Aula sistema de amortização

5.549 visualizações

Publicada em

0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
5.549
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
137
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aula sistema de amortização

  1. 1. • Sistemas de amortização 1
  2. 2. Vamos relembrar a aula passada. Construa essa tabela abaixo: 2
  3. 3. 3
  4. 4. Clique na célula D2 e logo após vá em no Menu Inserir / Função. Na caixa de diálogo Inserir Função escolha a categoria Financeira, e logo depois, clique na função PGTO, conforme na figura abaixo: 4
  5. 5. Na janela Argumentos da Função, defina a célula C2 para a taxa, B2 para Nper, e A2 para Valor Presente, conforme a figura abaixo: 5
  6. 6. 6
  7. 7. O resultado deve ser idêntico à figura abaixo: 7
  8. 8. Note que o Excel traz o resultado em negativo, para resolver esse problema, tecle F2 e coloque um sinal de menos (-) na frente da fórmula PGTO, que deverá ficar dessa forma: -PGTO(C2;B2;A2), conforme a figura abaixo: 8
  9. 9. Resultado do cálculo: Valor Financiado Prazo Taxa de Juros Valor Mensal Total R$ 50.000,00 24 2,00% R$ 2.643,55 R$ 63.445,32 R$ 500,00 16 1,65% R$ 35,81 R$ 572,99 R$ R$ R$ 24.700,00 22.300,00 16.800,00 12 18 6 1,70% 1,50% 2,50% R$ 2.292,80 R$ 1.422,87 R$ 3.050,04 R$ 27.513,64 R$ 25.611,64 R$ 18.300,24 R$ 51.000,00 9 4,00% R$ 6.859,14 R$ 61.732,28 R$ 1.000,00 10 1,50% R$ 108,43 R$ 1.084,34 9
  10. 10. 10
  11. 11. Valor Financiado Prazo Taxa de Juros Valor Mensal R$ 35.000,00 48 2,00% R$ 18.000,00 24 1,65% R$ 270.000,00 36 1,70% R$ 5.800,00 18 1,50% R$ 16.000,00 12 2,50% R$ 12.000,00 9 4,00% R$ 9.000,00 6 Total 1,50% 11
  12. 12. Resultado do cálculo: Valor Financiado Prazo Taxa de Juros Valor Mensal Total R$ 35.000,00 48 2,00% R$ 1.141,06 R$ 54.771,08 R$ 18.000,00 24 1,65% R$ 914,37 R$ 21.944,80 R$ 270.000,00 36 1,70% R$ 10.089,28 R$ 363.214,12 R$ 5.800,00 18 1,50% R$ 370,07 R$ 6.661,32 R$ 16.000,00 12 2,50% R$ 1.559,79 R$ 18.717,53 R$ 12.000,00 9 4,00% R$ 1.613,92 R$ 14.525,24 R$ 9.000,00 6 1,50% R$ 1.579,73 R$ 9.478,36 12
  13. 13. AMORTIZAÇÃO O conceito de amortização é o processo de extinção de uma dívida através de pagamentos periódicos, que são realizados em função de um planejamento, 13
  14. 14. Deste modo cada prestação corresponde a soma do reembolso do capital ou dos juros do saldo devedor (juros sempre são calculados sobre o saldo devedor), podendo ainda ser o reembolso de ambos. 14
  15. 15. Os principais sistemas de amortização são: •Sistema de pagamento único. • Sistema de pagamento variável. • Sistema americano •Sistema de amortização constante (SAC): •Sistema price ou francês: •Sistema de amortização misto 15
  16. 16. Sistema de pagamento único: ocorre um único pagamento (capital + juros) no final do período estipulado; Sistema de pagamento variável: ocorre vários pagamentos diferenciados durante o período (às vezes somente juros, outras juros+capital); 16
  17. 17. • Sistema americano: ocorre um único pagamento ao final do período, porém os juros são calculados em várias fases durante o período; • Sistema de amortização constante (SAC): geralmente o mais utilizado, os juros e o capital são calculados uma única vez e divididos para o pagamento em várias parcelas durante o período; 17
  18. 18. • Sistema price ou francês: geralmente usados em financiamentos de bens de consumo, todas as parcelas são iguais e com os juros já embutidos; • Sistema de amortização misto: calcula-se o financiamento pelos métodos SAC e price e faz-se uma média aritmética das prestações desses dois sistemas, chegando ao valor da prestação do sistema misto. 18
  19. 19. • Um empréstimo no valor de R$ 2 000 000 é concedido à taxa de juros compostos de 10% ao ano, a ser reembolsado em 5 anos de acordo com o SAC. Determine o valor total do financiamento após a quitação através da construção da planilha de dados dessa operação financeira 19
  20. 20. 20
  21. 21. Exercício • Um empréstimo de R$ 30 000,00 deve ser devolvido de acordo com o sistema de amortizações constantes em 60 prestações mensais a taxa de juros de 1% ao mês. Construa a planilha referente as 5 primeiras prestações. 21
  22. 22. 22
  23. 23. 2) Um empréstimo de R$ 30 000,00 deve ser devolvido de acordo com o sistema de amortizações constantes em 6 prestações mensais a taxa de juros de 1% ao mês. Construa a planilha que descreve o valor das parcelas. 23
  24. 24. 24
  25. 25. 3) Um empréstimo de R$ 10.000,00 deve ser devolvido de acordo com o sistema de amortizações constantes em 5 prestações mensais a taxa de juros de 2% ao mês. Construa a planilha que descreve o valor das parcelas. 25
  26. 26. 26
  27. 27. Tabela Price. Exemplo Temos um financiamento no valor de R$ 20.000,00 a ser quitado em 8 meses, com uma taxa de juros de 4% ao mês. Devemos calcular o valor da prestação aplicando a seguinte fórmula: 27
  28. 28. 28
  29. 29. 29
  30. 30. Exercício Vamos construir a tabela de financiamentos de um parcelamento envolvendo a quantia de R$ 30.000,00 divididos em 12 parcelas a juros mensais de 1,5%. Utilizaremos a seguinte fórmula matemática para o cálculo do valor fixo da prestação: 30
  31. 31. Nessa expressão matemática temos que: PV = presente valor P = prestação n = número de parcelas i = taxa de juros na forma unitária, isto é, i / 100 (1,5/100 = 0,015) 31
  32. 32. Cálculo dos Juros: saldo devedor do mês anterior multiplicado por 1,5%. Exemplo: 1º mês: 30.000,00 * 1,5% = 450,00 2º mês: 27.699,60 * 1,5% = 415,49 Cálculo da Amortização: subtração entre valor da prestação e o juros. Exemplo: 1º mês: 2.750,40 – 450,00 = 2.300,40 2º mês: 2.750,40 – 415,49 = 2.334,91 Cálculo do Saldo devedor: Saldo devedor do mês anterior subtraído da amortização do período em questão. Exemplo: 1º mês: 30.000,00 – 2.300,40 = 27.699,60 2º mês: 27.699,60 – 2.334,91 = 25.364,69 32
  33. 33. 33

×