Aula 11 probabilidades.espaços amostrais e eventos

568 visualizações

Publicada em

Material público destinado a estudantes e pesquisadores.

Publicada em: Educação
0 comentários
2 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
568
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
6
Comentários
0
Gostaram
2
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aula 11 probabilidades.espaços amostrais e eventos

  1. 1. Estatística Aplicada a Administração ADMINISTRAÇÃO – EAADM PROF. ENIO JOSÉ BOLOGNINI 2º SEMESTRE / 2014 AULA 11 – PROBABI LIDADES: ESPAÇOS AMOSTRAIS E EVENTOS
  2. 2. INTRODUÇÃO A PROBABILIDADES É o estudo dos fenômenos de observação, sendo possível a explicação de um dado problema, e distinguir um método determinístico ou probabilístico. 퐴1: 푅푒푡푖푟푎푟 푢푚푎 푐푎푟푡푎 푑푒 푢푚 푏푎푟푎푙ℎ표 푐표푚 52 푐푎푟푡푎푠 푒 표푏푠푒푟푣푎푟 푠푒푢 naipe; 퐴2: 퐽표푔푎푟 푢푚푎 푚표푒푑푎 10 푣푒푧푒푠 푒 표푏푒푟푣푎푟 표 푛ú푚푒푟표 푑푒 푐표푟표푎푠 표푏푡푖푑푎푠; 퐴3: 푅푒푡푖푟푎푟 푐표푚 표푢 푠푒푚 푟푒푝표푠푖çã표, 푏표푙푎푠 푑푒 푢푚푎 푢푟푛푎 푞푢푒 푐표푛푡é푚 5 푏표푙푎푠 푏푟푎푛푐푎푠 푒 6 푝푟푒푡푎푠; 퐴4: 퐽표푔푎푟 푢푚 푑푎푑표 푒 표푏푠푒푟푣푎푟 표 푛ú푚푒푟표 푚표푠푡푟푎푑표 푛푎 푓푎푐푒 푑푒 푐푖푚푎; 퐴5: Contar o número de peças defeituosas da produção diária da máquina A. Cada observação entre A1,A2,A3,A4 e A5, pode ser repetido indefinidamente, descreve todos resultados possíveis , havendo uma regularidade, o que surgirá uma frequência relativa dos resultados esperados. PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 2
  3. 3. ESPAÇO AMOSTRAL Existem dois tipos:  Determinístico: Sempre tem os mesmos resultados, qualquer que seja o número de ocorrências. Ex. 1: Um sólido será a uma certa temperatura a passagem do estado sólido para o líquido.  Aleatórios: São resultados previsíveis, mesmo havendo um grande número de repetições. Ex. 2: Considerando um pomar de laranjeiras, as produções de cada planta serão diferentes e não previsíveis, mesmo que as condições de temperatura, pressão, umidade, solo etc. sejam as mesmas para todas as árvores.
  4. 4. ESPAÇO AMOSTRAL Em números aleatórios o espaço amostral do conjunto S, são todos resultados possíveis do experimento. Exemplo 3: a) A: Jogar um dado e observar o nº da face de cima. Assim, S = {1,2,3,4,5,6} a) Seja A: Jogar duas moedas e observar o resultado; Assim, S = {(cara, cara), (cara, coroa), (coroa, cara), (coroa, coroa)} Ou simplificar S = {(c, c), (c, k), (k, c), (k, k)} c = cara e k = coroa; PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 4
  5. 5. ESPAÇO AMOSTRAL Em um experimento aleatório o conjunto de resultados de experimentos, depende dos elementos que serão chamados de pontos amostrais, a representação do espaço amostral é dada por Ω, veja o exemplo logo abaixo: Ω = {c, r}; Ω = {1,2,3,4,5}; Ω = {(c, r), {(c, c), {(r, c), {(r, r)}; Ω = {퐴0 … 퐾0, 퐴푝 … 퐾푝, 퐴퐸 … 퐾퐸 , 퐴푐 … 퐾푐 }; Ω = {t ∈ ℝ | 푡 ≥ 0}; Podendo ser único o ponto amostral ou em reunião.
  6. 6. ESPAÇO AMOSTRAL Exemplo 4: Lançando dois dados enumeramos os seguintes eventos: A: Saída das faces iguais; B: Saída de faces cuja soma seja igual a 10; C: Saída de faces cuja soma seja menor que 2; D: Saída de faces cuja soma seja menor que 15; E: Saída de faces onde uma face é o dobro da outra. Determine o espaço amostral por uma tabela de dupla entrada (Produto Cartesiano):
  7. 7. ESPAÇO AMOSTRAL D1D2 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (1,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (1,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (1,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (1,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (1,6) Os eventos pedidos são: A = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)} B = {(4,6), (5,5), (6,4)} C = ∅ (Evento impossível) D = Ω (evento certo) E = {(1,2), (2,1), (2,4), (3,6), (4,2), (6,3)}
  8. 8. DEFINIÇÃO DE PROBABILIDADE Estudo estatístico que obtêm-se a partir de uma amostra, as conclusões sobre uma população. Este fenômeno de probabilidade são chances dos eventos ocorrerem. O conceito básico é baseado em experimentos, evento, evento simples e espaço amostral de um experimento.  Experimento: É qualquer processo que permite ao pesquisados fazer observações. Exemplo: A ocorrência de um raio, uma viagem aérea, o lançamento de uma moeda entre outros.  Evento: É o resultado de um conjunto de ocorrências no experimento. Exemplo: O raio atingir (ou não) um pessoa; O aviação chegar (ou não) no horário correto; entre outros. PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 8
  9. 9. DEFINIÇÃO DE PROBABILIDADE  Evento Simples: É um resultado, ou um evento, que não comporta mais decomposições. Exemplo: Ao jogar o dado, o evento foi o número cinco;  Evento não simples: O evento não simples pode ser decomposto em dois (ou mais) eventos simples. Exemplo: Ao jogar dois dados o evento foi o número oito; não é um evento simples, pois é composto por mais de um evento simples, tal como “dois e seis” ou “três e cinco”; PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 9
  10. 10. EVENTOS Exemplo 1: a) Seja o experimento A: Jogar três moedas e observar os resultados: S = {(c, c, c), (c, c, k), (k, c, c), (c, k, c), (k, k, k), (k, k, c), (k, c, k), (c, k, k)} Seja A o evento: Ocorrer pelo menos 2 caras. Então, A = {(c, c, c), (k, c, c), (c, k, c), (c, c, k)} b) Seja o experimento A: Lançar um dado e observar o número de cima. Então S = {1, 2, 3, 4, 5, 6} Seja B o evento: Ocorrer múltiplo de 2. Então, B = {2, 4, 6}. PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 10
  11. 11. EVENTOS EM ÁRVORES c k c k c k c k c k c k c k Exemplo 2: Lançam-se 3 moedas: A: Saída de cara na 1º moeda; B: Saída de coroa na 2º e 3º moedas. PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 11
  12. 12. TEORIA DAS PROBABILIDADES Intuitivamente pode-se definir probabilidade como: número de casos favoráveis a ( A ) p(A) = -------------------------------------- ------- número total de casos possíveis ( S ) Ao conjunto desses casos possíveis dá-se o nome de espaço amostral (S). E ao conjunto de casos favoráveis a A dá-se o nome de evento A. PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 12
  13. 13. TEORIA DAS PROBABILIDADES Exemplo 1: A pesquisa de um jornal de São Paulo revelou que 200 brasileiros foram mortos por raios no período de um ano (ano 2000). Qual a probabilidade de uma pessoa ser atingida por um raio, sabendo-se que a população brasileira está em torno de 170 milhões? PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 13 푃 퐴 = 푛(퐴) 푛(푆) = 200 170.000.000 = 0,0000012
  14. 14. TEORIA DAS PROBABILIDADES Exemplo 2: Uma pesquisa do PC world foi realizada com 4.000 proprietários de computadores pessoais, e verificou que 992 dos computadores apresentaram falhas num intervalo de dois anos após a compra. Tomando como base estes resultados, qual a probabilidade de você comprar um computador pessoal e ele apresentar problema nos próximos dois anos? PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 14 푃 퐴 = 푛(퐴) 푛(푆) = 992 4.000 = 0,248
  15. 15. TEORIA DAS PROBABILIDADES Exemplo 3: O RH de uma empresa é composto de 15 homens e 35 mulheres. É feito o sorteio aleatório de um funcionário, qual a probabilidade de não ser mulher? Evento favorável: A {não ser mulher} Número de elementos do evento favorável: n(A) = 15; Espaço amostral: S = {15 homens mais 35 mulheres}; Número de elementos do espaço amostral: n(S) = 50. PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 15 푃 퐴 = 푛(퐴) 푛(푆) = 15 50 = 0,3
  16. 16. EXERCÍCIOS DE FIXAÇÃO Ex. 1) Probabilidade de se obter um número par como resultado de um lançamento de um dado: S = {1,2,3,4,5,6} e A = {2,4,6} Ex. 2) Probabilidade de se obter o número 4 como resultado de um lançamento de um dado: S = {1,2,3,4,5,6} e A = {4} Ex. 3) Probabilidade de se obter um número diferente de 4 no lançamento de um dado: S = {1,2,3,4,5,6} e A = {1,2,3,5,6} PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 16
  17. 17. REGRAS PARA CÁLCULO DE PROBABILIDADES (EVENTOS) AULA 12 PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 17
  18. 18. EVENTOS Classificar eventos é discutir resultados representados por conjuntos, subconjuntos e conjuntos vazios. Sendo assim, eventos certos e eventos impossíveis. a) 퐴 ∪ 퐵 → é 표 푒푣푒푛푡표 푞푢푒 표푐표푟푟푒 푠푒 퐴 표푐표푟푟푒 표푢 B 표푐표푟푟푒 표푢 푎푚푏 표푠 표푐표푟푟푒푚; b) 퐴 ∩ 퐵 → é 표 푒푣푒푛푡표 푞푢푒 표푐표푟푟푒 푠푒 퐴 e B 표푐표푟푟푒푚; c) 퐴 → é 표 푒푣푒푛푡표 푞푢푒 표푐표푟푟푒 푠푒 퐴 não ocorre; PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 18
  19. 19. EVENTOS MUTUAMENTE EXCLUSIVOS São a maneira de demonstrar entre A e B que são mutuamente exclusivos, caso se os mesmos não ocorrer simultaneamente, então 퐴 ∩ 퐵 = ∅, exemplo: A: Jogar um dado e observar o resultado. S = {1, 2, 3, 4, 5, 6} Sejam os eventos: A = ocorrer nº par, e B = ocorrer nº impar. Portanto, A ={2, 4, 6} e B = {1, 3, 5}, 퐴 ∩ 퐵 = ∅. PROF. ENIO JOSÉ BOLOGNINI S 퐴 ∩ 퐵 = ∅ A B 2 4 6 1 5 7 CENTRO UNIV. NORTE PAULISTA - UNORP 19
  20. 20. EVENTOS MUTUAMENTE EXCLUSIVOS Estas definições são probabilísticas, pois em um experimento aleatório do espaço amostral de A e S, temos o evento A – P (A) – é a definição de S que associou-se em um número real de cada evento, portanto satisfaz as seguintes axiomas: A. 0 ≤ 푃 퐴 ≤ 1 B. 푃 푆 = 1 C. Se A e B forem eventos mutuamente exclusivos, (퐴 ∩ 퐵 = ∅), então P(퐴 ∪ 퐵) = 푃(퐴) + 푃(퐵). PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 20
  21. 21. EVENTOS MUTUAMENTE EXCLUSIVOS Estas definições são probabilísticas, pois em um experimento aleatório do espaço amostral de A e S, temos o evento A – P (A) – é a definição de S que associou-se em um número real de cada evento, portanto satisfaz as seguintes axiomas: A. 0 ≤ 푃 퐴 ≤ 1 B. 푃 푆 = 1 C. Se A e B forem eventos mutuamente exclusivos, (퐴 ∩ 퐵 = ∅), então P(퐴 ∪ 퐵) = 푃(퐴) + 푃(퐵). PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 21
  22. 22. Referências Bibliográficas BÁSICA: CRESPO, A. A. Estatística fácil. São Paulo: Saraiva, 19--, 20--. SILVA, E. M. et al. Estatística: para os cursos de economia, administração e ciências contábeis. São Paulo: Atlas, 19--. TIBONI, C. G. R. Estatística Básica: para os cursos de administração, ciências contábeis, tecnológicos e de gestão. São Paulo: Atlas, 20--. COMPLEMENTAR: HOFFMANN, R. Estatística para economistas. São Paulo: Pioneira, 19--. MARTINS, G. A; DONAIRE, D. Princípios de estatística. São Paulo: Atlas, 19--. MORETTIN, P. A; BUSSAB, W. O. Estatística básica. São Paulo: Saraiva, 19--, 20--. FONSECA, J. S; MARTINS, G. A. Curso de estatística. São Paulo: Atlas, 19--. SPIEGEL, M. R. Estatística. São Paulo: Makron Books do Brasil, 19--. PROF. ENIO JOSÉ BOLOGNINI CENTRO UNIV. NORTE PAULISTA - UNORP 22

×