SlideShare uma empresa Scribd logo
Matemática &
Raciocínio Lógico
para concursos
Prof. Me. Jamur Silveira
www.professorjamur.com.br
facebook: Professor Jamur
EQUAÇÕES
EQUAÇÕES DE
1º GRAU
(COM UMA VARIÁVEL)
Equação é toda sentença matemática aberta que
exprime uma relação de igualdade. A palavra equação
tem o prefixo equa, que em latim quer dizer "igual".
Exemplos:
2x + 8 = 0
5x - 4 = 6x + 8
3a - b - c = 0
Não são equações:
4 + 8 = 7 + 5 (Não é uma sentença aberta)
x - 5 < 3 (Não é igualdade)
A equação geral do primeiro grau:
ax+b = 0
onde a e b são números conhecidos
e a diferente de 0.
“Equação do 1º grau na incógnita x é toda
equação que pode ser escrita na forma ax=b,
sendo a e b números racionais,
com a diferente de zero”.
EQUAÇÕES DE
1º GRAU
(COM DUAS VARIÁVEIS)
Considere a equação: 2x - 6 = 5 - 3y
2x + 3y = 5 + 6
2x + 3y = 11 ==> Equação do 1º grau na
forma ax + by = c
Denominando equação de 1º grau com duas
variáveis, x e y, a toda equação que pode ser
reproduzida à forma ax + by = c,
sendo a e b números diferentes de zero,
simultaneamente.
Solução de uma equação de
1º grau com duas variáveis
Quais o valores de x e y que tornam a sentença verdadeira?
x - 2y = 4
Observe os pares abaixo:
x = 6, y = 1
x - 2y = 4
6 - 2 . 1 = 4
6 - 2 = 4
4 = 4 (V)
x = 8, y = 2
x - 2y = 4
8 - 2 . 2 = 4
8 - 4 = 4
4 = 4 (V)
x = -2, y = -3
x - 2y = 4
-2 - 2 . (-3) = 4
-2 + 6 = 4
4 = 4 (V)
Verificamos que todos esses pares
são soluções da equação:
x - 2y = 4.
Assim, os pares (6, 1); (8, 2); (-2, -3) são
algumas das soluções dessa equação.
Uma equações do 1º grau com duas
variáveis tem infinitas soluções.
Resumindo:
Um par ordenado (r, s) é solução de uma
equação ax + by = c (a e b não-nulos
simultaneamente), se para ”x = r e y = s” a
sentença é verdadeira.
Sistemas de Equações
Considere o seguinte problema:
- Pipoca, em sua última partida, acertou x arremessos de 2
pontos e y arremessos de 3 pontos. Ele acertou 25 arremessos e
marcou 55 pontos. Quantos arremessos de 3 pontos ele acertou?
Podemos traduzir essa situação através de duas equações, a
saber:
x + y = 25 (total de arremessos certo)
2x + 3y = 55 (total de pontos obtidos)
Equações de
2º grau
Definições
Denomina-se equação do 2º grau na incógnita x, toda
equação da forma:
ax2 + bx + c = 0
Nas equações escritas na forma ax² + bx + c = 0 (forma
normal ou forma reduzida de uma equação do 2º grau
na incógnita x)chamamos a, b e c de coeficientes.
a é sempre o coeficiente de x²;
b é sempre o coeficiente de x,
c é o coeficiente ou termo independente.
x2 - 5x + 6 = 0 é um equação do 2º grau com
a = 1, b = -5 e c = 6.
6x2 - x - 1 = 0 é um equação do 2º grau com
a = 6, b = -1 e c = -1.
7x2 - x = 0 é um equação do 2º grau com
a = 7, b = -1 e c = 0.
x2 - 36 = 0 é um equação do 2º grau com
a = 1, b = 0 e c = -36.
Raízes de uma equação do 2º grau
Resolver uma equação do 2º grau significa
determinar suas raízes.
Raiz é o número real que, ao substituir a
incógnita de uma equação, transforma-a numa
sentença verdadeira.
O conjunto formado pelas raízes de uma equação
denomina-se conjunto verdade ou conjunto solução.
EXEMPLO:
Discriminante
Denominamos discriminante o radical b2 - 4ac que é
representado pela letra grega (delta).
Podemos agora escrever deste modo a fórmula de Bhaskara:
De acordo com o discriminante, temos três casos a
considerar:
1º Caso:
O discriminante é positivo.
O valor de é real e a equação tem duas raízes reais diferentes,
assim representadas:
2º Caso:
O discriminante é nulo
O valor de é nulo e a equação tem duas raízes reais e iguais,
assim representadas:
3º Caso:
O discriminante é negativo
O valor de não existe em IR, não existindo, portanto,
raízes reais. As raízes da equação são número complexos.
Resumindo
Dada a equação ax² + bx + c = 0, temos:
Para , a equação tem duas raízes reais diferentes.
Para , a equação tem duas raízes reais iguais.
Para , a equação não tem raízes reais.
RELAÇÕES ENTRE OS COEFICIENTES E AS RAÍZES
Considere a equação ax2 + bx + c = 0, com a 0 e sejam x‘ e x'' as
raízes reais dessa equação.
Logo:
Observe as seguintes relações:
Soma das raízes (S)
Produto das raízes (P)
1. Determine a soma e o produto das raízes da equação
10x2 + x - 2 = 0.
Solução:
Nesta equação, temos: a=10, b=1 e c=-2.
A soma das raízes é igual a
O produto das raízes é igual a
Assim: Assim:
COMPOSIÇÃO DE UMA EQUAÇÃO DO
2º GRAU, CONHECIDAS AS RAÍZES
Considere a equação do 2º grau ax2+bx+c=0.
Dividindo todos os termos por a , obtemos:
Como , podemos escrever a equação desta maneira:
x2 - Sx + P= 0
Exemplo:
Componha a equação do 2º grau cujas raízes são -2 e 7.
Solução:
A soma das raízes corresponde a:
S= x1 + x2 = -2 + 7 = 5
O produto das raízes corresponde a:
P= x1 . x2 = ( -2) . 7 = -14
A equação do 2º grau é dada por:
x2 - Sx + P = 0, onde S=5 e P= -14.
Logo, x2 - 5x - 14 = 0 é a equação procurada.
VAMOS PRATICAR:
QUESTÕES DE
CONCURSOS
Bom Curso e
conte sempre conosco!!!
Sucesso!!!
www.professorjamur.com.br
Facebook: Professor Jamur

Mais conteúdo relacionado

Semelhante a Slides Aula - Equações.pdf

Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º graualdaalves
 
Intro teoria dos numerros cap7
Intro teoria dos numerros cap7Intro teoria dos numerros cap7
Intro teoria dos numerros cap7
Paulo Martins
 
Apresentação de equação de 2º grau
Apresentação de equação de 2º  grauApresentação de equação de 2º  grau
Apresentação de equação de 2º grau
antonio carlos doimo
 
Apresentação de equação de 2º grau
Apresentação de equação de 2º  grauApresentação de equação de 2º  grau
Apresentação de equação de 2º grau
antonio carlos doimo
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
janepaulla
 
matematica
matematica matematica
Ap matematica
Ap matematicaAp matematica
Ap matematica
marcioluiz2008
 
Equacoes do 2-_grau
Equacoes do 2-_grauEquacoes do 2-_grau
Equacoes do 2-_grau
Newton Sérgio Lima
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
Adriana Bonato
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1
Alexandre Bonifácio
 
Matemática básica radiciação equações
Matemática básica radiciação equaçõesMatemática básica radiciação equações
Matemática básica radiciação equações
Alessandro Lisboa
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
Robson Nascimento
 
Históra da equação 2º grau
Históra da equação 2º grauHistóra da equação 2º grau
Históra da equação 2º grau
profzero84
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
Antonio Carneiro
 
Equação2grau
Equação2grauEquação2grau
Equação2grau
carmemretegui
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte i
trigono_metria
 
Material de apoio 9ºano
Material de apoio 9ºanoMaterial de apoio 9ºano
Material de apoio 9ºano
Andréia Rodrigues
 
Resumo de aula resolução de equações do 2º grau
Resumo de aula   resolução de equações do 2º grauResumo de aula   resolução de equações do 2º grau
Resumo de aula resolução de equações do 2º grau
SENAI/FATEC - MT
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grau
André Luís Nogueira
 
Aula winplot
Aula winplotAula winplot
Aula winplot
Sandra Azevedo
 

Semelhante a Slides Aula - Equações.pdf (20)

Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Intro teoria dos numerros cap7
Intro teoria dos numerros cap7Intro teoria dos numerros cap7
Intro teoria dos numerros cap7
 
Apresentação de equação de 2º grau
Apresentação de equação de 2º  grauApresentação de equação de 2º  grau
Apresentação de equação de 2º grau
 
Apresentação de equação de 2º grau
Apresentação de equação de 2º  grauApresentação de equação de 2º  grau
Apresentação de equação de 2º grau
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
 
matematica
matematica matematica
matematica
 
Ap matematica
Ap matematicaAp matematica
Ap matematica
 
Equacoes do 2-_grau
Equacoes do 2-_grauEquacoes do 2-_grau
Equacoes do 2-_grau
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1
 
Matemática básica radiciação equações
Matemática básica radiciação equaçõesMatemática básica radiciação equações
Matemática básica radiciação equações
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Históra da equação 2º grau
Históra da equação 2º grauHistóra da equação 2º grau
Históra da equação 2º grau
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
 
Equação2grau
Equação2grauEquação2grau
Equação2grau
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte i
 
Material de apoio 9ºano
Material de apoio 9ºanoMaterial de apoio 9ºano
Material de apoio 9ºano
 
Resumo de aula resolução de equações do 2º grau
Resumo de aula   resolução de equações do 2º grauResumo de aula   resolução de equações do 2º grau
Resumo de aula resolução de equações do 2º grau
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grau
 
Aula winplot
Aula winplotAula winplot
Aula winplot
 

Último

ATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junhoATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junho
Crisnaiara
 
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptxSlides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
LuizHenriquedeAlmeid6
 
cidadas 5° ano - ensino fundamental 2 ..
cidadas 5° ano - ensino fundamental 2 ..cidadas 5° ano - ensino fundamental 2 ..
cidadas 5° ano - ensino fundamental 2 ..
MatheusSousa716350
 
Vivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptxVivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptx
Mauricio Alexandre Silva
 
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdfMAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
GracinhaSantos6
 
O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4
DouglasMoraes54
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
WELTONROBERTOFREITAS
 
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptxSlides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Atividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docxAtividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docx
MARCELARUBIAGAVA
 
planejamento maternal 2 atualizado.pdf e
planejamento maternal 2 atualizado.pdf eplanejamento maternal 2 atualizado.pdf e
planejamento maternal 2 atualizado.pdf e
HelenStefany
 
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇOPALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
ARIADNEMARTINSDACRUZ
 
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
AdrianoMontagna1
 
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
fran0410
 
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdfConcurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
TathyLopes1
 
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
SidneySilva523387
 
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptxPsicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
TiagoLouro8
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
pamellaaraujo10
 
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
Eró Cunha
 
said edward w - orientalismo. livro de história pdf
said edward w - orientalismo. livro de história pdfsaid edward w - orientalismo. livro de história pdf
said edward w - orientalismo. livro de história pdf
ThiagoRORISDASILVA1
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
Mary Alvarenga
 

Último (20)

ATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junhoATIVIDADES de alfabetização do mês de junho
ATIVIDADES de alfabetização do mês de junho
 
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptxSlides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
 
cidadas 5° ano - ensino fundamental 2 ..
cidadas 5° ano - ensino fundamental 2 ..cidadas 5° ano - ensino fundamental 2 ..
cidadas 5° ano - ensino fundamental 2 ..
 
Vivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptxVivendo a Arquitetura Salesforce - 02.pptx
Vivendo a Arquitetura Salesforce - 02.pptx
 
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdfMAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
 
O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
 
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptxSlides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
Slides Lição 12, Betel, Ordenança para amar o próximo, 2Tr24.pptx
 
Atividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docxAtividade Bio evolução e especiação .docx
Atividade Bio evolução e especiação .docx
 
planejamento maternal 2 atualizado.pdf e
planejamento maternal 2 atualizado.pdf eplanejamento maternal 2 atualizado.pdf e
planejamento maternal 2 atualizado.pdf e
 
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇOPALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
PALAVRA SECRETA - ALFABETIZAÇÃO- REFORÇO
 
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
 
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
 
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdfConcurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
Concurso FEMAR Resultado Final Etapa1-EmpregoscomEtapaII.pdf
 
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...filosofia e Direito- É a teoria que explica como a sociedade se organizou  co...
filosofia e Direito- É a teoria que explica como a sociedade se organizou co...
 
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptxPsicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
 
Roteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptxRoteiro para análise do Livro Didático.pptx
Roteiro para análise do Livro Didático.pptx
 
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
 
said edward w - orientalismo. livro de história pdf
said edward w - orientalismo. livro de história pdfsaid edward w - orientalismo. livro de história pdf
said edward w - orientalismo. livro de história pdf
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
 

Slides Aula - Equações.pdf

  • 1.
  • 2. Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur
  • 5. Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a - b - c = 0 Não são equações: 4 + 8 = 7 + 5 (Não é uma sentença aberta) x - 5 < 3 (Não é igualdade)
  • 6. A equação geral do primeiro grau: ax+b = 0 onde a e b são números conhecidos e a diferente de 0. “Equação do 1º grau na incógnita x é toda equação que pode ser escrita na forma ax=b, sendo a e b números racionais, com a diferente de zero”.
  • 7. EQUAÇÕES DE 1º GRAU (COM DUAS VARIÁVEIS)
  • 8. Considere a equação: 2x - 6 = 5 - 3y 2x + 3y = 5 + 6 2x + 3y = 11 ==> Equação do 1º grau na forma ax + by = c Denominando equação de 1º grau com duas variáveis, x e y, a toda equação que pode ser reproduzida à forma ax + by = c, sendo a e b números diferentes de zero, simultaneamente.
  • 9. Solução de uma equação de 1º grau com duas variáveis Quais o valores de x e y que tornam a sentença verdadeira? x - 2y = 4 Observe os pares abaixo: x = 6, y = 1 x - 2y = 4 6 - 2 . 1 = 4 6 - 2 = 4 4 = 4 (V)
  • 10. x = 8, y = 2 x - 2y = 4 8 - 2 . 2 = 4 8 - 4 = 4 4 = 4 (V) x = -2, y = -3 x - 2y = 4 -2 - 2 . (-3) = 4 -2 + 6 = 4 4 = 4 (V)
  • 11. Verificamos que todos esses pares são soluções da equação: x - 2y = 4. Assim, os pares (6, 1); (8, 2); (-2, -3) são algumas das soluções dessa equação. Uma equações do 1º grau com duas variáveis tem infinitas soluções.
  • 12. Resumindo: Um par ordenado (r, s) é solução de uma equação ax + by = c (a e b não-nulos simultaneamente), se para ”x = r e y = s” a sentença é verdadeira.
  • 13. Sistemas de Equações Considere o seguinte problema: - Pipoca, em sua última partida, acertou x arremessos de 2 pontos e y arremessos de 3 pontos. Ele acertou 25 arremessos e marcou 55 pontos. Quantos arremessos de 3 pontos ele acertou? Podemos traduzir essa situação através de duas equações, a saber: x + y = 25 (total de arremessos certo) 2x + 3y = 55 (total de pontos obtidos)
  • 14.
  • 15.
  • 17. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax2 + bx + c = 0 Nas equações escritas na forma ax² + bx + c = 0 (forma normal ou forma reduzida de uma equação do 2º grau na incógnita x)chamamos a, b e c de coeficientes. a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.
  • 18. x2 - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x2 - x - 1 = 0 é um equação do 2º grau com a = 6, b = -1 e c = -1. 7x2 - x = 0 é um equação do 2º grau com a = 7, b = -1 e c = 0. x2 - 36 = 0 é um equação do 2º grau com a = 1, b = 0 e c = -36.
  • 19. Raízes de uma equação do 2º grau Resolver uma equação do 2º grau significa determinar suas raízes. Raiz é o número real que, ao substituir a incógnita de uma equação, transforma-a numa sentença verdadeira. O conjunto formado pelas raízes de uma equação denomina-se conjunto verdade ou conjunto solução.
  • 20.
  • 22. Discriminante Denominamos discriminante o radical b2 - 4ac que é representado pela letra grega (delta). Podemos agora escrever deste modo a fórmula de Bhaskara: De acordo com o discriminante, temos três casos a considerar:
  • 23. 1º Caso: O discriminante é positivo. O valor de é real e a equação tem duas raízes reais diferentes, assim representadas:
  • 24. 2º Caso: O discriminante é nulo O valor de é nulo e a equação tem duas raízes reais e iguais, assim representadas:
  • 25. 3º Caso: O discriminante é negativo O valor de não existe em IR, não existindo, portanto, raízes reais. As raízes da equação são número complexos.
  • 26. Resumindo Dada a equação ax² + bx + c = 0, temos: Para , a equação tem duas raízes reais diferentes. Para , a equação tem duas raízes reais iguais. Para , a equação não tem raízes reais.
  • 27. RELAÇÕES ENTRE OS COEFICIENTES E AS RAÍZES Considere a equação ax2 + bx + c = 0, com a 0 e sejam x‘ e x'' as raízes reais dessa equação. Logo: Observe as seguintes relações:
  • 30. 1. Determine a soma e o produto das raízes da equação 10x2 + x - 2 = 0. Solução: Nesta equação, temos: a=10, b=1 e c=-2. A soma das raízes é igual a O produto das raízes é igual a Assim: Assim:
  • 31. COMPOSIÇÃO DE UMA EQUAÇÃO DO 2º GRAU, CONHECIDAS AS RAÍZES Considere a equação do 2º grau ax2+bx+c=0. Dividindo todos os termos por a , obtemos: Como , podemos escrever a equação desta maneira: x2 - Sx + P= 0
  • 32. Exemplo: Componha a equação do 2º grau cujas raízes são -2 e 7. Solução: A soma das raízes corresponde a: S= x1 + x2 = -2 + 7 = 5 O produto das raízes corresponde a: P= x1 . x2 = ( -2) . 7 = -14 A equação do 2º grau é dada por: x2 - Sx + P = 0, onde S=5 e P= -14. Logo, x2 - 5x - 14 = 0 é a equação procurada.
  • 34. Bom Curso e conte sempre conosco!!! Sucesso!!! www.professorjamur.com.br Facebook: Professor Jamur