SlideShare uma empresa Scribd logo
1 de 71
Universo da Física 1
    Mecânica

      Capítulo 13
Dinâmica dos movimentos
         curvos

        3ª Parte
1- Uma partícula de massa 6,0 Kg tem movimento
uniforme sobre uma trajetória circular de raio 3,0
m, com velocidade escalar 4,0 m/s. Calcule:

a) O módulo da aceleração centrípeta da
   partícula;
b) O módulo da resultante das forças que
   atuam na partícula;
c) A velocidade angular da parícula;
d) A frequencia e o período do movimento.
Resposta:

      m = 6,0 kg
      R = 3,0 m
      v = 4,0 m/s
a)         v  2
     acp =
           R
              2
           4
     acp =
           3
           16
     acp =          →   acp ≅ 5,34m / s   2

            3
Resposta:
       m = 6,0 kg
       R = 3,0 m
       v = 4,0 m/s
b)
     Fcp = m ⋅ acp   Fcp = 2 ⋅16
               v2    Fcp = 32
     Fcp = m ⋅
               R
           2   2
               41
     Fcp = 6 ⋅
               3
Resposta:

     m = 6,0 kg
     R = 3,0 m
     v = 4,0 m/s


c)    v =ω⋅R
      4 = ω ⋅3
         4
     ω = rad / s
         3
     ω ≅ 1,34rad / s
Resposta:
  m = 6,0 kg
  R = 3,0 m
  v = 4,0 m/s
d)
     ω = 2π ⋅ f                1
                           T=
     1,34 = 2 ⋅ 3,14 ⋅ f        f
     1,34 = 6,28 ⋅ f              1
                           T=
          1,34                 0,21
      f =
          6,28             T ≅ 4,76 s
      f ≅ 0,21Hz
2- A figura a seguir representa um corpo A que está apoiado
sobre uma mesa e preso a um fio ideal que passa por um tubo
fixado a um buraco feito na mesa. Na outra extremidade do fio
está preso um bloco B. Dando-se um impulso ao bloco A, ele
passa a girar em um movimento circular e uniforme de modo
que o bloco B fica em repouso. Calcule a velocidade do bloco A,
sabendo que g = 10 m/s², o raio da trajetória é 40 cm e as
massas de A e B são respectivamente 2,0 kg e 18 kg.
m A = 2,0kg
Resposta:
                         mB = 18kg
                         R = 0,4m
Decomposição das forças:
     T
 A                               Como B está em repouso,
                T               então:
            B                             T =P    B
                    PB
                                          T = mB ⋅ g
                                          T = 18 ⋅10
                                          T = 180 N
m A = 2,0kg
   mB = 18kg
   R = 0,4m

O bloco A executa movimento circular, então:

 T = Fcp                      72 = 2 ⋅ v   2


 T = ma ⋅ acp                     72
                              v =
                                2

              2                    2
          v
T = ma ⋅                      v = 36
                               2
          R
           v 2
                              v = 36
180 = 2 ⋅
          0,4                 v = 6m / s
3- Um pequeno bloco de massa 0,10 kg foi colocado sobre
o prato de um antigo toca-discos, a uma distância R do
centro, numa região em que g = 10 m/s². Sabe-se que o
coeficiente de atrito estático entre o bloco e o prato do
toca-discos é igual a µ e . O prato é colocado a girar com
velocidade angular ω.

a) Sendo µ e = 0,60 e R = 12 cm, qual é
o maior valor possível para ω

                  de modo que o bloco
não escorregue?

                      ω
                                       µe
b) Sendo R = 10 cm e     = 8,0rad/s,
qual é o menor valor posssível para         ,
Resposta:

  A força de atrito (Fat) aponta para o centro da trajetória   Fat = Fcp

       N         a) Fat = µ ⋅ N                          µ ⋅ N = m ⋅ω 2 ⋅ R
Fat
                    Fcp = m ⋅ ω 2 ⋅ R                    0,6 ⋅1 = 0,1 ⋅ ω 2 ⋅ 0,12
       P                                                         0,6
                                                         ω =
                                                           2

                                                                0,012
                                                         ω 2 = 50
                                                         ω = 50
                                                         ω = 5 2rad / s
Resposta:

b)
     µ ⋅ N = m ⋅ω ⋅ R 2


     µ ⋅1 = 0,1 ⋅ 8 ⋅ 0,10
                  2


     µ = 0,64
4- O rotor é um brinquedo encontrado em alguns parques de diversões. Ele
 consiste em uma cabine cilíndrica, de raio R e eixo vertical. Uma pessoa entra
 na cabine e encosta na parede. Ocilindro começa então a girar, aumentando
 sua velocidade angularω       até atingir um valor predeterminado. Atingindo
 esse valor, o chão começa a descer e no entanto a pessoa não cai; ela
 continua girando, como se estivesse grudada na parede . A masssa da pessoa
                                                                        µe
 é m e o coeficiente de atrito estático entre a roupa e apessoa e a parede é .
 São dados m = 60 kg, g = 10 m/s² e R = 2,0 m. Suponha que o chão já tenha
 descido.
a) Faça um desenho das forças que atuam na pessoa.
b) Qual é o valor da força de atrito sobre a pessoa?
c) Que força está fazendo o papel de força centrípeta?
d) Supondo µ e = 0,40, calcule o valor mínimo de de
                                                   ω
     modo que a pessoa não caia. Esse valor mínimo
     depende da massa da pessoa?                         µe
e) Supondo ω 4,0 rad/s, calcule o valor mínimo de
               =
       de modo que a pessoa não escorregue. Esse valor
     mínimo depende da massa da pessoa?
Resposta:


a)


                Fat
            N


                P
Resposta:

  m = 60 kg
   R=2m

b) Fat = P
   Fat = m·g
   Fat = 60 · 10
   Fat = 600 N


c) Força normal
Resposta:                 m = 60 kg
d)   Fat = µ ⋅ N           R=2m
     600 = 0,4 ⋅ N
     N = 1500 N
     N = Fcp
     N = m ⋅ω 2 ⋅ R
     1500 = 60 ⋅ ω 2 ⋅ 2
       2 1500
     ω
         120
     ω 2 = 12,5
     ω = 12,5
     ω = 3,54rad / s
Resposta:

  m = 60 kg
  R=2m



e) N = m ⋅ω 2 ⋅ R   Fat = N ⋅ µ
   N = 60 ⋅ 4 ⋅ 2
             2
                    600 = 1920 µ
   N = 1920         µ = 0,3125
5- Um menino amarrou uma bolinha de massa m = 0,10 kg na
ponta de um fio ideal e fez com que a bolinha adquirisse
movimento uniforme de velocidade escalar v, de modo que a
trajetória da bolinha é uma circunferência de raio R, contida
num plano vertical. São dados: g = 10 m/s² e R = 0,50 m.

•   Supondo v = 4,0 m/s², calcule as
    intensidades da tração no fio, nos
    pontos mais alto (A) e mais baixo
    (B).



b) Qual é o valor mínimo de v de modo
    que o fio não fique frouxo no
    ponto mais alto? Esse valor
    mínimo depende da massa da
    bolinha?
Resposta:
6- A figura a mostra um trecho de pista de corrida em que ela tem uma
inclinação (pista sobrelevada) para ajudar os veículos a fazerem a curva
dependendo menos do atrito. Vamos supor que, no momento representado
na figura b, o carro esteja percorrendo uma trajetória circular paralela ao
solo, de raio R e centro C . Desprezando o atrito, as forças atuantes no carro
são o peso P e a força normal FN . São dados: g = 10 m/s²; R = 120m; sen
θ = 0,60; cos θ = 0,80. Calculea velocidade do carro de modo que ele faça
essa curva sem depender da força de atrito.
Resposta:
7- Na figura A foi reproduzido o desenho de Newton em que ele
sugere que um caminhão muito poderoso poderia colocar um
projétil em trajetória circular rasante em torno da Terra, como
na figura B. Supondo que o raio da Terra seja R = 6 400 km e que
a aceleração da gravidade próximo á superfície da Terra seja g =
10 m/s², calcule o valor aproximado da velocidade v.




  Figura A                         Figura B
Resposta:                     5
           v    R = 6 400 km = 64 ·10 m


       P



                    v = 64 ⋅10
                      2            6

 P = Fcp
                    v = 64 ⋅10 6
           v2
m⋅ g = m⋅           v = 8 ⋅10 3
           R
       v2           v = 8000m / s
10 =
     64 ⋅10 5
8- Uma partícula de massa m= 0,10 kg é presa à extremidade de
uma mola ideal cujo comprimento natural é 85 cm e cuja
constante elástica é 80 N/m. A outra extremidade da mola é presa
a um anel pelo interior do qual passa um prego preso a uma mesa.
O sistema é posto a girar de modo que a partícula descreve uma
trajetória circular de raio R = 90 cm. Desprezando os atritos, qual
é o módulo da velocidade da partícula?
Resposta:
9- Um automóvel percorre um trecho circular de raio R = 30 m de uma
estrada plana horizontal, num local em que g = 10 m/s². A velocidade escalar
do automóvel é v e o coeficiente de atrito estático entre os pneus e a estrada
é µe
•   Supondo µ e= 0,75, calcule o máximo valor de v de modo que
    o carro não derrape.

•   Supondo v = 10 m/s, qual é o valor mínimo de µ e de modo
    que o carro faça a curva sem derrapar?
Resposta:

Fat = Fcp
a)        mv só que n = mg
             2
     Nµ =
           R

              mv 2
     mgµ =                   v = 7,5 ⋅ 30
                              2
               R
            v2               v = 225
                              2
     gµ =
             R
                 v2
                             v = 225
     10 ⋅ 0,78 =
                 30          v = 15m / s
Resposta:
              2
             v
b)   gµ =
             R
                  2
               10
     10 ⋅ µ =
                30
           100
     µ=
           300
           1
     µ=
           3
10- (Fuvest-SP) Um bloco de 0,2 kg está sobre um disco
horizontal em repouso, a 0,1 m de distância do centro.
O disco começa a girar, aumentando vagarosamente a
velocidade angular. Acima de uma velocidade angular
crítica de 10 rad/s o bloco começa a deslizar. Qual a
intensidade máxima da força de atrito que atua sobre o
bloco?

a) 1 N     b) 2 N     C) 3 N     d) 4 N     e) 5 N
Resposta:


   Fat = Fcp
   Fat = m ⋅ ω ⋅ R
               2


   Fat = 0,2 ⋅10 ⋅ 0,1
                   2


   Fat = 2 N
                         Letra B
11- (Mackenzie-SP) Admitamos que você esteja apoiado , em pé, sobre
o fundo de um cilindro de raio R = 4 m que gira em torno de seu eixo
vertical. Admitindo que g = 10 m/s² e o coeficiente de atrito entre sua
roupa e o cilindro seja 0,4, a menor velocidade escalar que o cilindro
deve ter para uqe, retirado o fundo do mesmo, você fique “preso” à
parede dele é?

  b) 10 m/s

  d) 8 m/s

  f) 9 m/s

  h) 11 m/s
Resposta:
                    N = Fcp
  Fat = P
                              2
  Nµ = mg                v
                    N =m
  N ⋅ 0,4 = m ⋅10        R
                                  2
           10                 v
  N = m⋅            25m = m
           0,4                4
  N = 25m           v = 100
                     2


                    v = 10m / s
       Letra A
12- Um automóvel de massa 800 kg percorre uma estrada, que
tem o perfil desenhado abaixo, com velocidade escalar
constante de 20 m/s. O trecho mais alto é aproximadamente
circular de raio RA = 200m e o trecho mais baixo tem raio de
curvatura RB = 160m. Calcule as intensidades da força normal
exercida pela estrada sobre o automóvel nos pontos A e B.
Resposta:

Ponto A:
    N
            P − N = Fcp
                       v2
    P
            mg − N = m
                       R
                                20 2
            800 ⋅10 − N = 800 ⋅
                                200
            8000 − N = 1600
            N = 8000 − 1600
            N = 6400 N
Resposta:


Ponto B:    N − P = Fcp
     N            mv 2
            N −P=
                   R
     P
                                20 2
            N − 800 ⋅10 = 800 ⋅
                                160
                             400
            N − 8000 = 800 ⋅
                             160
            N − 8000 = 800 ⋅ 2,5
            N = 8000 + 2000
            N = 10000 N
13- (Unisa-SP) Um motociclista descreve uma circunferência vertical num
“globo da morte” de raio R = 4m, numa região onde g = 10m/s². A massa
total de moto e motociclista é 150 kg. Qual a força exercida sobre o
globo no ponto mais alto da trajetória, se a velocidade alí é 12 m/s?

 b)   1 500 N
 c)   2 400 N
 d)   3 900 N
 e)   5 400 N
 f)   6 900 N
Resposta:
            P + N = Fcp
                           2
                         v
            mg + N = m ⋅
                         R
                                     2
                                12
            150 ⋅10 + N = 150 ⋅
                                 4
            1500 + N = 150 ⋅ 36
            N = 5400 − 1500
            N = 3900 N
14- Para a situação da questão anterior, qual é o valor
mínimo da velocidade da moto, no ponto mais alto,
para que não perca contato com o globo?
Resposta:   P = Fcp
                       2
                   v
            mg = m
                   R
            v = g⋅R
             2


            v 2 = 10 ⋅ 4
            v 2 = 40
            v = 40
             2


            v = 2 10m / s
             2
15- (FEI-SP) Uma esfera gira com velocidade 1 m/s, descrevendo
uma trajetória circular e horizontal, de raio r = 10 cm, estando a
esfera suspensa por meio de um fio ideal. Sendo g = 10 m/s²,
qual o valor do ângulo θ que o fio forma com a vertical?
Resposta:                  Tx = Fcp
            Tx = Tsenθ                 v2
                         Tsenθ = m
            Ty = T cos θ               R
                          mg               v2
                                ⋅ senθ = m
                         cos θ             R
                             senθ v 2
                         g⋅         =
                             cos θ R
            Ty = P                    2
                                     1
            T cos θ = mg 10 ⋅ tgθ = 0,1
                 mg      tgθ = 1
            T=
                cos θ    θ = 45°
16- (Fuvest-SP) Um carro percorre uma pista curva superelevada
      ( θ = 0,2 ) de 200 m de raio. Desprezando o atrito, qual a
velocidade máxima sem risco de derrapagem?

a) 40 km/h       c) 60 km/h       e) 80 km/h
b) 45 km/h       d) 72 km/h
N x = Fcp
 Resposta:                     v2
                Nsenθ = m
                                R
                 mg               v2
                       ⋅ senθ = m
N v = N cos θ   cos θ             R
                   senθ v 2
N x = Nsenθ     g          =
                   cos θ     R
                            v2
Ny = P          g ⋅ tgθ =
                            R
N cos θ = mg                 v2
                10 ⋅ 0,2 =
     mg                     200
N=
    cos θ       v 2 = 2 ⋅ 200
                v 2 = 400
                v = 400
   Letra D      v = 20m / s = 72 Km / h
17- (Mackenzie-SP) Um avião descreve uma trajetória circular
horizontal com velocidade escalar constante v . As asas formam um
ângulo θ com a horizontal. Devem ser considerados apenas o peso do
avião e a força de sustentação, que é perpendicular à asa. Sendo g a
aceleração da gravidade, o raio da trajetória descrita é:
          2
a)   v · sen θ
b)   v 2 b · tg θ
c)   v2       · tg θ
     g

d)   v2       · cotg θ
     g
     g
e)            · tg θ
     v2
Resposta:       Ex = Fcp2
                           v
                E senθ = m
                           R
                mg             v2
                      senθ = m
               cos θ           R
                         2
                         v
               g tgθ =
                         R
Ey = P               v 2
               R=
E cos θ = mg       g tgθ
                     2
    mg            v
E=             R = cot gθ
   cos θ          g
                                    Letra D
18- (Unicamp-SP) Um míssil é lançado horizontalmente
em órbita circular rasante à superfície da Terra. Adote
o raio da Terra como sendo R = 6 400 km π ≅ 3.
                                         e
a) Qual o valor da velocidade de lançamento?
b) Qual o período do movimento do projétil?
Resposta:                             2
                                      v
                          a) mg = m
 P = Fcp                              R
                                    2
                                  v
 R = 6400km = 64 ⋅105 m      10 =
                                  R
                             v = 64 ⋅10
                              2         6


                            v = 64 ⋅10    6


                            v = 8000m / s
Resposta:

     v = ωR
b)
     8 ⋅103 = ω ⋅ 64 ⋅105
          8 ⋅103
     ω=            = 0,125
         64 ⋅10 5


     ω = 1,25 ⋅10 −3


        2 ⋅ω         2⋅3
     ω=      =T =          −3
                              = T = 4,8 ⋅10 s
                                           3

         T        1,25 ⋅10
19- Um pêndulo simples de comprimento L = 3,0 m e massa m = 2,0 kg
passa pela posição indicada na figura, com velocidade v = 4,0 m/s.
Sendo g = 10 m/s², calcule, para a posição indicada:

a)   o módulo da aceleração tangencial;
b)   o módulo da aceleração centrípeta;
c)   o módulo de tração no fio;
d)   o módulo da força resultante sobre a partícula presa ao fio
Resposta:
            a)    Px = P sen 60
                  Px = mat
                 P sen60 = mat
                 m g sen 60° = mat
                       3
                 10 ⋅    = at
                      2
                 at = 5 3m / s
Resposta:
                        2
                       v
            b)   acp =
                        R
                         2
                       4
                 acp =
                        3
                       16
                 acp =
                        3
Resposta:


            c)
               T − Py = Fcp
              T − m g cos 60 = macp

                         1
              T − 2 ⋅10 ⋅ = 2 ⋅ 5,34
                         2
              T − 10 = 10,68

               T = 20,68 N
Resposta:
  Fcp = m ⋅ acp         2     2        2
                    d) FR = Fcp + Px
  Fcp = 2 ⋅ 5,34
  Fcp = 10,68
                        2
                      FR = 10,68 + 10 3
                                  2
                                       (   )   2


                        2
                      FR = 114,06 + 300
Px = P sen 60
                        2
Px = m ⋅ g sen 60     FR = 414,06
                      FR = 414,06
              3
Px = 2 ⋅10 ⋅          FR = 20,35 N
             2
Px = 10 3
20- (Fund. Carlos Chagas-SP) A figura ao lado representa um pêndulo
simples que oscila entre as posições A e B no campo gravitacional
terrestre. Quando o pêndulo se encontra na posição C, a força
resultante é melhor indicada por:


c)   1
d)   2
e)   3
f)   4
g)   5
Resposta:




            Letra D
21- A figura a seguir representa a força resultante sobre uma partícula
de massa m = 2,0 kg e a velocidade da partícula no mesmo instante.
Sabendo que a trajetória é circular, F = 120 N e v = 4,0 m/s, calcule o
raio da trajetória.
Resposta:
            F cos θ = Fcp           32 3
                                R=
                           v2
                                     180
            F cos 30° = m
                           R        8 3
                                R=
                   3      42         45
            120 ⋅    = 2⋅
                  2       R     R = 0,31m
                     32
            60 3 =
                     R
                  32
            R=
                 60 3
22- (PUC-SP) A figura mostra dois corpos A e B, de massas iguais,
ligados por fios ideais, girando num plano horizontal, sem atrito,
com velocidade angularω constante, em torno de um ponto
fixo O. A razão2 T1
               T                            T
                           , entre as trações 1 e T2 , que atuam
respectivamente nos fios (2) e (1), tem valor:
a)   2

b) 3
     2

f)   1

h) 2
     3

k)   1
     2
Resposta:
Corpo A
T1 = Fcp
T1 = mω 2 ⋅ R
T1 = mω 2 ⋅ 2 L
            Corpo B
                                    T2 3mω 2 L 3
                                      =       =
           T2 − T1 = mω 2 ⋅ R       T1 2mω L 2
                                           2

           T2 − T1 = mω 2 ⋅ L
           T2 = mω 2 L = mω L
                    2           2    Letra B
           T2 = mω 2 L + 2mω 2 L
           T2 = 3mω 2 L
23- Consideremos uma mola ideal de constante elástica 16 N/m,
cujo comprimento quando não deformada é 1,0 m. Uma das
extremidades da mola está presa a um anel liso por dentro do
qual passa um prego fixado em uma mesa lisa. A outra
extremidade está presa a uma bolinha de massa 3,0 kg, também
apoiada na mesa. Dando-se um impulso à bolinha, ela passa a
descrever um movimento circular com velocidade escalar
constante e igual a 2,0 m/s. Calcule o comprimento da mola
nessas condições.
16 x 2 + 16 x − 12 = 0
Resposta:
                    4x + 4x − 3 = 0
                                                       Comprimento
Fel = Fcp
                       2

                                                      1 + 0,25 = 1,25m
       v      2
                           ∆ = b − 4ac
                                  2
Kx = m
       R                   ∆ = 4 2 − 4 ⋅ 4 ⋅ ( − 3)
Sendo que :                ∆ = 16 + 48
R =1 + x                   ∆ + 64
           v2
Kx = m
         1= x              −b± ∆       −4±8
             v
                2                    ⇒      =
16 x = 3 ⋅                     3a       16
           1+ x            x1 = 0,25
16 x(1 + x ) = 12          x2 = −0,75
16 x +16 x 2 = 12
24- A figura abaixo representa um brinquedo encontrado em
parques de diversões. Quando o sistema gira com veloccidade
angular constante, o fio forma angulo θ = 30° com a vertical.
Sendo g = 10 m/s², calcule a velocidade angular do sistema.
Tx = Fcp
Resposta:
               Tsenθ = m ⋅ ω ⋅ R2


Ty = T cos θ    mg
                      senθ = mω 2 ⋅ R
               cos θ
Tx = Tsenθ
               g ⋅ tgθ = ω ⋅ R
                          2


               10 ⋅ tg 30 = ω 2 ⋅ 4
Ty = P
                    3
T cos θ = mg   10 ⋅   = ω2 ⋅4
                    2
     mg
T=                   5 3
    cos θ      ω =
                 2

                      4
               ω = 1,46rad / s
25- Um automóvel percorre um trecho sobrelevado de estrada
numa trajetória circular de raio R. No exercício 6, vimos que
velocidade um automóvel deve ter para conseguir fazer essa
curva sem depender de atrito, sendo R =120 m, g = 10 m/s²,
sen θ = 0,60 e cos θ = 0,80. Suponhamos agora que o coeficiente
de atrito estático entre os pneus e a estrada seja µ e = 0,80.
calcule as velocidades máxima e mínima que o automóvel deve
ter para fazer essa curva sem derrapar.
Eixo y
Resposta:
                    N y = Faty + P
                    P = N y − Faty
                   mg = N cos θ − Nµ senθ
                   mg = N ( cos θ − µ senθ )
 N y = N cos θ                mg
                   N=
 N x = Nsenθ          ( cos θ − µ senθ )
Fatx = Fat cos θ
Faty = Fat senθ
2
 Resposta:                                       v   10
                                                   =    ⋅1,24
     Eixo x
                                                 R 0,32
     N x + Fatx = Fcp                             v2
                                                      = 38,75
                                                 120
                       mv 2
   Nsenθ + N µ cos θ =                           v 2 = 4650
                        R

    N ( senθ + µ cos θ ) =
                            mv 2                 v = 68m / s
                             R
        mg                                mv 2
                   − ( senθ + µ cos θ ) =
( cos θ − µ senθ )                         R
26-

a) Um carrinho está fazendo um loop em uma montanha-russa. A velocidade
    mínima para que uma pessoa não caia depende da massa da pessoa?
b) Quando se planeja o ângulo de sobrelevação em uma curva de uma
    estrada, esse ângulo depende da massa do veículo?
c) Na figura a seguir, quais forças não podem representar a resultante em um
    movimento circular?




d) Um automóvel faz uma curva circular com velocidade escalar constante,
   numa estrada plana horizontal. A força de atrito é estática ou cinética?
Resposta:


 a) Não

Fcp = P
     2
 v
m = mg
 R
Resposta:


 b) Não
                2
  mg            v
       senθ = m
 cos θ          R
Resposta:


 c)   F1 , F2   e F
                   4
Resposta:



 d) Estática

Mais conteúdo relacionado

Mais procurados

Impulso e Quantidade de Movimento - Exercícios
Impulso e Quantidade de Movimento - ExercíciosImpulso e Quantidade de Movimento - Exercícios
Impulso e Quantidade de Movimento - ExercíciosMarco Antonio Sanches
 
Aula 18 orifícios - parte ii
Aula 18   orifícios - parte iiAula 18   orifícios - parte ii
Aula 18 orifícios - parte iiThiago Pantarotto
 
Questões Corrigidas, em Word: Associação de Resistores e Circuitos - Conteú...
Questões Corrigidas, em Word:  Associação de Resistores e Circuitos  - Conteú...Questões Corrigidas, em Word:  Associação de Resistores e Circuitos  - Conteú...
Questões Corrigidas, em Word: Associação de Resistores e Circuitos - Conteú...Rodrigo Penna
 
Exercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de funçãoExercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de funçãoDiego Oliveira
 
Problemas resolvidos e_propostos_mecanic (1)
Problemas resolvidos e_propostos_mecanic (1)Problemas resolvidos e_propostos_mecanic (1)
Problemas resolvidos e_propostos_mecanic (1)Diego Santiago De Lima
 
Exercícios Resolvidos: Taxa relacionada
Exercícios Resolvidos: Taxa relacionadaExercícios Resolvidos: Taxa relacionada
Exercícios Resolvidos: Taxa relacionadaDiego Oliveira
 
Apostila exercicio - mecânica dos sólidos
Apostila  exercicio - mecânica dos sólidosApostila  exercicio - mecânica dos sólidos
Apostila exercicio - mecânica dos sólidosJoão Ferreira
 
Questões resolvidas Raciocínio Lógico-Matemático
Questões resolvidas Raciocínio Lógico-MatemáticoQuestões resolvidas Raciocínio Lógico-Matemático
Questões resolvidas Raciocínio Lógico-MatemáticoJeferson Romão
 
Lista 4 - Condutores em Equilíbrio Eletrostático
Lista 4 - Condutores em Equilíbrio EletrostáticoLista 4 - Condutores em Equilíbrio Eletrostático
Lista 4 - Condutores em Equilíbrio EletrostáticoGustavo Mendonça
 
Prova de Recuperação de Física - 1º ano A e B
Prova de Recuperação de Física - 1º ano A e BProva de Recuperação de Física - 1º ano A e B
Prova de Recuperação de Física - 1º ano A e BJamilly Andrade
 
C4 curso a_exercicios_prof_fisica
C4 curso a_exercicios_prof_fisicaC4 curso a_exercicios_prof_fisica
C4 curso a_exercicios_prof_fisicaRildo Borges
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorialtooonks
 
Projeto - Reciclagem de garrafa Pet
Projeto - Reciclagem de garrafa PetProjeto - Reciclagem de garrafa Pet
Projeto - Reciclagem de garrafa PetPaola Prudente
 
Resolução da lista de exercícios 1 complementos de rm-7
Resolução da lista de exercícios 1  complementos de rm-7Resolução da lista de exercícios 1  complementos de rm-7
Resolução da lista de exercícios 1 complementos de rm-7Eduardo Spech
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
 www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força CentrípedaVideoaulas De Física Apoio
 
Questoes resolvidas de termodinmica
Questoes resolvidas de termodinmicaQuestoes resolvidas de termodinmica
Questoes resolvidas de termodinmicasjfnet
 

Mais procurados (20)

Impulso e Quantidade de Movimento - Exercícios
Impulso e Quantidade de Movimento - ExercíciosImpulso e Quantidade de Movimento - Exercícios
Impulso e Quantidade de Movimento - Exercícios
 
Jogos realizados na creche
Jogos realizados na crecheJogos realizados na creche
Jogos realizados na creche
 
Aula 18 orifícios - parte ii
Aula 18   orifícios - parte iiAula 18   orifícios - parte ii
Aula 18 orifícios - parte ii
 
Questões Corrigidas, em Word: Associação de Resistores e Circuitos - Conteú...
Questões Corrigidas, em Word:  Associação de Resistores e Circuitos  - Conteú...Questões Corrigidas, em Word:  Associação de Resistores e Circuitos  - Conteú...
Questões Corrigidas, em Word: Associação de Resistores e Circuitos - Conteú...
 
Exercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de funçãoExercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de função
 
Problemas resolvidos e_propostos_mecanic (1)
Problemas resolvidos e_propostos_mecanic (1)Problemas resolvidos e_propostos_mecanic (1)
Problemas resolvidos e_propostos_mecanic (1)
 
Exercícios Resolvidos: Taxa relacionada
Exercícios Resolvidos: Taxa relacionadaExercícios Resolvidos: Taxa relacionada
Exercícios Resolvidos: Taxa relacionada
 
Apostila exercicio - mecânica dos sólidos
Apostila  exercicio - mecânica dos sólidosApostila  exercicio - mecânica dos sólidos
Apostila exercicio - mecânica dos sólidos
 
Questões resolvidas Raciocínio Lógico-Matemático
Questões resolvidas Raciocínio Lógico-MatemáticoQuestões resolvidas Raciocínio Lógico-Matemático
Questões resolvidas Raciocínio Lógico-Matemático
 
Lista 4 - Condutores em Equilíbrio Eletrostático
Lista 4 - Condutores em Equilíbrio EletrostáticoLista 4 - Condutores em Equilíbrio Eletrostático
Lista 4 - Condutores em Equilíbrio Eletrostático
 
Exerc livro fisica3
Exerc livro fisica3Exerc livro fisica3
Exerc livro fisica3
 
Prova de Recuperação de Física - 1º ano A e B
Prova de Recuperação de Física - 1º ano A e BProva de Recuperação de Física - 1º ano A e B
Prova de Recuperação de Física - 1º ano A e B
 
C4 curso a_exercicios_prof_fisica
C4 curso a_exercicios_prof_fisicaC4 curso a_exercicios_prof_fisica
C4 curso a_exercicios_prof_fisica
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorial
 
Exercicios
ExerciciosExercicios
Exercicios
 
Projeto - Reciclagem de garrafa Pet
Projeto - Reciclagem de garrafa PetProjeto - Reciclagem de garrafa Pet
Projeto - Reciclagem de garrafa Pet
 
Td de calorimetria
Td de calorimetriaTd de calorimetria
Td de calorimetria
 
Resolução da lista de exercícios 1 complementos de rm-7
Resolução da lista de exercícios 1  complementos de rm-7Resolução da lista de exercícios 1  complementos de rm-7
Resolução da lista de exercícios 1 complementos de rm-7
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
 www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Força Centrípeda
 
Questoes resolvidas de termodinmica
Questoes resolvidas de termodinmicaQuestoes resolvidas de termodinmica
Questoes resolvidas de termodinmica
 

Destaque

www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...Videoaulas De Física Apoio
 
Movimento circular
Movimento circularMovimento circular
Movimento circularRui Oliveira
 
Cálculos movimento circular
Cálculos movimento circularCálculos movimento circular
Cálculos movimento circularTableau Colégio
 
8 movimento circular uniforme
8  movimento circular uniforme8  movimento circular uniforme
8 movimento circular uniformedaniela pinto
 
Movimento Circular 2009
Movimento Circular 2009Movimento Circular 2009
Movimento Circular 2009fisico.dersa
 
Composição de movimentos
Composição de movimentosComposição de movimentos
Composição de movimentosIlza1
 
Cinematica vetorial
Cinematica vetorialCinematica vetorial
Cinematica vetorialRildo Borges
 

Destaque (13)

www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...www.AulasDeFisicaApoio.com  - Física -  Exercícios Resolvovidos Dinâmica dos ...
www.AulasDeFisicaApoio.com - Física - Exercícios Resolvovidos Dinâmica dos ...
 
Refracao da luz resumo
Refracao da luz   resumoRefracao da luz   resumo
Refracao da luz resumo
 
Movimento circular
Movimento circularMovimento circular
Movimento circular
 
Física 12ºAno
Física 12ºAnoFísica 12ºAno
Física 12ºAno
 
Cálculos movimento circular
Cálculos movimento circularCálculos movimento circular
Cálculos movimento circular
 
Cinematica vetorial cópia
Cinematica vetorial   cópiaCinematica vetorial   cópia
Cinematica vetorial cópia
 
8 movimento circular uniforme
8  movimento circular uniforme8  movimento circular uniforme
8 movimento circular uniforme
 
Movimento Circular 2009
Movimento Circular 2009Movimento Circular 2009
Movimento Circular 2009
 
Composição de movimentos
Composição de movimentosComposição de movimentos
Composição de movimentos
 
Cinemática Vetorial
Cinemática VetorialCinemática Vetorial
Cinemática Vetorial
 
Movimento circular
Movimento circularMovimento circular
Movimento circular
 
Cinematica vetorial
Cinematica vetorialCinematica vetorial
Cinematica vetorial
 
Movimento Circular Uniforme
Movimento Circular UniformeMovimento Circular Uniforme
Movimento Circular Uniforme
 

Semelhante a Mecânica Circular - Cálculos de Movimento Curvilíneo

www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...Videoaulas De Física Apoio
 
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...AulasParticularesInfo
 
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1Joana Figueredo
 
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...Aula Particular Aulas Apoio
 
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aulawww.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo AulaVídeo Aulas Apoio
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Thommas Kevin
 
Exercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força CentrípedaExercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força CentrípedaJoana Figueredo
 
Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Thommas Kevin
 
Ita2005
Ita2005Ita2005
Ita2005cavip
 
100482124 questoes-de-fisica
100482124 questoes-de-fisica100482124 questoes-de-fisica
100482124 questoes-de-fisicaVismael Santos
 
Fuvest2008 2fase 4dia
Fuvest2008 2fase 4diaFuvest2008 2fase 4dia
Fuvest2008 2fase 4diaThommas Kevin
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Thommas Kevin
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Thommas Kevin
 
OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000
OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000
OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000Josebes Lopes Dos Santos
 

Semelhante a Mecânica Circular - Cálculos de Movimento Curvilíneo (20)

www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Dinâmica do Movi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Dinâmica do Movi...
 
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
www.AulasParticulares.Info - Física - Exercícios Resolvidos Dinâmica de Movim...
 
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
Física – Exercícios Resolvovidos Dinâmica dos Movimentos Curvos - Parte 1
 
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...www.ApoioAulasParticulares.Com.Br     - Física -  Exercícios ResolvidosDinâmi...
www.ApoioAulasParticulares.Com.Br - Física - Exercícios ResolvidosDinâmi...
 
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aulawww.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
www.CentroApoio.com - Física - Mecânica - Movimentos Curvos - Vídeo Aula
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001
 
Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001
 
Exercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força CentrípedaExercícios Resolvidos de Força Centrípeda
Exercícios Resolvidos de Força Centrípeda
 
Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001
 
Fisica2010
Fisica2010Fisica2010
Fisica2010
 
Ita2005
Ita2005Ita2005
Ita2005
 
Ita2005 parte 001
Ita2005 parte 001Ita2005 parte 001
Ita2005 parte 001
 
Dinâmica física
Dinâmica físicaDinâmica física
Dinâmica física
 
100482124 questoes-de-fisica
100482124 questoes-de-fisica100482124 questoes-de-fisica
100482124 questoes-de-fisica
 
Fisica 2011
Fisica 2011Fisica 2011
Fisica 2011
 
Fuvest2008 2fase 4dia
Fuvest2008 2fase 4diaFuvest2008 2fase 4dia
Fuvest2008 2fase 4dia
 
Proxima postagem
Proxima postagemProxima postagem
Proxima postagem
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 
OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000
OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000
OLIMPÍADA BRASILEIRA DE FÍSICA - NÍVEL 1 - 1º E 2º ANO - 2000
 

Mais de Videoaulas De Física Apoio

www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânicawww.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física - Trabalho e Energia MecânicaVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial Elétricowww.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial ElétricoVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Hidrostática
www.aulasdefisicaapoio.com - Física -  Hidrostáticawww.aulasdefisicaapoio.com - Física -  Hidrostática
www.aulasdefisicaapoio.com - Física - HidrostáticaVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Gravitação Universal
www.aulasdefisicaapoio.com  - Física -  Gravitação Universalwww.aulasdefisicaapoio.com  - Física -  Gravitação Universal
www.aulasdefisicaapoio.com - Física - Gravitação UniversalVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física -  Dinâmica e Movimentowww.aulasdefisicaapoio.com - Física -  Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física - Dinâmica e MovimentoVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondaswww.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e OndasVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...Videoaulas De Física Apoio
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...Videoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricaswww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes EsféricasVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refraçãowww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos RefraçãoVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos Esféricos
www.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricoswww.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricos
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos EsféricosVideoaulas De Física Apoio
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luzwww.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da LuzVideoaulas De Física Apoio
 
www.aulasdefisicaapoio.com - Exercícios Resolvidos Óptica
www.aulasdefisicaapoio.com -  Exercícios  Resolvidos Ópticawww.aulasdefisicaapoio.com -  Exercícios  Resolvidos Óptica
www.aulasdefisicaapoio.com - Exercícios Resolvidos ÓpticaVideoaulas De Física Apoio
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...Videoaulas De Física Apoio
 

Mais de Videoaulas De Física Apoio (20)

www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...www.aulasdefisicaapoio.com -  Física – Exercícios Resolvidos de Gravitação Un...
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos de Gravitação Un...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos de Hidrostática ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Hidrostática ...
 
www.aulasdefisicaapoio.com - Física - Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânicawww.aulasdefisicaapoio.com - Física -  Trabalho e Energia Mecânica
www.aulasdefisicaapoio.com - Física - Trabalho e Energia Mecânica
 
www.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial Elétricowww.aulasdefisicaapoio.com - Física – Potencial Elétrico
www.aulasdefisicaapoio.com - Física – Potencial Elétrico
 
www.aulasdefisicaapoio.com - Física - Hidrostática
www.aulasdefisicaapoio.com - Física -  Hidrostáticawww.aulasdefisicaapoio.com - Física -  Hidrostática
www.aulasdefisicaapoio.com - Física - Hidrostática
 
www.aulasdefisicaapoio.com - Física - Gravitação Universal
www.aulasdefisicaapoio.com  - Física -  Gravitação Universalwww.aulasdefisicaapoio.com  - Física -  Gravitação Universal
www.aulasdefisicaapoio.com - Física - Gravitação Universal
 
www.aulasdefisicaapoio.com - Física - Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física -  Dinâmica e Movimentowww.aulasdefisicaapoio.com - Física -  Dinâmica e Movimento
www.aulasdefisicaapoio.com - Física - Dinâmica e Movimento
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...www.aulasdefisicaapoio.com -  Física - Exercícios Resolvidos Ondas Bi e Tridi...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Ondas Bi e Tridi...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...www.aulasdefisicaapoio.com - Física -  Exercícios  Resolvidos Reflexão e Refr...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Reflexão e Refr...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...www.aulasdefisicaapoio.com - Física -  Exercícios Resolvidos Propriedades da ...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Propriedades da ...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Instrumentos Ó...
 
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondaswww.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e  Ondas
www.aulasdefisicaapoio.com - Física – Exercícios Resolvidos Ópticas e Ondas
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos de Princípio da C...
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio de...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio de...
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricaswww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Lentes Esféricas
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refraçãowww.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Refração
 
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos Esféricos
www.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricoswww.aulasdefisicaapoio.com - Física  - Exercícios Resolvidos  Espelhos Esféricos
www.aulasdefisicaapoio.com - Física - Exercícios Resolvidos Espelhos Esféricos
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luzwww.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Reflexão da Luz
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Reflexão da Luz
 
www.aulasdefisicaapoio.com - Exercícios Resolvidos Óptica
www.aulasdefisicaapoio.com -  Exercícios  Resolvidos Ópticawww.aulasdefisicaapoio.com -  Exercícios  Resolvidos Óptica
www.aulasdefisicaapoio.com - Exercícios Resolvidos Óptica
 
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...www.AulasDeFisicaApoio.com  - Física – Exercícios Resolvidos de Equilíbrio do...
www.AulasDeFisicaApoio.com - Física – Exercícios Resolvidos de Equilíbrio do...
 

Último

Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Mary Alvarenga
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e Américawilson778875
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...nexocan937
 
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...DominiqueFaria2
 
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxPOETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxJMTCS
 
UM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOSUM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOSdjgsantos1981
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfmarialuciadasilva17
 
Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)Paula Meyer Piagentini
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evoluçãoprofleticiasantosbio
 
A área de ciências da religião no brasil 2023.ppsx
A área de ciências da religião no brasil  2023.ppsxA área de ciências da religião no brasil  2023.ppsx
A área de ciências da religião no brasil 2023.ppsxGilbraz Aragão
 
atividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetizaçãoatividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetizaçãodanielagracia9
 
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
Ler e compreender 7º ano -  Aula 7 - 1º BimestreLer e compreender 7º ano -  Aula 7 - 1º Bimestre
Ler e compreender 7º ano - Aula 7 - 1º BimestreProfaCintiaDosSantos
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREIVONETETAVARESRAMOS
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxLuizHenriquedeAlmeid6
 
c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.azulassessoria9
 
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...azulassessoria9
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullyingMary Alvarenga
 
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...azulassessoria9
 

Último (20)

Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e América
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
 
Os Ratos - Dyonelio Machado FUVEST 2025
Os Ratos  -  Dyonelio Machado  FUVEST 2025Os Ratos  -  Dyonelio Machado  FUVEST 2025
Os Ratos - Dyonelio Machado FUVEST 2025
 
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
A FORMAÇÃO DO SÍMBOLO NA CRIANÇA -- JEAN PIAGET -- 2013 -- 6ced7f10b1a00cd395...
 
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxPOETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
 
UM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOSUM CURSO DE INFORMATICA BASICA PARA IDOSOS
UM CURSO DE INFORMATICA BASICA PARA IDOSOS
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
 
Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evolução
 
A área de ciências da religião no brasil 2023.ppsx
A área de ciências da religião no brasil  2023.ppsxA área de ciências da religião no brasil  2023.ppsx
A área de ciências da religião no brasil 2023.ppsx
 
atividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetizaçãoatividades diversas 1° ano alfabetização
atividades diversas 1° ano alfabetização
 
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
Ler e compreender 7º ano -  Aula 7 - 1º BimestreLer e compreender 7º ano -  Aula 7 - 1º Bimestre
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
 
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTREVACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
VACINAR E DOAR, É SÓ COMEÇAR - - 1º BIMESTRE
 
MANEJO INTEGRADO DE DOENÇAS (MID)
MANEJO INTEGRADO DE DOENÇAS (MID)MANEJO INTEGRADO DE DOENÇAS (MID)
MANEJO INTEGRADO DE DOENÇAS (MID)
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
 
c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.
 
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullying
 
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...Com base no excerto acima, escreva um texto explicando como a estrutura socia...
Com base no excerto acima, escreva um texto explicando como a estrutura socia...
 

Mecânica Circular - Cálculos de Movimento Curvilíneo

  • 1. Universo da Física 1 Mecânica Capítulo 13 Dinâmica dos movimentos curvos 3ª Parte
  • 2. 1- Uma partícula de massa 6,0 Kg tem movimento uniforme sobre uma trajetória circular de raio 3,0 m, com velocidade escalar 4,0 m/s. Calcule: a) O módulo da aceleração centrípeta da partícula; b) O módulo da resultante das forças que atuam na partícula; c) A velocidade angular da parícula; d) A frequencia e o período do movimento.
  • 3. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s a) v 2 acp = R 2 4 acp = 3 16 acp = → acp ≅ 5,34m / s 2 3
  • 4. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s b) Fcp = m ⋅ acp Fcp = 2 ⋅16 v2 Fcp = 32 Fcp = m ⋅ R 2 2 41 Fcp = 6 ⋅ 3
  • 5. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s c) v =ω⋅R 4 = ω ⋅3 4 ω = rad / s 3 ω ≅ 1,34rad / s
  • 6. Resposta: m = 6,0 kg R = 3,0 m v = 4,0 m/s d) ω = 2π ⋅ f 1 T= 1,34 = 2 ⋅ 3,14 ⋅ f f 1,34 = 6,28 ⋅ f 1 T= 1,34 0,21 f = 6,28 T ≅ 4,76 s f ≅ 0,21Hz
  • 7. 2- A figura a seguir representa um corpo A que está apoiado sobre uma mesa e preso a um fio ideal que passa por um tubo fixado a um buraco feito na mesa. Na outra extremidade do fio está preso um bloco B. Dando-se um impulso ao bloco A, ele passa a girar em um movimento circular e uniforme de modo que o bloco B fica em repouso. Calcule a velocidade do bloco A, sabendo que g = 10 m/s², o raio da trajetória é 40 cm e as massas de A e B são respectivamente 2,0 kg e 18 kg.
  • 8. m A = 2,0kg Resposta: mB = 18kg R = 0,4m Decomposição das forças: T A Como B está em repouso, T então: B T =P B PB T = mB ⋅ g T = 18 ⋅10 T = 180 N
  • 9. m A = 2,0kg mB = 18kg R = 0,4m O bloco A executa movimento circular, então: T = Fcp 72 = 2 ⋅ v 2 T = ma ⋅ acp 72 v = 2 2 2 v T = ma ⋅ v = 36 2 R v 2 v = 36 180 = 2 ⋅ 0,4 v = 6m / s
  • 10. 3- Um pequeno bloco de massa 0,10 kg foi colocado sobre o prato de um antigo toca-discos, a uma distância R do centro, numa região em que g = 10 m/s². Sabe-se que o coeficiente de atrito estático entre o bloco e o prato do toca-discos é igual a µ e . O prato é colocado a girar com velocidade angular ω. a) Sendo µ e = 0,60 e R = 12 cm, qual é o maior valor possível para ω de modo que o bloco não escorregue? ω µe b) Sendo R = 10 cm e = 8,0rad/s, qual é o menor valor posssível para ,
  • 11. Resposta: A força de atrito (Fat) aponta para o centro da trajetória Fat = Fcp N a) Fat = µ ⋅ N µ ⋅ N = m ⋅ω 2 ⋅ R Fat Fcp = m ⋅ ω 2 ⋅ R 0,6 ⋅1 = 0,1 ⋅ ω 2 ⋅ 0,12 P 0,6 ω = 2 0,012 ω 2 = 50 ω = 50 ω = 5 2rad / s
  • 12. Resposta: b) µ ⋅ N = m ⋅ω ⋅ R 2 µ ⋅1 = 0,1 ⋅ 8 ⋅ 0,10 2 µ = 0,64
  • 13. 4- O rotor é um brinquedo encontrado em alguns parques de diversões. Ele consiste em uma cabine cilíndrica, de raio R e eixo vertical. Uma pessoa entra na cabine e encosta na parede. Ocilindro começa então a girar, aumentando sua velocidade angularω até atingir um valor predeterminado. Atingindo esse valor, o chão começa a descer e no entanto a pessoa não cai; ela continua girando, como se estivesse grudada na parede . A masssa da pessoa µe é m e o coeficiente de atrito estático entre a roupa e apessoa e a parede é . São dados m = 60 kg, g = 10 m/s² e R = 2,0 m. Suponha que o chão já tenha descido. a) Faça um desenho das forças que atuam na pessoa. b) Qual é o valor da força de atrito sobre a pessoa? c) Que força está fazendo o papel de força centrípeta? d) Supondo µ e = 0,40, calcule o valor mínimo de de ω modo que a pessoa não caia. Esse valor mínimo depende da massa da pessoa? µe e) Supondo ω 4,0 rad/s, calcule o valor mínimo de = de modo que a pessoa não escorregue. Esse valor mínimo depende da massa da pessoa?
  • 14. Resposta: a) Fat N P
  • 15. Resposta: m = 60 kg R=2m b) Fat = P Fat = m·g Fat = 60 · 10 Fat = 600 N c) Força normal
  • 16. Resposta: m = 60 kg d) Fat = µ ⋅ N R=2m 600 = 0,4 ⋅ N N = 1500 N N = Fcp N = m ⋅ω 2 ⋅ R 1500 = 60 ⋅ ω 2 ⋅ 2 2 1500 ω 120 ω 2 = 12,5 ω = 12,5 ω = 3,54rad / s
  • 17. Resposta: m = 60 kg R=2m e) N = m ⋅ω 2 ⋅ R Fat = N ⋅ µ N = 60 ⋅ 4 ⋅ 2 2 600 = 1920 µ N = 1920 µ = 0,3125
  • 18. 5- Um menino amarrou uma bolinha de massa m = 0,10 kg na ponta de um fio ideal e fez com que a bolinha adquirisse movimento uniforme de velocidade escalar v, de modo que a trajetória da bolinha é uma circunferência de raio R, contida num plano vertical. São dados: g = 10 m/s² e R = 0,50 m. • Supondo v = 4,0 m/s², calcule as intensidades da tração no fio, nos pontos mais alto (A) e mais baixo (B). b) Qual é o valor mínimo de v de modo que o fio não fique frouxo no ponto mais alto? Esse valor mínimo depende da massa da bolinha?
  • 20. 6- A figura a mostra um trecho de pista de corrida em que ela tem uma inclinação (pista sobrelevada) para ajudar os veículos a fazerem a curva dependendo menos do atrito. Vamos supor que, no momento representado na figura b, o carro esteja percorrendo uma trajetória circular paralela ao solo, de raio R e centro C . Desprezando o atrito, as forças atuantes no carro são o peso P e a força normal FN . São dados: g = 10 m/s²; R = 120m; sen θ = 0,60; cos θ = 0,80. Calculea velocidade do carro de modo que ele faça essa curva sem depender da força de atrito.
  • 22. 7- Na figura A foi reproduzido o desenho de Newton em que ele sugere que um caminhão muito poderoso poderia colocar um projétil em trajetória circular rasante em torno da Terra, como na figura B. Supondo que o raio da Terra seja R = 6 400 km e que a aceleração da gravidade próximo á superfície da Terra seja g = 10 m/s², calcule o valor aproximado da velocidade v. Figura A Figura B
  • 23. Resposta:  5 v R = 6 400 km = 64 ·10 m P v = 64 ⋅10 2 6 P = Fcp v = 64 ⋅10 6 v2 m⋅ g = m⋅ v = 8 ⋅10 3 R v2 v = 8000m / s 10 = 64 ⋅10 5
  • 24. 8- Uma partícula de massa m= 0,10 kg é presa à extremidade de uma mola ideal cujo comprimento natural é 85 cm e cuja constante elástica é 80 N/m. A outra extremidade da mola é presa a um anel pelo interior do qual passa um prego preso a uma mesa. O sistema é posto a girar de modo que a partícula descreve uma trajetória circular de raio R = 90 cm. Desprezando os atritos, qual é o módulo da velocidade da partícula?
  • 26. 9- Um automóvel percorre um trecho circular de raio R = 30 m de uma estrada plana horizontal, num local em que g = 10 m/s². A velocidade escalar do automóvel é v e o coeficiente de atrito estático entre os pneus e a estrada é µe • Supondo µ e= 0,75, calcule o máximo valor de v de modo que o carro não derrape. • Supondo v = 10 m/s, qual é o valor mínimo de µ e de modo que o carro faça a curva sem derrapar?
  • 27. Resposta: Fat = Fcp a) mv só que n = mg 2 Nµ = R mv 2 mgµ = v = 7,5 ⋅ 30 2 R v2 v = 225 2 gµ = R v2 v = 225 10 ⋅ 0,78 = 30 v = 15m / s
  • 28. Resposta: 2 v b) gµ = R 2 10 10 ⋅ µ = 30 100 µ= 300 1 µ= 3
  • 29. 10- (Fuvest-SP) Um bloco de 0,2 kg está sobre um disco horizontal em repouso, a 0,1 m de distância do centro. O disco começa a girar, aumentando vagarosamente a velocidade angular. Acima de uma velocidade angular crítica de 10 rad/s o bloco começa a deslizar. Qual a intensidade máxima da força de atrito que atua sobre o bloco? a) 1 N b) 2 N C) 3 N d) 4 N e) 5 N
  • 30. Resposta: Fat = Fcp Fat = m ⋅ ω ⋅ R 2 Fat = 0,2 ⋅10 ⋅ 0,1 2 Fat = 2 N Letra B
  • 31. 11- (Mackenzie-SP) Admitamos que você esteja apoiado , em pé, sobre o fundo de um cilindro de raio R = 4 m que gira em torno de seu eixo vertical. Admitindo que g = 10 m/s² e o coeficiente de atrito entre sua roupa e o cilindro seja 0,4, a menor velocidade escalar que o cilindro deve ter para uqe, retirado o fundo do mesmo, você fique “preso” à parede dele é? b) 10 m/s d) 8 m/s f) 9 m/s h) 11 m/s
  • 32. Resposta: N = Fcp Fat = P 2 Nµ = mg v N =m N ⋅ 0,4 = m ⋅10 R 2 10 v N = m⋅ 25m = m 0,4 4 N = 25m v = 100 2 v = 10m / s Letra A
  • 33. 12- Um automóvel de massa 800 kg percorre uma estrada, que tem o perfil desenhado abaixo, com velocidade escalar constante de 20 m/s. O trecho mais alto é aproximadamente circular de raio RA = 200m e o trecho mais baixo tem raio de curvatura RB = 160m. Calcule as intensidades da força normal exercida pela estrada sobre o automóvel nos pontos A e B.
  • 34. Resposta: Ponto A: N P − N = Fcp v2 P mg − N = m R 20 2 800 ⋅10 − N = 800 ⋅ 200 8000 − N = 1600 N = 8000 − 1600 N = 6400 N
  • 35. Resposta: Ponto B: N − P = Fcp N mv 2 N −P= R P 20 2 N − 800 ⋅10 = 800 ⋅ 160 400 N − 8000 = 800 ⋅ 160 N − 8000 = 800 ⋅ 2,5 N = 8000 + 2000 N = 10000 N
  • 36. 13- (Unisa-SP) Um motociclista descreve uma circunferência vertical num “globo da morte” de raio R = 4m, numa região onde g = 10m/s². A massa total de moto e motociclista é 150 kg. Qual a força exercida sobre o globo no ponto mais alto da trajetória, se a velocidade alí é 12 m/s? b) 1 500 N c) 2 400 N d) 3 900 N e) 5 400 N f) 6 900 N
  • 37. Resposta: P + N = Fcp 2 v mg + N = m ⋅ R 2 12 150 ⋅10 + N = 150 ⋅ 4 1500 + N = 150 ⋅ 36 N = 5400 − 1500 N = 3900 N
  • 38. 14- Para a situação da questão anterior, qual é o valor mínimo da velocidade da moto, no ponto mais alto, para que não perca contato com o globo?
  • 39. Resposta: P = Fcp 2 v mg = m R v = g⋅R 2 v 2 = 10 ⋅ 4 v 2 = 40 v = 40 2 v = 2 10m / s 2
  • 40. 15- (FEI-SP) Uma esfera gira com velocidade 1 m/s, descrevendo uma trajetória circular e horizontal, de raio r = 10 cm, estando a esfera suspensa por meio de um fio ideal. Sendo g = 10 m/s², qual o valor do ângulo θ que o fio forma com a vertical?
  • 41. Resposta: Tx = Fcp Tx = Tsenθ v2 Tsenθ = m Ty = T cos θ R mg v2 ⋅ senθ = m cos θ R senθ v 2 g⋅ = cos θ R Ty = P 2 1 T cos θ = mg 10 ⋅ tgθ = 0,1 mg tgθ = 1 T= cos θ θ = 45°
  • 42. 16- (Fuvest-SP) Um carro percorre uma pista curva superelevada ( θ = 0,2 ) de 200 m de raio. Desprezando o atrito, qual a velocidade máxima sem risco de derrapagem? a) 40 km/h c) 60 km/h e) 80 km/h b) 45 km/h d) 72 km/h
  • 43. N x = Fcp Resposta: v2 Nsenθ = m R mg v2 ⋅ senθ = m N v = N cos θ cos θ R senθ v 2 N x = Nsenθ g = cos θ R v2 Ny = P g ⋅ tgθ = R N cos θ = mg v2 10 ⋅ 0,2 = mg 200 N= cos θ v 2 = 2 ⋅ 200 v 2 = 400 v = 400 Letra D v = 20m / s = 72 Km / h
  • 44. 17- (Mackenzie-SP) Um avião descreve uma trajetória circular horizontal com velocidade escalar constante v . As asas formam um ângulo θ com a horizontal. Devem ser considerados apenas o peso do avião e a força de sustentação, que é perpendicular à asa. Sendo g a aceleração da gravidade, o raio da trajetória descrita é: 2 a) v · sen θ b) v 2 b · tg θ c) v2 · tg θ g d) v2 · cotg θ g g e) · tg θ v2
  • 45. Resposta: Ex = Fcp2 v E senθ = m R mg v2 senθ = m cos θ R 2 v g tgθ = R Ey = P v 2 R= E cos θ = mg g tgθ 2 mg v E= R = cot gθ cos θ g Letra D
  • 46. 18- (Unicamp-SP) Um míssil é lançado horizontalmente em órbita circular rasante à superfície da Terra. Adote o raio da Terra como sendo R = 6 400 km π ≅ 3. e a) Qual o valor da velocidade de lançamento? b) Qual o período do movimento do projétil?
  • 47. Resposta: 2 v a) mg = m P = Fcp R 2 v R = 6400km = 64 ⋅105 m 10 = R v = 64 ⋅10 2 6 v = 64 ⋅10 6 v = 8000m / s
  • 48. Resposta: v = ωR b) 8 ⋅103 = ω ⋅ 64 ⋅105 8 ⋅103 ω= = 0,125 64 ⋅10 5 ω = 1,25 ⋅10 −3 2 ⋅ω 2⋅3 ω= =T = −3 = T = 4,8 ⋅10 s 3 T 1,25 ⋅10
  • 49. 19- Um pêndulo simples de comprimento L = 3,0 m e massa m = 2,0 kg passa pela posição indicada na figura, com velocidade v = 4,0 m/s. Sendo g = 10 m/s², calcule, para a posição indicada: a) o módulo da aceleração tangencial; b) o módulo da aceleração centrípeta; c) o módulo de tração no fio; d) o módulo da força resultante sobre a partícula presa ao fio
  • 50. Resposta: a) Px = P sen 60 Px = mat P sen60 = mat m g sen 60° = mat 3 10 ⋅ = at 2 at = 5 3m / s
  • 51. Resposta: 2 v b) acp = R 2 4 acp = 3 16 acp = 3
  • 52. Resposta: c) T − Py = Fcp T − m g cos 60 = macp 1 T − 2 ⋅10 ⋅ = 2 ⋅ 5,34 2 T − 10 = 10,68 T = 20,68 N
  • 53. Resposta: Fcp = m ⋅ acp 2 2 2 d) FR = Fcp + Px Fcp = 2 ⋅ 5,34 Fcp = 10,68 2 FR = 10,68 + 10 3 2 ( ) 2 2 FR = 114,06 + 300 Px = P sen 60 2 Px = m ⋅ g sen 60 FR = 414,06 FR = 414,06 3 Px = 2 ⋅10 ⋅ FR = 20,35 N 2 Px = 10 3
  • 54. 20- (Fund. Carlos Chagas-SP) A figura ao lado representa um pêndulo simples que oscila entre as posições A e B no campo gravitacional terrestre. Quando o pêndulo se encontra na posição C, a força resultante é melhor indicada por: c) 1 d) 2 e) 3 f) 4 g) 5
  • 55. Resposta: Letra D
  • 56. 21- A figura a seguir representa a força resultante sobre uma partícula de massa m = 2,0 kg e a velocidade da partícula no mesmo instante. Sabendo que a trajetória é circular, F = 120 N e v = 4,0 m/s, calcule o raio da trajetória.
  • 57. Resposta: F cos θ = Fcp 32 3 R= v2 180 F cos 30° = m R 8 3 R= 3 42 45 120 ⋅ = 2⋅ 2 R R = 0,31m 32 60 3 = R 32 R= 60 3
  • 58. 22- (PUC-SP) A figura mostra dois corpos A e B, de massas iguais, ligados por fios ideais, girando num plano horizontal, sem atrito, com velocidade angularω constante, em torno de um ponto fixo O. A razão2 T1 T T , entre as trações 1 e T2 , que atuam respectivamente nos fios (2) e (1), tem valor: a) 2 b) 3 2 f) 1 h) 2 3 k) 1 2
  • 59. Resposta: Corpo A T1 = Fcp T1 = mω 2 ⋅ R T1 = mω 2 ⋅ 2 L Corpo B T2 3mω 2 L 3 = = T2 − T1 = mω 2 ⋅ R T1 2mω L 2 2 T2 − T1 = mω 2 ⋅ L T2 = mω 2 L = mω L 2 2 Letra B T2 = mω 2 L + 2mω 2 L T2 = 3mω 2 L
  • 60. 23- Consideremos uma mola ideal de constante elástica 16 N/m, cujo comprimento quando não deformada é 1,0 m. Uma das extremidades da mola está presa a um anel liso por dentro do qual passa um prego fixado em uma mesa lisa. A outra extremidade está presa a uma bolinha de massa 3,0 kg, também apoiada na mesa. Dando-se um impulso à bolinha, ela passa a descrever um movimento circular com velocidade escalar constante e igual a 2,0 m/s. Calcule o comprimento da mola nessas condições.
  • 61. 16 x 2 + 16 x − 12 = 0 Resposta: 4x + 4x − 3 = 0 Comprimento Fel = Fcp 2 1 + 0,25 = 1,25m v 2 ∆ = b − 4ac 2 Kx = m R ∆ = 4 2 − 4 ⋅ 4 ⋅ ( − 3) Sendo que : ∆ = 16 + 48 R =1 + x ∆ + 64 v2 Kx = m 1= x −b± ∆ −4±8 v 2 ⇒ = 16 x = 3 ⋅ 3a 16 1+ x x1 = 0,25 16 x(1 + x ) = 12 x2 = −0,75 16 x +16 x 2 = 12
  • 62. 24- A figura abaixo representa um brinquedo encontrado em parques de diversões. Quando o sistema gira com veloccidade angular constante, o fio forma angulo θ = 30° com a vertical. Sendo g = 10 m/s², calcule a velocidade angular do sistema.
  • 63. Tx = Fcp Resposta: Tsenθ = m ⋅ ω ⋅ R2 Ty = T cos θ mg senθ = mω 2 ⋅ R cos θ Tx = Tsenθ g ⋅ tgθ = ω ⋅ R 2 10 ⋅ tg 30 = ω 2 ⋅ 4 Ty = P 3 T cos θ = mg 10 ⋅ = ω2 ⋅4 2 mg T= 5 3 cos θ ω = 2 4 ω = 1,46rad / s
  • 64. 25- Um automóvel percorre um trecho sobrelevado de estrada numa trajetória circular de raio R. No exercício 6, vimos que velocidade um automóvel deve ter para conseguir fazer essa curva sem depender de atrito, sendo R =120 m, g = 10 m/s², sen θ = 0,60 e cos θ = 0,80. Suponhamos agora que o coeficiente de atrito estático entre os pneus e a estrada seja µ e = 0,80. calcule as velocidades máxima e mínima que o automóvel deve ter para fazer essa curva sem derrapar.
  • 65. Eixo y Resposta: N y = Faty + P P = N y − Faty mg = N cos θ − Nµ senθ mg = N ( cos θ − µ senθ ) N y = N cos θ mg N= N x = Nsenθ ( cos θ − µ senθ ) Fatx = Fat cos θ Faty = Fat senθ
  • 66. 2 Resposta: v 10 = ⋅1,24 Eixo x R 0,32 N x + Fatx = Fcp v2 = 38,75 120 mv 2 Nsenθ + N µ cos θ = v 2 = 4650 R N ( senθ + µ cos θ ) = mv 2 v = 68m / s R mg mv 2 − ( senθ + µ cos θ ) = ( cos θ − µ senθ ) R
  • 67. 26- a) Um carrinho está fazendo um loop em uma montanha-russa. A velocidade mínima para que uma pessoa não caia depende da massa da pessoa? b) Quando se planeja o ângulo de sobrelevação em uma curva de uma estrada, esse ângulo depende da massa do veículo? c) Na figura a seguir, quais forças não podem representar a resultante em um movimento circular? d) Um automóvel faz uma curva circular com velocidade escalar constante, numa estrada plana horizontal. A força de atrito é estática ou cinética?
  • 68. Resposta: a) Não Fcp = P 2 v m = mg R
  • 69. Resposta: b) Não 2 mg v senθ = m cos θ R
  • 70. Resposta: c) F1 , F2 e F 4