade e aplicabilidade de vetores em problemas físicos é baseada, em parte, na geometria Euclidiana. O enunciado de uma lei em termos de vetores usualmente acarreta a hipótese de que a geometria de Euclides é válida. Se a geometria não for Euclidiana, a adição de dois vetores de uma forma simples e inequívoca pode não ser possível. Para o espaço curvo existe uma linguagem mais geral, a geometria diferencial métrica, que é a linguagem da Teoria da Relatividade Geral, domínio da Física no qual a geometria Euclidiana não é mais válida.
  • 2. Consideramos um vetor como sendo uma grandeza tendo direção, sentido e intensidade. Esta propriedade não tem nenhuma relação com um sistema particular de referência1 . Um escalar é definido como sendo uma quantidade cujo valor não depende do sistema de coordenadas. O módulo de um vetor é um escalar. As principais grandezas físicas e a sua classificação como escalar ou vetorial são: Grandezas Escalares Grandezas Vetoriais Grandeza Símbolo Unidade Grandeza Símb olo Unidade Comprimento L m Posição r x m Área A m2 Deslocamento ∆∆ r x m Volume V m3 Velocidade r v m/s Massa m kg Aceleração r a m/s2 Pressão p Pa Força r F N Densidade d kg/m3 Momentum r Q N.kg/s Tempo t s Impulso r I N.s Temperatura T K Campo Elétrico r E V/m Energia E J Campo Magnético r B T Potência P W Corrente Elétrica i A Potencial Elétrico V V Resistência Elétrica R Ω Resistividade Elétrica ρ Ω.m Igualdade de vetores Dois vetores A e B r r são definidos como sendo iguais se tiverem o mesmo módulo, direção e sentido. Um vetor não tem, necessariamente, uma localização, apesar de que um vetor possa se referir a uma quantidade definida em um ponto. Dois vetores podem ser comparados, mesmo que meçam quantidades físicas definidas, em diferentes pontos do espaço e de tempo. Operações com Vetores Vamos estudar agora a maneira de operar com as grandezas físicas vetoriais (ou com vetores). Já estamos bastante familiarizados em somar ou subtrair grandezas escalares de uma mesma espécie: a) assim, a adição de um comprimento de 20 m de tecido com 40 m de outro nos fornece cerca de 20 m + 40 m = 60 m; b) b) um volume de 5 litros somado com um outro de 10 litros nos fornece um volume resultante de 15 litros; c) se subtrairmos 4 horas, de um intervalo de tempo de 15 horas, obteremos 15 h – 4 h = 11 h;
  • 3. d) já a operação 10 litros + 2 horas não é possível ser efetuada visto tratar-se de grandezas de espécies diferentes. E com os vetores, de que forma podemos operar? Existem métodos gráficos e analíticos. Veremos os métodos gráficos. Adição de Vetores2 O vetor resultante ou soma r r r R A B== ++ é obtido da seguinte maneira: a) escolhe-se um ponto qualquer (ponto P). b) desloca-se em qualquer ordem todos os vetores que se deseja somar de modo que a origem do primeiro fique sobre o ponto P e os demais fiquem dispostos de tal forma que a origem de um coincida com o vértice de outro. c) o vetor que vai da origem do primeiro (ponto P) à extremidade do último (ponto Q) é, por definição, o vetor resultante r r r R A B== ++ . 1º Caso: dois vetores de mesma direção e sentido. r A u== 4 r B u== 3 P r A u== 4 r B u== 3 Q r R u== 7 2º Caso: dois vetores de mesma direção e sentidos opostos. r A u== 4 r B u== 3 P Q r A u== 4 r B u== 3 r R u== 1 3º Caso: dois vetores de direções perpendiculares.
  • 4. r A u== 4 r B u== 3 P r A u== 4 r B u== 3 r R == ? Para achar o módulo do vetor resultante R v , usa-se o Teorema de Pitágoras: r A u== 4 r B u== 3 r R == ? r r r R A B 2 2 2 == ++ r r r R A B== ++ 2 2 r R == ++4 32 2 r R == ++16 9 r R == 25 è r R u== 5 Também estaria correto se ao invés de começar com r A começássemos com r B : P r B u== 3 r R u== 5 Q r A u== 4 Podemos usar a “Regra do Paralelogramo”. *Escolhe-se um ponto qualquer (ponto P). *Coloca-se a origem dos dois vetores nesse ponto. *Completa-se o paralelogramo usando linhas imaginárias. *O vetor resultante tem origem no ponto P e tem a mesma direção da diagonal que parte de P. P r A u== 4 r R u== 5 r B u== 3
  • 5. 4º Caso: dois vetores com direções oblíquas. r A 30º r B r B u== 3 Q r A u== 4 P r R == ? Utilizando-se a Lei dos Cossenos pode-se deduzir que: r r r r r R A B A B== ++ ++ 2 2 2. . .cosθθ , onde θθ é o ângulo entre as direções dos dois vetores. No exemplo em questão temos: 2 2 R 4 3 2.4.3.cos30º R 16 9 12 3 R 6,77u= + + → = + + → ≅ r r r Também estaria correto se ao invés de começar com r A começássemos com r B : Q r R r A P 30º r B Poderíamos usar a “Regra do Paralelogramo”. r Rr A P r B 5º Caso: vários vetores com direções quaisquer. r A r B r C 37º P r A r R Q r B r C
  • 6. Subtração de Vetores Seja o vetor r Achamamos de vetor oposto −− r A a um vetor de mesmo módulo, direção e sentido oposto. r A −− r A Exemplo: Dados os vetores A e B r r , o vetor diferença r r r D A B== −− é obtido fazendo-se a adição de r A com −− r B, ou seja: (( )) r r r r r r D A B D A B== −− ⇒⇒ == ++ −− r A r B r A −− r B r D −− r B r A Produto de um número real por um vetor O produto de um vetor r A por um número real “n” é um vetor de mesma direção que r A, com o mesmo sentido de r A se “n” for positivo e sentido contrário ao de r A se “n” for negativo. Seu módulo é n A. r . Exemplos:
  • 7. r A 2. r A r B −− 1. r B Produto escalar de dois vetores Definição: O produto escalar de A e B r r é definido como uma grandeza “escalar” que é obtida tomando o produto do módulo de r A pelo de r B , vezes o cosseno do ângulo entre eles: A B A.B.cos• = θ r r r r onde θ é o ângulo entre os dois vetores. Lemos r r A B•• como " A ponto B " r r . O exemplo mais importante é o cálculo do trabalho ( )τ feito por uma força (F) r ao longo de um deslocamento ( x)∆ r : F x F . x.cosτ = • ∆ ⇒ τ = ∆ θ r rr r Outro exemplo é o cálculo da potência (P) de uma força r F quando a velocidade é (v) r : P F v F.v.cos= • = θ r rr r Produto vetorial de dois vetores Definição: o “produto vetorial” r r A B×× é definido como sendo um vetor (C) r perpendicular ao plano que inclui A e B r r e que tem módulo : C A B C A.B.sen= × ⇒ = θ r rr r r r O sentido de r C é determinado por uma convenção que é a regra do saca-rolhas (também pode-se usar a regra da mão esquerda ou a regra do tapa). REGRA DO TAPA REGRA DA MÃO ESQUERDA
  • 8. O exemplo mais importante é o da determinação da força (F) r que atua sobre uma carga elétrica (q) que se move com uma velocidade (v) r em um campo magnético (B): r F qv B F q.v.B.sen= × ⇒ = θ r r r rr r Decomposição de Vetores Seja um vetor r F inclinado de αα em relação ao eixo Ox e inclinado de ββ em relação ao eixo Oy. y r F r Fy β α xr Fx x y F componente de F segundo Ox F componente de F segundo Oy → → r r r r Da figura temos: sen αα == r r F F y cosαα == r r F F x sen ββ == r r F F x cos ββ == r r F F y
  • 9. Portanto: r r r r r r F F F F F F x y == == == == .cos .sen .cos .sen αα ββ ββ αα OBSERVAÇÕES: Admitimos que a direção de um vetor pode ser definida. Para algumas finalidades podemos referir a sua direção ao laboratório e para outras às estrelas fixas ou à Terra. Nem todas as quantidades que tem intensidade e direção são necessariamente vetoriais (por exemplo, corrente elétrica). Os valores usados como módulo são apenas para exemplificar. A unidade “u” é arbitrária. Admitimos que a direção de um vetor pode ser definida. Para algumas finalidades podemos referir a sua direção ao laboratório e para outras às estrelas fixas ou à Terra. Nem todas as quantidades que tem intensidade e direção são necessariamente vetoriais (por exemplo, corrente elétrica).
  • 10. EXERCÍCIOS PROPOSTOS 1.Duas forças r F N1 40== e r F N2 30== atuam num corpo conforme a figura. Determinar a força resultante r R (módulo, direção e sentido). r F2 r F1 2. Duas forças r F N1 40== e r F N2 30== atuam num corpo conforme a figura. Determinar a força única que produz o mesmo efeito que as duas juntas. r F2 60º r F1 3. Num ponto atuam 3 forças conforme o esquema anexo. Determine a resultante. r r r F N F N F N1 2 340 30 30== == ==, , r F2 53º r F3 r F1 4. Um barco sob a ação do motor fica sujeito a uma velocidade r v1 ; a correnteza puxa o barco com velocidade r v m s2 3 0== , / rio abaixo. O barco deve cruzar o rio de modo que fique sujeito a uma velocidade r v m s== 4 0, / , perpendicular a correnteza. Veja a figura e determine o módulo de r v1 .
  • 11. 5. Na figura temos um avião voando a 600 km/h. num determinado instante passa a soprar um vento com velocidade de 100 km/h, conforme indica a figura. Determinar a velocidade resultante do avião. 6. Na figura anexa a velocidade do barco é vB=8 m/s dirigida perpendicularmente à correnteza que tem velocidade vC=6 m/s. Determine a velocidade resultante no barco e o ângulo que esta resultante faz com a correnteza. (Este ângulo é a direção do deslocamento do barco.) 7. O diagrama vetorial mostra, em escala, duas forças atuando num objeto de massa m.
  • 12. O módulo da resultante dessas forças que estão atuando no objeto é, em newtons: (A) 2,0 (B) 10 (C) 4,0 (D) 6,0 (E) 8,0 8. Considere os vetores deslocamentos r a , r b , r c e r d desenhados a seguir: Os vetores r a , r b , r c e r d satisfazem a relação: (A) r r r r a b c d++ ++ == (B) r r r b c d−− == (C) r r r a b c++ == (D) r r r b c d++ == (E) r r r a c b++ == 9. Um jogador de futebol encontra-se no ponto P, a 50m de distância do centro do gol e a 30m da linha de fundo. Em um dado momento, o jogador avança com uma velocidade de módulo v = 5,0m/s , em direção ao gol. Nesse instante, a velocidade com que ele se aproxima da linha de fundo tem módulo igual a:
  • 13. (A) 5,0 m/s (B) 2,5 m/s (C) 50 m/s (D) 3,0 m/s (E) 30 m/s 10. Dois alunos estão no Shopping Center Bongo. Os alunos A e B estão subindo e descendo, respectivamente, duas escadas rolantes. Cada escada tem velocidade constante de módulo 1,0 m/s e estão inclinadas de 45º em relação à horizontal, conforme indica a figura. 11. A figura representa um carro que percorre a trajetória ABC em 50 s. Sabendo-se que AB = 200 m e BC = 150 m, pede-se:
  • 14. a) representar os vetores deslocamentos correspondentes aos trechos AB e BC e o deslocamento resultante. b) determine o valor do deslocamento resultante do percurso. c) determine a velocidade escalar média. d) determine o módulo da velocidade vetorial média. 12. Num ponto atuam as forças F1 = 25 N; F2 = 20 N e F3 = 15 N, conforme ilustra o esquema. Determine a resultante delas. 13. Num corpo atuam duas forças conforme o esquema. Determinar a resultante (módulo, direção e sentido) destas forças.
  • 15. 14. No ponto A atuam as forças indicadas. A resultante deve ser vertical para baixo; e apresentar intensidade R = 15 N. Determinar o valor de r F3 e o ângulo θ que ela faz com a horizontal. 15. Duas forças de intensidade F1 = F2 = 50N estão aplicadas num corpo, conforme indica a figura. Determine a força r F3 que aplicada no corpo torne a resultante r r r r R F F F== ++ ++1 2 3 nula. 16. Uma pessoa desloca-se 200 m para o norte, em seguida 300 m para leste e finalmente 400 m para o sul. Escolha a escala conveniente e represente os deslocamentos; determine o deslocamento resultante. 17. Uma partícula está sujeita a duas forças, conforme a figura. y r F2 r F1 53o 37o x O
  • 16. Considere sen53º = 0,80; cos 53º = 0,60 e F1 = F2 = 10N. Determine: a) as componentes da força resultante nas direções Ox e Oy. b) a intensidade da força resultante. 18. No esquema ao lado uma bola atinge uma parede com velocidade v1 = 10 m/s e volta com velocidade v2 = 10 m/s. Determinar a variação de velocidade ∆∆ r r r v v v== −−2 1 , sofrida pela bola nesta interação com a parede.