SlideShare uma empresa Scribd logo
1 de 71
Universo da Física 1
    Mecânica

      Capítulo 13
Dinâmica dos movimentos
         curvos

        3ª Parte
1- Uma partícula de massa 6,0 Kg tem movimento
uniforme sobre uma trajetória circular de raio 3,0
m, com velocidade escalar 4,0 m/s. Calcule:

a) O módulo da aceleração centrípeta da
   partícula;
b) O módulo da resultante das forças que
   atuam na partícula;
c) A velocidade angular da parícula;
d) A frequencia e o período do movimento.
Resposta:

      m = 6,0 kg
      R = 3,0 m
      v = 4,0 m/s
a)         v  2
     acp =
           R
              2
           4
     acp =
           3
           16
     acp =          →   acp ≅ 5,34m / s   2

            3
Resposta:
       m = 6,0 kg
       R = 3,0 m
       v = 4,0 m/s
b)
     Fcp = m ⋅ acp   Fcp = 2 ⋅16
               v2    Fcp = 32
     Fcp = m ⋅
               R
           2   2
               41
     Fcp = 6 ⋅
               3
Resposta:

     m = 6,0 kg
     R = 3,0 m
     v = 4,0 m/s


c)    v =ω⋅R
      4 = ω ⋅3
         4
     ω = rad / s
         3
     ω ≅ 1,34rad / s
Resposta:
  m = 6,0 kg
  R = 3,0 m
  v = 4,0 m/s
d)
     ω = 2π ⋅ f                1
                           T=
     1,34 = 2 ⋅ 3,14 ⋅ f        f
     1,34 = 6,28 ⋅ f              1
                           T=
          1,34                 0,21
      f =
          6,28             T ≅ 4,76 s
      f ≅ 0,21Hz
2- A figura a seguir representa um corpo A que está apoiado
sobre uma mesa e preso a um fio ideal que passa por um tubo
fixado a um buraco feito na mesa. Na outra extremidade do fio
está preso um bloco B. Dando-se um impulso ao bloco A, ele
passa a girar em um movimento circular e uniforme de modo
que o bloco B fica em repouso. Calcule a velocidade do bloco A,
sabendo que g = 10 m/s², o raio da trajetória é 40 cm e as
massas de A e B são respectivamente 2,0 kg e 18 kg.
m A = 2,0kg
Resposta:
                         mB = 18kg
                         R = 0,4m
Decomposição das forças:
     T
 A                               Como B está em repouso,
                T               então:
            B                             T =P    B
                    PB
                                          T = mB ⋅ g
                                          T = 18 ⋅10
                                          T = 180 N
m A = 2,0kg
   mB = 18kg
   R = 0,4m

O bloco A executa movimento circular, então:

 T = Fcp                      72 = 2 ⋅ v   2


 T = ma ⋅ acp                     72
                              v =
                                2

              2                    2
          v
T = ma ⋅                      v = 36
                               2
          R
           v 2
                              v = 36
180 = 2 ⋅
          0,4                 v = 6m / s
3- Um pequeno bloco de massa 0,10 kg foi colocado sobre
o prato de um antigo toca-discos, a uma distância R do
centro, numa região em que g = 10 m/s². Sabe-se que o
coeficiente de atrito estático entre o bloco e o prato do
toca-discos é igual a µ e . O prato é colocado a girar com
velocidade angular ω.

a) Sendo µ e = 0,60 e R = 12 cm, qual é
o maior valor possível para ω

                  de modo que o bloco
não escorregue?

                      ω
                                       µe
b) Sendo R = 10 cm e     = 8,0rad/s,
qual é o menor valor posssível para         ,
Resposta:

  A força de atrito (Fat) aponta para o centro da trajetória   Fat = Fcp

       N         a) Fat = µ ⋅ N                          µ ⋅ N = m ⋅ω 2 ⋅ R
Fat
                    Fcp = m ⋅ ω 2 ⋅ R                    0,6 ⋅1 = 0,1 ⋅ ω 2 ⋅ 0,12
       P                                                         0,6
                                                         ω =
                                                           2

                                                                0,012
                                                         ω 2 = 50
                                                         ω = 50
                                                         ω = 5 2rad / s
Resposta:

b)
     µ ⋅ N = m ⋅ω ⋅ R 2


     µ ⋅1 = 0,1 ⋅ 8 ⋅ 0,10
                  2


     µ = 0,64
4- O rotor é um brinquedo encontrado em alguns parques de diversões. Ele
 consiste em uma cabine cilíndrica, de raio R e eixo vertical. Uma pessoa entra
 na cabine e encosta na parede. Ocilindro começa então a girar, aumentando
 sua velocidade angularω       até atingir um valor predeterminado. Atingindo
 esse valor, o chão começa a descer e no entanto a pessoa não cai; ela
 continua girando, como se estivesse grudada na parede . A masssa da pessoa
                                                                        µe
 é m e o coeficiente de atrito estático entre a roupa e apessoa e a parede é .
 São dados m = 60 kg, g = 10 m/s² e R = 2,0 m. Suponha que o chão já tenha
 descido.
a) Faça um desenho das forças que atuam na pessoa.
b) Qual é o valor da força de atrito sobre a pessoa?
c) Que força está fazendo o papel de força centrípeta?
d) Supondo µ e = 0,40, calcule o valor mínimo de de
                                                   ω
     modo que a pessoa não caia. Esse valor mínimo
     depende da massa da pessoa?                         µe
e) Supondo ω 4,0 rad/s, calcule o valor mínimo de
               =
       de modo que a pessoa não escorregue. Esse valor
     mínimo depende da massa da pessoa?
Resposta:


a)


                Fat
            N


                P
Resposta:

  m = 60 kg
   R=2m

b) Fat = P
   Fat = m·g
   Fat = 60 · 10
   Fat = 600 N


c) Força normal
Resposta:                 m = 60 kg
d)   Fat = µ ⋅ N           R=2m
     600 = 0,4 ⋅ N
     N = 1500 N
     N = Fcp
     N = m ⋅ω 2 ⋅ R
     1500 = 60 ⋅ ω 2 ⋅ 2
       2 1500
     ω
         120
     ω 2 = 12,5
     ω = 12,5
     ω = 3,54rad / s
Resposta:

  m = 60 kg
  R=2m



e) N = m ⋅ω 2 ⋅ R   Fat = N ⋅ µ
   N = 60 ⋅ 4 ⋅ 2
             2
                    600 = 1920 µ
   N = 1920         µ = 0,3125
5- Um menino amarrou uma bolinha de massa m = 0,10 kg na
ponta de um fio ideal e fez com que a bolinha adquirisse
movimento uniforme de velocidade escalar v, de modo que a
trajetória da bolinha é uma circunferência de raio R, contida
num plano vertical. São dados: g = 10 m/s² e R = 0,50 m.

•   Supondo v = 4,0 m/s², calcule as
    intensidades da tração no fio, nos
    pontos mais alto (A) e mais baixo
    (B).



b) Qual é o valor mínimo de v de modo
    que o fio não fique frouxo no
    ponto mais alto? Esse valor
    mínimo depende da massa da
    bolinha?
Resposta:
6- A figura a mostra um trecho de pista de corrida em que ela tem uma
inclinação (pista sobrelevada) para ajudar os veículos a fazerem a curva
dependendo menos do atrito. Vamos supor que, no momento representado
na figura b, o carro esteja percorrendo uma trajetória circular paralela ao
solo, de raio R e centro C . Desprezando o atrito, as forças atuantes no carro
são o peso P e a força normal FN . São dados: g = 10 m/s²; R = 120m; sen
θ = 0,60; cos θ = 0,80. Calculea velocidade do carro de modo que ele faça
essa curva sem depender da força de atrito.
Resposta:
7- Na figura A foi reproduzido o desenho de Newton em que ele
sugere que um caminhão muito poderoso poderia colocar um
projétil em trajetória circular rasante em torno da Terra, como
na figura B. Supondo que o raio da Terra seja R = 6 400 km e que
a aceleração da gravidade próximo á superfície da Terra seja g =
10 m/s², calcule o valor aproximado da velocidade v.




  Figura A                         Figura B
Resposta:                     5
           v    R = 6 400 km = 64 ·10 m


       P



                    v = 64 ⋅10
                      2            6

 P = Fcp
                    v = 64 ⋅10 6
           v2
m⋅ g = m⋅           v = 8 ⋅10 3
           R
       v2           v = 8000m / s
10 =
     64 ⋅10 5
8- Uma partícula de massa m= 0,10 kg é presa à extremidade de
uma mola ideal cujo comprimento natural é 85 cm e cuja
constante elástica é 80 N/m. A outra extremidade da mola é presa
a um anel pelo interior do qual passa um prego preso a uma mesa.
O sistema é posto a girar de modo que a partícula descreve uma
trajetória circular de raio R = 90 cm. Desprezando os atritos, qual
é o módulo da velocidade da partícula?
Resposta:
9- Um automóvel percorre um trecho circular de raio R = 30 m de uma
estrada plana horizontal, num local em que g = 10 m/s². A velocidade escalar
do automóvel é v e o coeficiente de atrito estático entre os pneus e a estrada
é µe
•   Supondo µ e= 0,75, calcule o máximo valor de v de modo que
    o carro não derrape.

•   Supondo v = 10 m/s, qual é o valor mínimo de µ e de modo
    que o carro faça a curva sem derrapar?
Resposta:

Fat = Fcp
a)        mv só que n = mg
             2
     Nµ =
           R

              mv 2
     mgµ =                   v = 7,5 ⋅ 30
                              2
               R
            v2               v = 225
                              2
     gµ =
             R
                 v2
                             v = 225
     10 ⋅ 0,78 =
                 30          v = 15m / s
Resposta:
              2
             v
b)   gµ =
             R
                  2
               10
     10 ⋅ µ =
                30
           100
     µ=
           300
           1
     µ=
           3
10- (Fuvest-SP) Um bloco de 0,2 kg está sobre um disco
horizontal em repouso, a 0,1 m de distância do centro.
O disco começa a girar, aumentando vagarosamente a
velocidade angular. Acima de uma velocidade angular
crítica de 10 rad/s o bloco começa a deslizar. Qual a
intensidade máxima da força de atrito que atua sobre o
bloco?

a) 1 N     b) 2 N     C) 3 N     d) 4 N     e) 5 N
Resposta:


   Fat = Fcp
   Fat = m ⋅ ω ⋅ R
               2


   Fat = 0,2 ⋅10 ⋅ 0,1
                   2


   Fat = 2 N
                         Letra B
11- (Mackenzie-SP) Admitamos que você esteja apoiado , em pé, sobre
o fundo de um cilindro de raio R = 4 m que gira em torno de seu eixo
vertical. Admitindo que g = 10 m/s² e o coeficiente de atrito entre sua
roupa e o cilindro seja 0,4, a menor velocidade escalar que o cilindro
deve ter para uqe, retirado o fundo do mesmo, você fique “preso” à
parede dele é?

  b) 10 m/s

  d) 8 m/s

  f) 9 m/s

  h) 11 m/s
Resposta:
                    N = Fcp
  Fat = P
                              2
  Nµ = mg                v
                    N =m
  N ⋅ 0,4 = m ⋅10        R
                                  2
           10                 v
  N = m⋅            25m = m
           0,4                4
  N = 25m           v = 100
                     2


                    v = 10m / s
       Letra A
12- Um automóvel de massa 800 kg percorre uma estrada, que
tem o perfil desenhado abaixo, com velocidade escalar
constante de 20 m/s. O trecho mais alto é aproximadamente
circular de raio RA = 200m e o trecho mais baixo tem raio de
curvatura RB = 160m. Calcule as intensidades da força normal
exercida pela estrada sobre o automóvel nos pontos A e B.
Resposta:

Ponto A:
    N
            P − N = Fcp
                       v2
    P
            mg − N = m
                       R
                                20 2
            800 ⋅10 − N = 800 ⋅
                                200
            8000 − N = 1600
            N = 8000 − 1600
            N = 6400 N
Resposta:


Ponto B:    N − P = Fcp
     N            mv 2
            N −P=
                   R
     P
                                20 2
            N − 800 ⋅10 = 800 ⋅
                                160
                             400
            N − 8000 = 800 ⋅
                             160
            N − 8000 = 800 ⋅ 2,5
            N = 8000 + 2000
            N = 10000 N
13- (Unisa-SP) Um motociclista descreve uma circunferência vertical num
“globo da morte” de raio R = 4m, numa região onde g = 10m/s². A massa
total de moto e motociclista é 150 kg. Qual a força exercida sobre o
globo no ponto mais alto da trajetória, se a velocidade alí é 12 m/s?

 b)   1 500 N
 c)   2 400 N
 d)   3 900 N
 e)   5 400 N
 f)   6 900 N
Resposta:
            P + N = Fcp
                           2
                         v
            mg + N = m ⋅
                         R
                                     2
                                12
            150 ⋅10 + N = 150 ⋅
                                 4
            1500 + N = 150 ⋅ 36
            N = 5400 − 1500
            N = 3900 N
14- Para a situação da questão anterior, qual é o valor
mínimo da velocidade da moto, no ponto mais alto,
para que não perca contato com o globo?
Resposta:   P = Fcp
                       2
                   v
            mg = m
                   R
            v = g⋅R
             2


            v 2 = 10 ⋅ 4
            v 2 = 40
            v = 40
             2


            v = 2 10m / s
             2
15- (FEI-SP) Uma esfera gira com velocidade 1 m/s, descrevendo
uma trajetória circular e horizontal, de raio r = 10 cm, estando a
esfera suspensa por meio de um fio ideal. Sendo g = 10 m/s²,
qual o valor do ângulo θ que o fio forma com a vertical?
Resposta:                  Tx = Fcp
            Tx = Tsenθ                 v2
                         Tsenθ = m
            Ty = T cos θ               R
                          mg               v2
                                ⋅ senθ = m
                         cos θ             R
                             senθ v 2
                         g⋅         =
                             cos θ R
            Ty = P                    2
                                     1
            T cos θ = mg 10 ⋅ tgθ = 0,1
                 mg      tgθ = 1
            T=
                cos θ    θ = 45°
16- (Fuvest-SP) Um carro percorre uma pista curva superelevada
      ( θ = 0,2 ) de 200 m de raio. Desprezando o atrito, qual a
velocidade máxima sem risco de derrapagem?

a) 40 km/h       c) 60 km/h       e) 80 km/h
b) 45 km/h       d) 72 km/h
N x = Fcp
 Resposta:                     v2
                Nsenθ = m
                                R
                 mg               v2
                       ⋅ senθ = m
N v = N cos θ   cos θ             R
                   senθ v 2
N x = Nsenθ     g          =
                   cos θ     R
                            v2
Ny = P          g ⋅ tgθ =
                            R
N cos θ = mg                 v2
                10 ⋅ 0,2 =
     mg                     200
N=
    cos θ       v 2 = 2 ⋅ 200
                v 2 = 400
                v = 400
   Letra D      v = 20m / s = 72 Km / h
17- (Mackenzie-SP) Um avião descreve uma trajetória circular
horizontal com velocidade escalar constante v . As asas formam um
ângulo θ com a horizontal. Devem ser considerados apenas o peso do
avião e a força de sustentação, que é perpendicular à asa. Sendo g a
aceleração da gravidade, o raio da trajetória descrita é:
          2
a)   v · sen θ
b)   v 2 b · tg θ
c)   v2       · tg θ
     g

d)   v2       · cotg θ
     g
     g
e)            · tg θ
     v2
Resposta:       Ex = Fcp2
                           v
                E senθ = m
                           R
                mg             v2
                      senθ = m
               cos θ           R
                         2
                         v
               g tgθ =
                         R
Ey = P               v 2
               R=
E cos θ = mg       g tgθ
                     2
    mg            v
E=             R = cot gθ
   cos θ          g
                                    Letra D
18- (Unicamp-SP) Um míssil é lançado horizontalmente
em órbita circular rasante à superfície da Terra. Adote
o raio da Terra como sendo R = 6 400 km π ≅ 3.
                                         e
a) Qual o valor da velocidade de lançamento?
b) Qual o período do movimento do projétil?
Resposta:                             2
                                      v
                          a) mg = m
 P = Fcp                              R
                                    2
                                  v
 R = 6400km = 64 ⋅105 m      10 =
                                  R
                             v = 64 ⋅10
                              2         6


                            v = 64 ⋅10    6


                            v = 8000m / s
Resposta:

     v = ωR
b)
     8 ⋅103 = ω ⋅ 64 ⋅105
          8 ⋅103
     ω=            = 0,125
         64 ⋅10 5


     ω = 1,25 ⋅10 −3


        2 ⋅ω         2⋅3
     ω=      =T =          −3
                              = T = 4,8 ⋅10 s
                                           3

         T        1,25 ⋅10
19- Um pêndulo simples de comprimento L = 3,0 m e massa m = 2,0 kg
passa pela posição indicada na figura, com velocidade v = 4,0 m/s.
Sendo g = 10 m/s², calcule, para a posição indicada:

a)   o módulo da aceleração tangencial;
b)   o módulo da aceleração centrípeta;
c)   o módulo de tração no fio;
d)   o módulo da força resultante sobre a partícula presa ao fio
Resposta:
            a)    Px = P sen 60
                  Px = mat
                 P sen60 = mat
                 m g sen 60° = mat
                       3
                 10 ⋅    = at
                      2
                 at = 5 3m / s
Resposta:
                        2
                       v
            b)   acp =
                        R
                         2
                       4
                 acp =
                        3
                       16
                 acp =
                        3
Resposta:


            c)
               T − Py = Fcp
              T − m g cos 60 = macp

                         1
              T − 2 ⋅10 ⋅ = 2 ⋅ 5,34
                         2
              T − 10 = 10,68

               T = 20,68 N
Resposta:
  Fcp = m ⋅ acp         2     2        2
                    d) FR = Fcp + Px
  Fcp = 2 ⋅ 5,34
  Fcp = 10,68
                        2
                      FR = 10,68 + 10 3
                                  2
                                       (   )   2


                        2
                      FR = 114,06 + 300
Px = P sen 60
                        2
Px = m ⋅ g sen 60     FR = 414,06
                      FR = 414,06
              3
Px = 2 ⋅10 ⋅          FR = 20,35 N
             2
Px = 10 3
20- (Fund. Carlos Chagas-SP) A figura ao lado representa um pêndulo
simples que oscila entre as posições A e B no campo gravitacional
terrestre. Quando o pêndulo se encontra na posição C, a força
resultante é melhor indicada por:


c)   1
d)   2
e)   3
f)   4
g)   5
Resposta:




            Letra D
21- A figura a seguir representa a força resultante sobre uma partícula
de massa m = 2,0 kg e a velocidade da partícula no mesmo instante.
Sabendo que a trajetória é circular, F = 120 N e v = 4,0 m/s, calcule o
raio da trajetória.
Resposta:
            F cos θ = Fcp           32 3
                                R=
                           v2
                                     180
            F cos 30° = m
                           R        8 3
                                R=
                   3      42         45
            120 ⋅    = 2⋅
                  2       R     R = 0,31m
                     32
            60 3 =
                     R
                  32
            R=
                 60 3
22- (PUC-SP) A figura mostra dois corpos A e B, de massas iguais,
ligados por fios ideais, girando num plano horizontal, sem atrito,
com velocidade angularω constante, em torno de um ponto
fixo O. A razão2 T1
               T                            T
                           , entre as trações 1 e T2 , que atuam
respectivamente nos fios (2) e (1), tem valor:
a)   2

b) 3
     2

f)   1

h) 2
     3

k)   1
     2
Resposta:
Corpo A
T1 = Fcp
T1 = mω 2 ⋅ R
T1 = mω 2 ⋅ 2 L
            Corpo B
                                    T2 3mω 2 L 3
                                      =       =
           T2 − T1 = mω 2 ⋅ R       T1 2mω L 2
                                           2

           T2 − T1 = mω 2 ⋅ L
           T2 = mω 2 L = mω L
                    2           2    Letra B
           T2 = mω 2 L + 2mω 2 L
           T2 = 3mω 2 L
23- Consideremos uma mola ideal de constante elástica 16 N/m,
cujo comprimento quando não deformada é 1,0 m. Uma das
extremidades da mola está presa a um anel liso por dentro do
qual passa um prego fixado em uma mesa lisa. A outra
extremidade está presa a uma bolinha de massa 3,0 kg, também
apoiada na mesa. Dando-se um impulso à bolinha, ela passa a
descrever um movimento circular com velocidade escalar
constante e igual a 2,0 m/s. Calcule o comprimento da mola
nessas condições.
16 x 2 + 16 x − 12 = 0
Resposta:
                    4x + 4x − 3 = 0
                                                       Comprimento
Fel = Fcp
                       2

                                                      1 + 0,25 = 1,25m
       v      2
                           ∆ = b − 4ac
                                  2
Kx = m
       R                   ∆ = 4 2 − 4 ⋅ 4 ⋅ ( − 3)
Sendo que :                ∆ = 16 + 48
R =1 + x                   ∆ + 64
           v2
Kx = m
         1= x              −b± ∆       −4±8
             v
                2                    ⇒      =
16 x = 3 ⋅                     3a       16
           1+ x            x1 = 0,25
16 x(1 + x ) = 12          x2 = −0,75
16 x +16 x 2 = 12
24- A figura abaixo representa um brinquedo encontrado em
parques de diversões. Quando o sistema gira com veloccidade
angular constante, o fio forma angulo θ = 30° com a vertical.
Sendo g = 10 m/s², calcule a velocidade angular do sistema.
Tx = Fcp
Resposta:
               Tsenθ = m ⋅ ω ⋅ R2


Ty = T cos θ    mg
                      senθ = mω 2 ⋅ R
               cos θ
Tx = Tsenθ
               g ⋅ tgθ = ω ⋅ R
                          2


               10 ⋅ tg 30 = ω 2 ⋅ 4
Ty = P
                    3
T cos θ = mg   10 ⋅   = ω2 ⋅4
                    2
     mg
T=                   5 3
    cos θ      ω =
                 2

                      4
               ω = 1,46rad / s
25- Um automóvel percorre um trecho sobrelevado de estrada
numa trajetória circular de raio R. No exercício 6, vimos que
velocidade um automóvel deve ter para conseguir fazer essa
curva sem depender de atrito, sendo R =120 m, g = 10 m/s²,
sen θ = 0,60 e cos θ = 0,80. Suponhamos agora que o coeficiente
de atrito estático entre os pneus e a estrada seja µ e = 0,80.
calcule as velocidades máxima e mínima que o automóvel deve
ter para fazer essa curva sem derrapar.
Eixo y
Resposta:
                    N y = Faty + P
                    P = N y − Faty
                   mg = N cos θ − Nµ senθ
                   mg = N ( cos θ − µ senθ )
 N y = N cos θ                mg
                   N=
 N x = Nsenθ          ( cos θ − µ senθ )
Fatx = Fat cos θ
Faty = Fat senθ
2
 Resposta:                                       v   10
                                                   =    ⋅1,24
     Eixo x
                                                 R 0,32
     N x + Fatx = Fcp                             v2
                                                      = 38,75
                                                 120
                       mv 2
   Nsenθ + N µ cos θ =                           v 2 = 4650
                        R

    N ( senθ + µ cos θ ) =
                            mv 2                 v = 68m / s
                             R
        mg                                mv 2
                   − ( senθ + µ cos θ ) =
( cos θ − µ senθ )                         R
26-

a) Um carrinho está fazendo um loop em uma montanha-russa. A velocidade
    mínima para que uma pessoa não caia depende da massa da pessoa?
b) Quando se planeja o ângulo de sobrelevação em uma curva de uma
    estrada, esse ângulo depende da massa do veículo?
c) Na figura a seguir, quais forças não podem representar a resultante em um
    movimento circular?




d) Um automóvel faz uma curva circular com velocidade escalar constante,
   numa estrada plana horizontal. A força de atrito é estática ou cinética?
Resposta:


 a) Não

Fcp = P
     2
 v
m = mg
 R
Resposta:


 b) Não
                2
  mg            v
       senθ = m
 cos θ          R
Resposta:


 c)   F1 , F2   e F
                   4
Resposta:



 d) Estática

Mais conteúdo relacionado

Mais procurados

Equação do 1º e 2º grau
Equação do 1º e 2º grauEquação do 1º e 2º grau
Equação do 1º e 2º grauZaqueu Oliveira
 
Desenvolvimento comercial parte 3
Desenvolvimento comercial parte 3Desenvolvimento comercial parte 3
Desenvolvimento comercial parte 3Carla Teixeira
 
Expansão a partir de D. João II
Expansão a partir de D. João IIExpansão a partir de D. João II
Expansão a partir de D. João IILucilia Fonseca
 
18 reconquista cristã e a formação de portugal
18   reconquista cristã e a formação de portugal18   reconquista cristã e a formação de portugal
18 reconquista cristã e a formação de portugalCarla Freitas
 
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3Joana Figueredo
 
Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog htt...
Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog   htt...Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog   htt...
Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog htt...Rodrigo Penna
 
Hidrostática - Física
Hidrostática - FísicaHidrostática - Física
Hidrostática - FísicaSlides de Tudo
 
O Poder Absoluto Em Portugal
O Poder Absoluto Em PortugalO Poder Absoluto Em Portugal
O Poder Absoluto Em PortugalSílvia Mendonça
 
Divisão Administrativa de Portugal
Divisão Administrativa de PortugalDivisão Administrativa de Portugal
Divisão Administrativa de Portugaljorgelmroliveira
 
Antigo Regime-Contextualização do Módulo 6
Antigo Regime-Contextualização do Módulo 6Antigo Regime-Contextualização do Módulo 6
Antigo Regime-Contextualização do Módulo 6Susana Simões
 
A Revolução de 1640 e a Guerra da Restauração
A Revolução de 1640 e a Guerra da RestauraçãoA Revolução de 1640 e a Guerra da Restauração
A Revolução de 1640 e a Guerra da Restauraçãoguest68cbf4
 
Crise do Império Português no oriente
Crise do Império Português no orienteCrise do Império Português no oriente
Crise do Império Português no orienteRainha Maga
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...Videoaulas De Física Apoio
 
Estudo dos gases
Estudo dos gasesEstudo dos gases
Estudo dos gasesRaquel Luna
 
Termoquímica: calorimetria e entalpia padrão de reação
Termoquímica: calorimetria e entalpia padrão de reaçãoTermoquímica: calorimetria e entalpia padrão de reação
Termoquímica: calorimetria e entalpia padrão de reaçãoCarlos Kramer
 

Mais procurados (20)

Equação do 1º e 2º grau
Equação do 1º e 2º grauEquação do 1º e 2º grau
Equação do 1º e 2º grau
 
Desenvolvimento comercial parte 3
Desenvolvimento comercial parte 3Desenvolvimento comercial parte 3
Desenvolvimento comercial parte 3
 
Expansão a partir de D. João II
Expansão a partir de D. João IIExpansão a partir de D. João II
Expansão a partir de D. João II
 
18 reconquista cristã e a formação de portugal
18   reconquista cristã e a formação de portugal18   reconquista cristã e a formação de portugal
18 reconquista cristã e a formação de portugal
 
Pilhas - eletroquímica
Pilhas - eletroquímicaPilhas - eletroquímica
Pilhas - eletroquímica
 
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 3
 
Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog htt...
Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog   htt...Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog   htt...
Questões Corrigidas, em Word: Hidrostática - Conteúdo vinculado ao blog htt...
 
Hidrostática - Física
Hidrostática - FísicaHidrostática - Física
Hidrostática - Física
 
Mudanças na religiosidade e expansão do ensino
Mudanças na religiosidade e expansão do ensinoMudanças na religiosidade e expansão do ensino
Mudanças na religiosidade e expansão do ensino
 
O Poder Absoluto Em Portugal
O Poder Absoluto Em PortugalO Poder Absoluto Em Portugal
O Poder Absoluto Em Portugal
 
3° ano(potencial elétrico) física
3° ano(potencial elétrico) física3° ano(potencial elétrico) física
3° ano(potencial elétrico) física
 
Divisão Administrativa de Portugal
Divisão Administrativa de PortugalDivisão Administrativa de Portugal
Divisão Administrativa de Portugal
 
Antigo Regime-Contextualização do Módulo 6
Antigo Regime-Contextualização do Módulo 6Antigo Regime-Contextualização do Módulo 6
Antigo Regime-Contextualização do Módulo 6
 
A Revolução de 1640 e a Guerra da Restauração
A Revolução de 1640 e a Guerra da RestauraçãoA Revolução de 1640 e a Guerra da Restauração
A Revolução de 1640 e a Guerra da Restauração
 
Crise do Império Português no oriente
Crise do Império Português no orienteCrise do Império Português no oriente
Crise do Império Português no oriente
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...
 
Aula 6-fq
Aula 6-fqAula 6-fq
Aula 6-fq
 
Estudo dos gases
Estudo dos gasesEstudo dos gases
Estudo dos gases
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Termoquímica: calorimetria e entalpia padrão de reação
Termoquímica: calorimetria e entalpia padrão de reaçãoTermoquímica: calorimetria e entalpia padrão de reação
Termoquímica: calorimetria e entalpia padrão de reação
 

Destaque

www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...Videoaulas De Física Apoio
 
Movimento circular
Movimento circularMovimento circular
Movimento circularRui Oliveira
 
Cálculos movimento circular
Cálculos movimento circularCálculos movimento circular
Cálculos movimento circularTableau Colégio
 
8 movimento circular uniforme
8  movimento circular uniforme8  movimento circular uniforme
8 movimento circular uniformedaniela pinto
 
Movimento Circular 2009
Movimento Circular 2009Movimento Circular 2009
Movimento Circular 2009fisico.dersa
 
Composição de movimentos
Composição de movimentosComposição de movimentos
Composição de movimentosIlza1
 
Cinematica vetorial
Cinematica vetorialCinematica vetorial
Cinematica vetorialRildo Borges
 

Destaque (13)

www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...
 
Refracao da luz resumo
Refracao da luz   resumoRefracao da luz   resumo
Refracao da luz resumo
 
Movimento circular
Movimento circularMovimento circular
Movimento circular
 
Física 12ºAno
Física 12ºAnoFísica 12ºAno
Física 12ºAno
 
Cálculos movimento circular
Cálculos movimento circularCálculos movimento circular
Cálculos movimento circular
 
Cinematica vetorial cópia
Cinematica vetorial   cópiaCinematica vetorial   cópia
Cinematica vetorial cópia
 
8 movimento circular uniforme
8  movimento circular uniforme8  movimento circular uniforme
8 movimento circular uniforme
 
Movimento Circular 2009
Movimento Circular 2009Movimento Circular 2009
Movimento Circular 2009
 
Composição de movimentos
Composição de movimentosComposição de movimentos
Composição de movimentos
 
Cinemática Vetorial
Cinemática VetorialCinemática Vetorial
Cinemática Vetorial
 
Movimento circular
Movimento circularMovimento circular
Movimento circular
 
Cinematica vetorial
Cinematica vetorialCinematica vetorial
Cinematica vetorial
 
Movimento Circular Uniforme
Movimento Circular UniformeMovimento Circular Uniforme
Movimento Circular Uniforme
 

Semelhante a Mecânica Circular - Cálculos de Movimento Curvilíneo

www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...Videoaulas De Física Apoio
 
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...AulasParticularesInfo
 
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1Joana Figueredo
 
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...Aula Particular Aulas Apoio
 
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aulawww.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo AulaVídeo Aulas Apoio
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Thommas Kevin
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
 www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força CentrípedaVideoaulas De Física Apoio
 
Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Thommas Kevin
 
Exercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força CentrípedaExercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força CentrípedaJoana Figueredo
 
Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Thommas Kevin
 
Ita2005
Ita2005Ita2005
Ita2005cavip
 
100482124 questoes-de-fisica
100482124 questoes-de-fisica100482124 questoes-de-fisica
100482124 questoes-de-fisicaVismael Santos
 
Fuvest2008 2fase 4dia
Fuvest2008 2fase 4diaFuvest2008 2fase 4dia
Fuvest2008 2fase 4diaThommas Kevin
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Thommas Kevin
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Thommas Kevin
 

Semelhante a Mecânica Circular - Cálculos de Movimento Curvilíneo (20)

www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...
 
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
 
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
 
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...
 
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aulawww.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
 www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
 
Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001
 
Exercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força CentrípedaExercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força Centrípeda
 
Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001
 
Fisica2010
Fisica2010Fisica2010
Fisica2010
 
Ita2005
Ita2005Ita2005
Ita2005
 
Ita2005 parte 001
Ita2005 parte 001Ita2005 parte 001
Ita2005 parte 001
 
Dinâmica física
Dinâmica físicaDinâmica física
Dinâmica física
 
100482124 questoes-de-fisica
100482124 questoes-de-fisica100482124 questoes-de-fisica
100482124 questoes-de-fisica
 
Fisica 2011
Fisica 2011Fisica 2011
Fisica 2011
 
Fuvest2008 2fase 4dia
Fuvest2008 2fase 4diaFuvest2008 2fase 4dia
Fuvest2008 2fase 4dia
 
Proxima postagem
Proxima postagemProxima postagem
Proxima postagem
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 

Mais de Videoaulas De Física Apoio

www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânicawww.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física - Trabalho e Energia MecânicaVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial Elétricowww.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial ElétricoVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Hidrostática
www.aulasdefisicaapoio.com - Física -  Hidrostáticawww.aulasdefisicaapoio.com - Física -  Hidrostática
www.aulasdefisicaapoio.com - Física - HidrostáticaVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Gravitação Universal
www.aulasdefisicaapoio.com  - Física -  Gravitação Universalwww.aulasdefisicaapoio.com  - Física -  Gravitação Universal
www.aulasdefisicaapoio.com - Física - Gravitação UniversalVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física -  Dinâmica e Movimentowww.aulasdefisicaapoio.com - Física -  Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física - Dinâmica e MovimentoVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondaswww.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e OndasVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...Videoaulas De Física Apoio
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricaswww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes EsféricasVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refraçãowww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos RefraçãoVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos Esféricos
www.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricoswww.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricos
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos EsféricosVideoaulas De Física Apoio
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luzwww.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da LuzVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Exercícios Resolvidos Óptica
www.aulasdefisicaapoio.com -  Exercícios  Resolvidos Ópticawww.aulasdefisicaapoio.com -  Exercícios  Resolvidos Óptica
www.aulasdefisicaapoio.com - Exercícios Resolvidos ÓpticaVideoaulas De Física Apoio
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...Videoaulas De Física Apoio
 
www.AulasDeFisicaApoio.com - Física – Exercícios Complementares de Eletricidade
www.AulasDeFisicaApoio.com  - Física – Exercícios Complementares de Eletricidadewww.AulasDeFisicaApoio.com  - Física – Exercícios Complementares de Eletricidade
www.AulasDeFisicaApoio.com - Física – Exercícios Complementares de EletricidadeVideoaulas De Física Apoio
 

Mais de Videoaulas De Física Apoio (20)

www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...
 
www.aulasdefisicaapoio.com - Física - Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânicawww.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física - Trabalho e Energia Mecânica
 
www.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial Elétricowww.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial Elétrico
 
www.aulasdefisicaapoio.com - Física - Hidrostática
www.aulasdefisicaapoio.com - Física -  Hidrostáticawww.aulasdefisicaapoio.com - Física -  Hidrostática
www.aulasdefisicaapoio.com - Física - Hidrostática
 
www.aulasdefisicaapoio.com - Física - Gravitação Universal
www.aulasdefisicaapoio.com  - Física -  Gravitação Universalwww.aulasdefisicaapoio.com  - Física -  Gravitação Universal
www.aulasdefisicaapoio.com - Física - Gravitação Universal
 
www.aulasdefisicaapoio.com - Física - Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física -  Dinâmica e Movimentowww.aulasdefisicaapoio.com - Física -  Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física - Dinâmica e Movimento
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondaswww.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e Ondas
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricaswww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refraçãowww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos Esféricos
www.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricoswww.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricos
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos Esféricos
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luzwww.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da Luz
 
www.aulasdefisicaapoio.com - Exercícios Resolvidos Óptica
www.aulasdefisicaapoio.com -  Exercícios  Resolvidos Ópticawww.aulasdefisicaapoio.com -  Exercícios  Resolvidos Óptica
www.aulasdefisicaapoio.com - Exercícios Resolvidos Óptica
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...
 
www.AulasDeFisicaApoio.com - Física – Exercícios Complementares de Eletricidade
www.AulasDeFisicaApoio.com  - Física – Exercícios Complementares de Eletricidadewww.AulasDeFisicaApoio.com  - Física – Exercícios Complementares de Eletricidade
www.AulasDeFisicaApoio.com - Física – Exercícios Complementares de Eletricidade
 

Último

Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinhaMary Alvarenga
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?Rosalina Simão Nunes
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniCassio Meira Jr.
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Livro O QUE É LUGAR DE FALA - Autora Djamila Ribeiro
Livro O QUE É LUGAR DE FALA  - Autora Djamila RibeiroLivro O QUE É LUGAR DE FALA  - Autora Djamila Ribeiro
Livro O QUE É LUGAR DE FALA - Autora Djamila RibeiroMarcele Ravasio
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxBeatrizLittig1
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividadeMary Alvarenga
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesMary Alvarenga
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasCassio Meira Jr.
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxLuizHenriquedeAlmeid6
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADOcarolinacespedes23
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 

Último (20)

Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinha
 
Bullying, sai pra lá
Bullying,  sai pra láBullying,  sai pra lá
Bullying, sai pra lá
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Livro O QUE É LUGAR DE FALA - Autora Djamila Ribeiro
Livro O QUE É LUGAR DE FALA  - Autora Djamila RibeiroLivro O QUE É LUGAR DE FALA  - Autora Djamila Ribeiro
Livro O QUE É LUGAR DE FALA - Autora Djamila Ribeiro
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docx
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividade
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das Mães
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades Motoras
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 

Mecânica Circular - Cálculos de Movimento Curvilíneo

  • 1. Universo da Física 1 Mecânica Capítulo 13 Dinâmica dos movimentos curvos 3ª Parte
  • 2. 1- Uma partícula de massa 6,0 Kg tem movimento uniforme sobre uma trajetória circular de raio 3,0 m, com velocidade escalar 4,0 m/s. Calcule: a) O módulo da aceleração centrípeta da partícula; b) O módulo da resultante das forças que atuam na partícula; c) A velocidade angular da parícula; d) A frequencia e o período do movimento.
  • 3. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s a) v 2 acp = R 2 4 acp = 3 16 acp = → acp ≅ 5,34m / s 2 3
  • 4. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s b) Fcp = m ⋅ acp Fcp = 2 ⋅16 v2 Fcp = 32 Fcp = m ⋅ R 2 2 41 Fcp = 6 ⋅ 3
  • 5. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s c) v =ω⋅R 4 = ω ⋅3 4 ω = rad / s 3 ω ≅ 1,34rad / s
  • 6. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s d) ω = 2π ⋅ f 1 T= 1,34 = 2 ⋅ 3,14 ⋅ f f 1,34 = 6,28 ⋅ f 1 T= 1,34 0,21 f = 6,28 T ≅ 4,76 s f ≅ 0,21Hz
  • 7. 2- A figura a seguir representa um corpo A que está apoiado sobre uma mesa e preso a um fio ideal que passa por um tubo fixado a um buraco feito na mesa. Na outra extremidade do fio está preso um bloco B. Dando-se um impulso ao bloco A, ele passa a girar em um movimento circular e uniforme de modo que o bloco B fica em repouso. Calcule a velocidade do bloco A, sabendo que g = 10 m/s², o raio da trajetória é 40 cm e as massas de A e B são respectivamente 2,0 kg e 18 kg.
  • 8. m A = 2,0kg Resposta: mB = 18kg R = 0,4m Decomposição das forças: T A Como B está em repouso, T então: B T =P B PB T = mB ⋅ g T = 18 ⋅10 T = 180 N
  • 9. m A = 2,0kg mB = 18kg R = 0,4m O bloco A executa movimento circular, então: T = Fcp 72 = 2 ⋅ v 2 T = ma ⋅ acp 72 v = 2 2 2 v T = ma ⋅ v = 36 2 R v 2 v = 36 180 = 2 ⋅ 0,4 v = 6m / s
  • 10. 3- Um pequeno bloco de massa 0,10 kg foi colocado sobre o prato de um antigo toca-discos, a uma distância R do centro, numa região em que g = 10 m/s². Sabe-se que o coeficiente de atrito estático entre o bloco e o prato do toca-discos é igual a µ e . O prato é colocado a girar com velocidade angular ω. a) Sendo µ e = 0,60 e R = 12 cm, qual é o maior valor possível para ω de modo que o bloco não escorregue? ω µe b) Sendo R = 10 cm e = 8,0rad/s, qual é o menor valor posssível para ,
  • 11. Resposta: A força de atrito (Fat) aponta para o centro da trajetória Fat = Fcp N a) Fat = µ ⋅ N µ ⋅ N = m ⋅ω 2 ⋅ R Fat Fcp = m ⋅ ω 2 ⋅ R 0,6 ⋅1 = 0,1 ⋅ ω 2 ⋅ 0,12 P 0,6 ω = 2 0,012 ω 2 = 50 ω = 50 ω = 5 2rad / s
  • 12. Resposta: b) µ ⋅ N = m ⋅ω ⋅ R 2 µ ⋅1 = 0,1 ⋅ 8 ⋅ 0,10 2 µ = 0,64
  • 13. 4- O rotor é um brinquedo encontrado em alguns parques de diversões. Ele consiste em uma cabine cilíndrica, de raio R e eixo vertical. Uma pessoa entra na cabine e encosta na parede. Ocilindro começa então a girar, aumentando sua velocidade angularω até atingir um valor predeterminado. Atingindo esse valor, o chão começa a descer e no entanto a pessoa não cai; ela continua girando, como se estivesse grudada na parede . A masssa da pessoa µe é m e o coeficiente de atrito estático entre a roupa e apessoa e a parede é . São dados m = 60 kg, g = 10 m/s² e R = 2,0 m. Suponha que o chão já tenha descido. a) Faça um desenho das forças que atuam na pessoa. b) Qual é o valor da força de atrito sobre a pessoa? c) Que força está fazendo o papel de força centrípeta? d) Supondo µ e = 0,40, calcule o valor mínimo de de ω modo que a pessoa não caia. Esse valor mínimo depende da massa da pessoa? µe e) Supondo ω 4,0 rad/s, calcule o valor mínimo de = de modo que a pessoa não escorregue. Esse valor mínimo depende da massa da pessoa?
  • 14. Resposta: a) Fat N P
  • 15. Resposta: m = 60 kg R=2m b) Fat = P Fat = m·g Fat = 60 · 10 Fat = 600 N c) Força normal
  • 16. Resposta: m = 60 kg d) Fat = µ ⋅ N R=2m 600 = 0,4 ⋅ N N = 1500 N N = Fcp N = m ⋅ω 2 ⋅ R 1500 = 60 ⋅ ω 2 ⋅ 2 2 1500 ω 120 ω 2 = 12,5 ω = 12,5 ω = 3,54rad / s
  • 17. Resposta: m = 60 kg R=2m e) N = m ⋅ω 2 ⋅ R Fat = N ⋅ µ N = 60 ⋅ 4 ⋅ 2 2 600 = 1920 µ N = 1920 µ = 0,3125
  • 18. 5- Um menino amarrou uma bolinha de massa m = 0,10 kg na ponta de um fio ideal e fez com que a bolinha adquirisse movimento uniforme de velocidade escalar v, de modo que a trajetória da bolinha é uma circunferência de raio R, contida num plano vertical. São dados: g = 10 m/s² e R = 0,50 m. • Supondo v = 4,0 m/s², calcule as intensidades da tração no fio, nos pontos mais alto (A) e mais baixo (B). b) Qual é o valor mínimo de v de modo que o fio não fique frouxo no ponto mais alto? Esse valor mínimo depende da massa da bolinha?
  • 20. 6- A figura a mostra um trecho de pista de corrida em que ela tem uma inclinação (pista sobrelevada) para ajudar os veículos a fazerem a curva dependendo menos do atrito. Vamos supor que, no momento representado na figura b, o carro esteja percorrendo uma trajetória circular paralela ao solo, de raio R e centro C . Desprezando o atrito, as forças atuantes no carro são o peso P e a força normal FN . São dados: g = 10 m/s²; R = 120m; sen θ = 0,60; cos θ = 0,80. Calculea velocidade do carro de modo que ele faça essa curva sem depender da força de atrito.
  • 22. 7- Na figura A foi reproduzido o desenho de Newton em que ele sugere que um caminhão muito poderoso poderia colocar um projétil em trajetória circular rasante em torno da Terra, como na figura B. Supondo que o raio da Terra seja R = 6 400 km e que a aceleração da gravidade próximo á superfície da Terra seja g = 10 m/s², calcule o valor aproximado da velocidade v. Figura A Figura B
  • 23. Resposta:  5 v R = 6 400 km = 64 ·10 m P v = 64 ⋅10 2 6 P = Fcp v = 64 ⋅10 6 v2 m⋅ g = m⋅ v = 8 ⋅10 3 R v2 v = 8000m / s 10 = 64 ⋅10 5
  • 24. 8- Uma partícula de massa m= 0,10 kg é presa à extremidade de uma mola ideal cujo comprimento natural é 85 cm e cuja constante elástica é 80 N/m. A outra extremidade da mola é presa a um anel pelo interior do qual passa um prego preso a uma mesa. O sistema é posto a girar de modo que a partícula descreve uma trajetória circular de raio R = 90 cm. Desprezando os atritos, qual é o módulo da velocidade da partícula?
  • 26. 9- Um automóvel percorre um trecho circular de raio R = 30 m de uma estrada plana horizontal, num local em que g = 10 m/s². A velocidade escalar do automóvel é v e o coeficiente de atrito estático entre os pneus e a estrada é µe • Supondo µ e= 0,75, calcule o máximo valor de v de modo que o carro não derrape. • Supondo v = 10 m/s, qual é o valor mínimo de µ e de modo que o carro faça a curva sem derrapar?
  • 27. Resposta: Fat = Fcp a) mv só que n = mg 2 Nµ = R mv 2 mgµ = v = 7,5 ⋅ 30 2 R v2 v = 225 2 gµ = R v2 v = 225 10 ⋅ 0,78 = 30 v = 15m / s
  • 28. Resposta: 2 v b) gµ = R 2 10 10 ⋅ µ = 30 100 µ= 300 1 µ= 3
  • 29. 10- (Fuvest-SP) Um bloco de 0,2 kg está sobre um disco horizontal em repouso, a 0,1 m de distância do centro. O disco começa a girar, aumentando vagarosamente a velocidade angular. Acima de uma velocidade angular crítica de 10 rad/s o bloco começa a deslizar. Qual a intensidade máxima da força de atrito que atua sobre o bloco? a) 1 N b) 2 N C) 3 N d) 4 N e) 5 N
  • 30. Resposta: Fat = Fcp Fat = m ⋅ ω ⋅ R 2 Fat = 0,2 ⋅10 ⋅ 0,1 2 Fat = 2 N Letra B
  • 31. 11- (Mackenzie-SP) Admitamos que você esteja apoiado , em pé, sobre o fundo de um cilindro de raio R = 4 m que gira em torno de seu eixo vertical. Admitindo que g = 10 m/s² e o coeficiente de atrito entre sua roupa e o cilindro seja 0,4, a menor velocidade escalar que o cilindro deve ter para uqe, retirado o fundo do mesmo, você fique “preso” à parede dele é? b) 10 m/s d) 8 m/s f) 9 m/s h) 11 m/s
  • 32. Resposta: N = Fcp Fat = P 2 Nµ = mg v N =m N ⋅ 0,4 = m ⋅10 R 2 10 v N = m⋅ 25m = m 0,4 4 N = 25m v = 100 2 v = 10m / s Letra A
  • 33. 12- Um automóvel de massa 800 kg percorre uma estrada, que tem o perfil desenhado abaixo, com velocidade escalar constante de 20 m/s. O trecho mais alto é aproximadamente circular de raio RA = 200m e o trecho mais baixo tem raio de curvatura RB = 160m. Calcule as intensidades da força normal exercida pela estrada sobre o automóvel nos pontos A e B.
  • 34. Resposta: Ponto A: N P − N = Fcp v2 P mg − N = m R 20 2 800 ⋅10 − N = 800 ⋅ 200 8000 − N = 1600 N = 8000 − 1600 N = 6400 N
  • 35. Resposta: Ponto B: N − P = Fcp N mv 2 N −P= R P 20 2 N − 800 ⋅10 = 800 ⋅ 160 400 N − 8000 = 800 ⋅ 160 N − 8000 = 800 ⋅ 2,5 N = 8000 + 2000 N = 10000 N
  • 36. 13- (Unisa-SP) Um motociclista descreve uma circunferência vertical num “globo da morte” de raio R = 4m, numa região onde g = 10m/s². A massa total de moto e motociclista é 150 kg. Qual a força exercida sobre o globo no ponto mais alto da trajetória, se a velocidade alí é 12 m/s? b) 1 500 N c) 2 400 N d) 3 900 N e) 5 400 N f) 6 900 N
  • 37. Resposta: P + N = Fcp 2 v mg + N = m ⋅ R 2 12 150 ⋅10 + N = 150 ⋅ 4 1500 + N = 150 ⋅ 36 N = 5400 − 1500 N = 3900 N
  • 38. 14- Para a situação da questão anterior, qual é o valor mínimo da velocidade da moto, no ponto mais alto, para que não perca contato com o globo?
  • 39. Resposta: P = Fcp 2 v mg = m R v = g⋅R 2 v 2 = 10 ⋅ 4 v 2 = 40 v = 40 2 v = 2 10m / s 2
  • 40. 15- (FEI-SP) Uma esfera gira com velocidade 1 m/s, descrevendo uma trajetória circular e horizontal, de raio r = 10 cm, estando a esfera suspensa por meio de um fio ideal. Sendo g = 10 m/s², qual o valor do ângulo θ que o fio forma com a vertical?
  • 41. Resposta: Tx = Fcp Tx = Tsenθ v2 Tsenθ = m Ty = T cos θ R mg v2 ⋅ senθ = m cos θ R senθ v 2 g⋅ = cos θ R Ty = P 2 1 T cos θ = mg 10 ⋅ tgθ = 0,1 mg tgθ = 1 T= cos θ θ = 45°
  • 42. 16- (Fuvest-SP) Um carro percorre uma pista curva superelevada ( θ = 0,2 ) de 200 m de raio. Desprezando o atrito, qual a velocidade máxima sem risco de derrapagem? a) 40 km/h c) 60 km/h e) 80 km/h b) 45 km/h d) 72 km/h
  • 43. N x = Fcp Resposta: v2 Nsenθ = m R mg v2 ⋅ senθ = m N v = N cos θ cos θ R senθ v 2 N x = Nsenθ g = cos θ R v2 Ny = P g ⋅ tgθ = R N cos θ = mg v2 10 ⋅ 0,2 = mg 200 N= cos θ v 2 = 2 ⋅ 200 v 2 = 400 v = 400 Letra D v = 20m / s = 72 Km / h
  • 44. 17- (Mackenzie-SP) Um avião descreve uma trajetória circular horizontal com velocidade escalar constante v . As asas formam um ângulo θ com a horizontal. Devem ser considerados apenas o peso do avião e a força de sustentação, que é perpendicular à asa. Sendo g a aceleração da gravidade, o raio da trajetória descrita é: 2 a) v · sen θ b) v 2 b · tg θ c) v2 · tg θ g d) v2 · cotg θ g g e) · tg θ v2
  • 45. Resposta: Ex = Fcp2 v E senθ = m R mg v2 senθ = m cos θ R 2 v g tgθ = R Ey = P v 2 R= E cos θ = mg g tgθ 2 mg v E= R = cot gθ cos θ g Letra D
  • 46. 18- (Unicamp-SP) Um míssil é lançado horizontalmente em órbita circular rasante à superfície da Terra. Adote o raio da Terra como sendo R = 6 400 km π ≅ 3. e a) Qual o valor da velocidade de lançamento? b) Qual o período do movimento do projétil?
  • 47. Resposta: 2 v a) mg = m P = Fcp R 2 v R = 6400km = 64 ⋅105 m 10 = R v = 64 ⋅10 2 6 v = 64 ⋅10 6 v = 8000m / s
  • 48. Resposta: v = ωR b) 8 ⋅103 = ω ⋅ 64 ⋅105 8 ⋅103 ω= = 0,125 64 ⋅10 5 ω = 1,25 ⋅10 −3 2 ⋅ω 2⋅3 ω= =T = −3 = T = 4,8 ⋅10 s 3 T 1,25 ⋅10
  • 49. 19- Um pêndulo simples de comprimento L = 3,0 m e massa m = 2,0 kg passa pela posição indicada na figura, com velocidade v = 4,0 m/s. Sendo g = 10 m/s², calcule, para a posição indicada: a) o módulo da aceleração tangencial; b) o módulo da aceleração centrípeta; c) o módulo de tração no fio; d) o módulo da força resultante sobre a partícula presa ao fio
  • 50. Resposta: a) Px = P sen 60 Px = mat P sen60 = mat m g sen 60° = mat 3 10 ⋅ = at 2 at = 5 3m / s
  • 51. Resposta: 2 v b) acp = R 2 4 acp = 3 16 acp = 3
  • 52. Resposta: c) T − Py = Fcp T − m g cos 60 = macp 1 T − 2 ⋅10 ⋅ = 2 ⋅ 5,34 2 T − 10 = 10,68 T = 20,68 N
  • 53. Resposta: Fcp = m ⋅ acp 2 2 2 d) FR = Fcp + Px Fcp = 2 ⋅ 5,34 Fcp = 10,68 2 FR = 10,68 + 10 3 2 ( ) 2 2 FR = 114,06 + 300 Px = P sen 60 2 Px = m ⋅ g sen 60 FR = 414,06 FR = 414,06 3 Px = 2 ⋅10 ⋅ FR = 20,35 N 2 Px = 10 3
  • 54. 20- (Fund. Carlos Chagas-SP) A figura ao lado representa um pêndulo simples que oscila entre as posições A e B no campo gravitacional terrestre. Quando o pêndulo se encontra na posição C, a força resultante é melhor indicada por: c) 1 d) 2 e) 3 f) 4 g) 5
  • 55. Resposta: Letra D
  • 56. 21- A figura a seguir representa a força resultante sobre uma partícula de massa m = 2,0 kg e a velocidade da partícula no mesmo instante. Sabendo que a trajetória é circular, F = 120 N e v = 4,0 m/s, calcule o raio da trajetória.
  • 57. Resposta: F cos θ = Fcp 32 3 R= v2 180 F cos 30° = m R 8 3 R= 3 42 45 120 ⋅ = 2⋅ 2 R R = 0,31m 32 60 3 = R 32 R= 60 3
  • 58. 22- (PUC-SP) A figura mostra dois corpos A e B, de massas iguais, ligados por fios ideais, girando num plano horizontal, sem atrito, com velocidade angularω constante, em torno de um ponto fixo O. A razão2 T1 T T , entre as trações 1 e T2 , que atuam respectivamente nos fios (2) e (1), tem valor: a) 2 b) 3 2 f) 1 h) 2 3 k) 1 2
  • 59. Resposta: Corpo A T1 = Fcp T1 = mω 2 ⋅ R T1 = mω 2 ⋅ 2 L Corpo B T2 3mω 2 L 3 = = T2 − T1 = mω 2 ⋅ R T1 2mω L 2 2 T2 − T1 = mω 2 ⋅ L T2 = mω 2 L = mω L 2 2 Letra B T2 = mω 2 L + 2mω 2 L T2 = 3mω 2 L
  • 60. 23- Consideremos uma mola ideal de constante elástica 16 N/m, cujo comprimento quando não deformada é 1,0 m. Uma das extremidades da mola está presa a um anel liso por dentro do qual passa um prego fixado em uma mesa lisa. A outra extremidade está presa a uma bolinha de massa 3,0 kg, também apoiada na mesa. Dando-se um impulso à bolinha, ela passa a descrever um movimento circular com velocidade escalar constante e igual a 2,0 m/s. Calcule o comprimento da mola nessas condições.
  • 61. 16 x 2 + 16 x − 12 = 0 Resposta: 4x + 4x − 3 = 0 Comprimento Fel = Fcp 2 1 + 0,25 = 1,25m v 2 ∆ = b − 4ac 2 Kx = m R ∆ = 4 2 − 4 ⋅ 4 ⋅ ( − 3) Sendo que : ∆ = 16 + 48 R =1 + x ∆ + 64 v2 Kx = m 1= x −b± ∆ −4±8 v 2 ⇒ = 16 x = 3 ⋅ 3a 16 1+ x x1 = 0,25 16 x(1 + x ) = 12 x2 = −0,75 16 x +16 x 2 = 12
  • 62. 24- A figura abaixo representa um brinquedo encontrado em parques de diversões. Quando o sistema gira com veloccidade angular constante, o fio forma angulo θ = 30° com a vertical. Sendo g = 10 m/s², calcule a velocidade angular do sistema.
  • 63. Tx = Fcp Resposta: Tsenθ = m ⋅ ω ⋅ R2 Ty = T cos θ mg senθ = mω 2 ⋅ R cos θ Tx = Tsenθ g ⋅ tgθ = ω ⋅ R 2 10 ⋅ tg 30 = ω 2 ⋅ 4 Ty = P 3 T cos θ = mg 10 ⋅ = ω2 ⋅4 2 mg T= 5 3 cos θ ω = 2 4 ω = 1,46rad / s
  • 64. 25- Um automóvel percorre um trecho sobrelevado de estrada numa trajetória circular de raio R. No exercício 6, vimos que velocidade um automóvel deve ter para conseguir fazer essa curva sem depender de atrito, sendo R =120 m, g = 10 m/s², sen θ = 0,60 e cos θ = 0,80. Suponhamos agora que o coeficiente de atrito estático entre os pneus e a estrada seja µ e = 0,80. calcule as velocidades máxima e mínima que o automóvel deve ter para fazer essa curva sem derrapar.
  • 65. Eixo y Resposta: N y = Faty + P P = N y − Faty mg = N cos θ − Nµ senθ mg = N ( cos θ − µ senθ ) N y = N cos θ mg N= N x = Nsenθ ( cos θ − µ senθ ) Fatx = Fat cos θ Faty = Fat senθ
  • 66. 2 Resposta: v 10 = ⋅1,24 Eixo x R 0,32 N x + Fatx = Fcp v2 = 38,75 120 mv 2 Nsenθ + N µ cos θ = v 2 = 4650 R N ( senθ + µ cos θ ) = mv 2 v = 68m / s R mg mv 2 − ( senθ + µ cos θ ) = ( cos θ − µ senθ ) R
  • 67. 26- a) Um carrinho está fazendo um loop em uma montanha-russa. A velocidade mínima para que uma pessoa não caia depende da massa da pessoa? b) Quando se planeja o ângulo de sobrelevação em uma curva de uma estrada, esse ângulo depende da massa do veículo? c) Na figura a seguir, quais forças não podem representar a resultante em um movimento circular? d) Um automóvel faz uma curva circular com velocidade escalar constante, numa estrada plana horizontal. A força de atrito é estática ou cinética?
  • 68. Resposta: a) Não Fcp = P 2 v m = mg R
  • 69. Resposta: b) Não 2 mg v senθ = m cos θ R
  • 70. Resposta: c) F1 , F2 e F 4