CONTROLECONTROLE
AVANÇADOAVANÇADO
Prof. André Laurindo MaitelliProf. André Laurindo Maitelli
DCA-UFRN
SumárioSumário
• Introdução ao Controle Avançado;
• Controle Não-convencional: cascata,
feedforward, override, split range, relação
• Controle Robusto;
• Controle Adaptativo;
• Identificação de Sistemas;
• Controle Preditivo;
• Controle Preditivo Multivariável;
• Aplicações de Controle Avançado.
Alguns Conhecimentos NecessáriosAlguns Conhecimentos Necessários
• Transformada de Laplace;
• Análise transitória e em regime;
• Lugar Geométrico das Raízes;
• Métodos de Resposta em Freqüência;
• Variáveis de Estado;
• Instrumentação industrial;
• Controladores PID.
INTRODUÇÃOINTRODUÇÃO
O que é Controle ?O que é Controle ?
• Um problema de controle consiste em
determinar uma forma de afetarforma de afetar um
sistema físico considerado de modo que o
seu desempenho atenda às especificaçõesespecificações
de desempenho;de desempenho;
• O comportamento do sistema físico pode
ser alterado através das variáveis
manipuladas geradas por um controlador.controlador.
Especificações de DesempenhoEspecificações de Desempenho
• Podem envolver requisitos como:
– Rapidez na respostaRapidez na resposta: tempo de subida,
transferência em tempo mínimo;
– ExatidãoExatidão: sobre-sinal, erro de regime,
rastreamento de referência;
– CustoCusto: mínima energia, mínimo combustível;
– SegurançaSegurança: estabilidade, robustez à incertezas;
– ConfortoConforto: rejeição à distúrbios, capacidade de
auto-diagnóstico;
– SimplicidadeSimplicidade: modelos reduzidos, número
pequeno de componentes.
HistóricoHistórico
• 1769 ⇒ Máquina a vapor de James Watt
• 1868 ⇒ J. C. Maxwell desenvolve o modelo matemático para o
controle de uma máquina a vapor
• 1913 ⇒ Henry Ford desenvolve uma máquina de montagem utilizada
na produção de automóveis
• 1927 ⇒ H. W. Bode analisa amplificadores realimentados
• 1932 ⇒ H. Nyquist desenvolve um método para analisar a estabilidade
de sistemas
• 1952 ⇒ Controle numérico desenvolvido pelo MIT
• 1954 ⇒ George Devol desenvolve o primeiro projeto industrial
robotizado
• 1970 ⇒ Teoria de variáveis de estado e controle ótimo é desenvolvida
• 1980 ⇒ Projeto de sistemas de controle robusto é desenvolvido
• 1990 ⇒ Automação da manufatura é difundida
• 1995 ⇒ Controle automático é largamente utilizado em automóveis e
Sistemas robustos são utilizados na manufatura
O que é Controle Avançado ?O que é Controle Avançado ?
• Anos 60: qualquer algoritmoalgoritmo ou estratégia de
controle que derivasse do PID clássico;PID clássico;
• Anos 70: computadores de processo permitiram a
implementação de controladores do tipo
Feedforward, Multivariável e Ótimo;Feedforward, Multivariável e Ótimo;
• Proliferação de técnicas ditas avançadas de
controle: avanços na indústria eletrônica,
especialmente no desenvolvimento de dispositivos
computacionais de baixo custo, ocorrida a partir
dos anos 70.
O que é Controle Avançado ?O que é Controle Avançado ?
• Na prática, controle avançado pode
significar desde a implementação de
esquemas de controle FeFeedforward ou em
cascata até a de algoritmos de controle
adaptativo ou de estratégias de otimização;
• Com a implementação de controle avançado
os benefícios em termos de custos
operacionais são entre 2 a 6%.
Controle AvançadoControle Avançado
• Usa técnicas de controle preditivocontrole preditivo
multivariávelmultivariável a processos industriais para
impedir que as variáveis de processo violem as
suas restrições;
• Visa maximizar uma dada função de
desempenho do processo (usualmente
econômica);
• Envia os SetPointsSetPoints para o controle regulatório;
• Utiliza técnicas de controle não-lineares: fuzzy,
neural, adaptativo, robusto, etc;
• Realiza inferência de produtos.
Hierarquia da AutomaçãoHierarquia da Automação
Benefícios do ControleBenefícios do Controle
AvançadoAvançado
Benefícios do ControleBenefícios do Controle
AvançadoAvançado
Principais VantagensPrincipais Vantagens
• Melhoria na qualidade dos produtosMelhoria na qualidade dos produtos: o uso de
inferência reduz as variações nas propriedades dos
produtos;
• Aumento no rendimento dos produtosAumento no rendimento dos produtos maismais
nobres;nobres;
• Aumento da capacidade da unidadeAumento da capacidade da unidade: o controle
preditivo multivariável respeita as restrições da
unidade;
• Economia e consumo de energia;Economia e consumo de energia;
• Aumento da estabilidade operacional da unidadeAumento da estabilidade operacional da unidade: a
proteção das restrições, rejeição de perturbações e a
natureza preditiva do controlador tornam o processo
mais fácil de controlar.
Quando Utilizar Controle AvançadoQuando Utilizar Controle Avançado ?
Problema Técnica Adequada
Perturbações externas Feedforward
Controle preditivo
Elevado tempo morto Compensação do tempo morto
Controle preditivo
Ruído nas medições Filtros analógicos ou digitais
Variáveis não medidas Controle inferencial
Filtro de Kalman
Controle preditivo
Não linearidades Ganho não-linear ou programado
Controle adaptativo
Controle preditivo
Dinâmica complexa Controle preditivo
Restrições Controle preditivo com restrições
Interação entre variáveis Desacoplamento
Controle preditivo multivariável
Impacto econômico Otimização on-line
Controle Otimizante
Quando Utilizar Controle AvançadoQuando Utilizar Controle Avançado ?
• Antes de partir para o controle avançado,
deve-se tentar otimizar o controle
regulatório:
– Sintonizando os parâmetros dos PID´s;
– Verificando a instrumentação.
• O investimento em Controle Avançado
custa de dez a quinze vezes mais em relação
a melhorias no sistema de controle
regulatório.
CaracterísticasCaracterísticas
• O Controle Avançado amplamente utilizado
na indústria de processo é multivariável,
tem característica preditivacaracterística preditiva e apresenta
uma função linear de otimizaçãootimização
econômica;econômica;
• Utiliza um modelo linearmodelo linear do processo
obtido através de testestestes efetuados na planta;
• As suas variáveis manipuladas são os Set-Set-
PointsPoints dos controladores PID do SDCD e
atualizadas em torno de uma vez por
minuto.
Implantação de CAVImplantação de CAV
• A implantação do controle avançado (CAV)
envolve desde o projeto funcional, que
define as diretrizes para maximizar a
lucratividade de determinado processo, até a
implementação do controle preditivo
multivariável e o treinamento dos
operadores e técnicos das empresas.
Passos da Implantação de CAVPassos da Implantação de CAV
• Projeto funcionalProjeto funcional: diretrizes para maximizar
a lucratividade de determinado processo;
• Revisão e ajuste de malhas regulatóriasRevisão e ajuste de malhas regulatórias:
sintonia dos controladores PID, avaliação
da instrumentação (sensores, válvulas, etc);
• Identificação do processoIdentificação do processo: seleção do
melhor modelo em uma classe, estimação
dos parâmetros, validação;
• Implementação do controle preditivoImplementação do controle preditivo
multivariável;multivariável;
• Treinamento de operadores.Treinamento de operadores.
Otimização em Tempo RealOtimização em Tempo Real
MODELOSMODELOS
Modelos de ProcessoModelos de Processo
• Qualquer descrição de um sistema pode ser
considerada como seu modelo;
• Em termos de propósitos de controle, o
modelo deve conter informações que
permitam predizer as conseqüências das
mudanças das condições operacionais dos
processos;
• Um modelo pode ser desde uma descrição
matemática ou até qualitativa do
comportamento de um processo.
Classificação dos ModelosClassificação dos Modelos
CONTROLADORESCONTROLADORES
Controle Baseado no ModeloControle Baseado no Modelo
• Modelo Inverso;
• PID;
• Adaptativo;
• Preditivo com Restrições;
• Multivariável;
• Robusto;
• Globalmente Linearizante.
Modelo InversoModelo Inverso
• ImpraticávelImpraticável devido:
– Incertezas no modelo G(s);
– Processos de fase não-mínima;
– Limitações no sinal de controle u.
uy y
G(s)1/G(s)
PID ClássicoPID Clássico
• Utilizado em mais de 80% das malhas de
controle existentes na indústria;
• Pode ser sintonizado (selecionados os 3
parâmetros) empiricamente ou pelo uso do
modelo do processo;
• É ótimo para processos de 1a
ordem com atraso
ou para processos de 2a
ordem sem atraso;
• Na prática, as características dos processos são
não-lineares e/ou variantes;
• Possível solução: escalamento de ganho.
Controle AdaptativoControle Adaptativo
Controle AdaptativoControle Adaptativo
• Os parâmetros do modelo são atualizados
periodicamente;
• Os parâmetros atualizados são então usados
pelo controlador;
• São comercialmente disponíveis
controladores PID com auto-sintonia;
• Permite o uso de modelos não-lineares:
redes neurais, séries temporais não-lineares.
Controle Preditivo comControle Preditivo com
RestriçõesRestrições
Controle Preditivo com
Restrições
• Controladores PID não são adequados para
sistemas com grandes atrasos;
• Controladores preditivos são uma boa
alternativa;
• Controle Preditivo Generalizado (GPC) é
largamente usado na indústria;
• No GPC o cálculo do sinal de controle é um
problema de otimização, onde objetivosobjetivos
econômicos e restriçõeseconômicos e restrições (limites em fluxos,
pressões, temperaturas, emissões na atmosfera,
etc) podem ser incluídos na formulação do
problema.
Controle MultivariávelControle Multivariável
CONTROLADOR PLANTA
SP
Variáveis Controladas
Perturbações
Variáveis
Manipuladas
Controle MultivariávelControle Multivariável
• Processos com mais de uma entrada
(Variável Manipulada) e/ou mais de uma
saída (Variável de Processo);
• Exemplo: reator químico, em que nível,
temperatura e pressão devem ser
controlados;
• Em muitos casos a alteração de uma
variável manipulada causa mudanças em
mais de uma variável de processo
(acoplamento).
Controle RobustoControle Robusto
• Quantificação das incertezas no modelo
“nominal” do processo (faixa de operação);
• Projeto de um controlador que deve manter
a estabilidade, bem como um desempenho
especificado sobre a faixa de condições de
operação.
Controle GlobalmenteControle Globalmente
LinearizanteLinearizante
Controle GlobalmenteControle Globalmente
LinearizanteLinearizante
• Controladores adaptativos ou robustos não
tem bom desempenho no controle de
processos fortemente não-lineares;
• Processo é linearizado por realimentação de
estado.
Controle InferencialControle Inferencial
Controle InferencialControle Inferencial
• Pela monitoração de variáveis secundárias é
possível inferir a variável primária, geralmente
uma medida da qualidade do produto;
• Os estimadores de inferência podem ser por
equações de relação;
• O uso de Redes Neurais tem tido sucesso;
• Um exemplo típico é o controle de composição.
Em misturas binárias em fase vapor, esta
composição pode ser determinada a partir da
pressão e da temperatura por meio de uma
equação de estado.
Controle em Cascata, Relação eControle em Cascata, Relação e
AntecipatórioAntecipatório
• Alternativas ao tradicional controle por
realimentação;
• Não substituem o controlador porNão substituem o controlador por
realimentação convencionalrealimentação convencional, mas são
alterações ou adições que possibilitam
melhorar o desempenho do sistema de
controle.
Controle em CascataControle em Cascata
• É um método simples, envolvendo dois
controladores por realimentação em cascata;
• O controle em cascata é definido como a
configuração onde o sinal de saída de um
controlador é o SetPoint de pelo um outro
controlador.
Controle em CascataControle em Cascata
Controle ConvencionalControle Convencional
exemploexemplo
Controle em Cascata - exemploControle em Cascata - exemplo
OperaçãoOperação
• Quando ocorre um aumento na vazão de entrada, o
nível aumentará e o controlador de nível
aumentará o sinal de Set Point para o controlador
da vazão de saída, fazendo com que a mesma
aumente, retornando o nível do tanque ao valor do
Set Point ajustado para o mesmo;
• Quando ocorre uma mudança na pressão na linha
de descarga, o controlador de vazão ajustará a
válvula de saída antes que o nível do tanque seja
significativamente alterado.
Controle de RelaçãoControle de Relação
• Existem muitas situações nos processos industriais
onde é necessário manter duas variáveis numa
proporção ou relação definida;
• Uma variável flutua livremente de acordo com as
exigências do processo e é chamada de variável
livre;
• A outra variável é proporcional à variável livre e é
chamada de variável manipulada;
• Exemplos: a mistura de aditivos à gasolina,
mistura proporcional de reagentes de um reator
químico e a mistura de fluxos quentes e frios para
se obter uma determinada temperatura da mistura.
Controle de RelaçãoControle de Relação
exemploexemplo
• O controle antecipatório ou feedforward é
proposto para suprir uma deficiência do
controle por realimentação, que é a
necessidade da existência de um erro para
que o controlador tome alguma atitude;
• A idéia do controle antecipatório é medir os
distúrbios que perturbam o processo e tomar
uma atitude antes que os mesmos perturbem
a saída do processo.
Controle AntecipatórioControle Antecipatório
• O distúrbio é medido e baseado num valor
do Set-Point para a variável controlada, é
calculado o valor necessário para a variável
manipulada de maneira a evitar que a
variável controlada seja alterada;
• Para tanto, é necessário o conhecimento da
dinâmica do processo, o atraso de
transporte, constante de tempo e ganho, no
caso de um processo de primeira ordem.
Controle AntecipatórioControle Antecipatório
Controle AntecipatórioControle Antecipatório
Comportamento DinâmicoComportamento Dinâmico

1 introdução

  • 1.
    CONTROLECONTROLE AVANÇADOAVANÇADO Prof. André LaurindoMaitelliProf. André Laurindo Maitelli DCA-UFRN
  • 2.
    SumárioSumário • Introdução aoControle Avançado; • Controle Não-convencional: cascata, feedforward, override, split range, relação • Controle Robusto; • Controle Adaptativo; • Identificação de Sistemas; • Controle Preditivo; • Controle Preditivo Multivariável; • Aplicações de Controle Avançado.
  • 3.
    Alguns Conhecimentos NecessáriosAlgunsConhecimentos Necessários • Transformada de Laplace; • Análise transitória e em regime; • Lugar Geométrico das Raízes; • Métodos de Resposta em Freqüência; • Variáveis de Estado; • Instrumentação industrial; • Controladores PID.
  • 4.
  • 5.
    O que éControle ?O que é Controle ? • Um problema de controle consiste em determinar uma forma de afetarforma de afetar um sistema físico considerado de modo que o seu desempenho atenda às especificaçõesespecificações de desempenho;de desempenho; • O comportamento do sistema físico pode ser alterado através das variáveis manipuladas geradas por um controlador.controlador.
  • 6.
    Especificações de DesempenhoEspecificaçõesde Desempenho • Podem envolver requisitos como: – Rapidez na respostaRapidez na resposta: tempo de subida, transferência em tempo mínimo; – ExatidãoExatidão: sobre-sinal, erro de regime, rastreamento de referência; – CustoCusto: mínima energia, mínimo combustível; – SegurançaSegurança: estabilidade, robustez à incertezas; – ConfortoConforto: rejeição à distúrbios, capacidade de auto-diagnóstico; – SimplicidadeSimplicidade: modelos reduzidos, número pequeno de componentes.
  • 7.
    HistóricoHistórico • 1769 ⇒Máquina a vapor de James Watt • 1868 ⇒ J. C. Maxwell desenvolve o modelo matemático para o controle de uma máquina a vapor • 1913 ⇒ Henry Ford desenvolve uma máquina de montagem utilizada na produção de automóveis • 1927 ⇒ H. W. Bode analisa amplificadores realimentados • 1932 ⇒ H. Nyquist desenvolve um método para analisar a estabilidade de sistemas • 1952 ⇒ Controle numérico desenvolvido pelo MIT • 1954 ⇒ George Devol desenvolve o primeiro projeto industrial robotizado • 1970 ⇒ Teoria de variáveis de estado e controle ótimo é desenvolvida • 1980 ⇒ Projeto de sistemas de controle robusto é desenvolvido • 1990 ⇒ Automação da manufatura é difundida • 1995 ⇒ Controle automático é largamente utilizado em automóveis e Sistemas robustos são utilizados na manufatura
  • 8.
    O que éControle Avançado ?O que é Controle Avançado ? • Anos 60: qualquer algoritmoalgoritmo ou estratégia de controle que derivasse do PID clássico;PID clássico; • Anos 70: computadores de processo permitiram a implementação de controladores do tipo Feedforward, Multivariável e Ótimo;Feedforward, Multivariável e Ótimo; • Proliferação de técnicas ditas avançadas de controle: avanços na indústria eletrônica, especialmente no desenvolvimento de dispositivos computacionais de baixo custo, ocorrida a partir dos anos 70.
  • 9.
    O que éControle Avançado ?O que é Controle Avançado ? • Na prática, controle avançado pode significar desde a implementação de esquemas de controle FeFeedforward ou em cascata até a de algoritmos de controle adaptativo ou de estratégias de otimização; • Com a implementação de controle avançado os benefícios em termos de custos operacionais são entre 2 a 6%.
  • 10.
    Controle AvançadoControle Avançado •Usa técnicas de controle preditivocontrole preditivo multivariávelmultivariável a processos industriais para impedir que as variáveis de processo violem as suas restrições; • Visa maximizar uma dada função de desempenho do processo (usualmente econômica); • Envia os SetPointsSetPoints para o controle regulatório; • Utiliza técnicas de controle não-lineares: fuzzy, neural, adaptativo, robusto, etc; • Realiza inferência de produtos.
  • 11.
  • 12.
    Benefícios do ControleBenefíciosdo Controle AvançadoAvançado
  • 13.
    Benefícios do ControleBenefíciosdo Controle AvançadoAvançado
  • 14.
    Principais VantagensPrincipais Vantagens •Melhoria na qualidade dos produtosMelhoria na qualidade dos produtos: o uso de inferência reduz as variações nas propriedades dos produtos; • Aumento no rendimento dos produtosAumento no rendimento dos produtos maismais nobres;nobres; • Aumento da capacidade da unidadeAumento da capacidade da unidade: o controle preditivo multivariável respeita as restrições da unidade; • Economia e consumo de energia;Economia e consumo de energia; • Aumento da estabilidade operacional da unidadeAumento da estabilidade operacional da unidade: a proteção das restrições, rejeição de perturbações e a natureza preditiva do controlador tornam o processo mais fácil de controlar.
  • 15.
    Quando Utilizar ControleAvançadoQuando Utilizar Controle Avançado ? Problema Técnica Adequada Perturbações externas Feedforward Controle preditivo Elevado tempo morto Compensação do tempo morto Controle preditivo Ruído nas medições Filtros analógicos ou digitais Variáveis não medidas Controle inferencial Filtro de Kalman Controle preditivo Não linearidades Ganho não-linear ou programado Controle adaptativo Controle preditivo Dinâmica complexa Controle preditivo Restrições Controle preditivo com restrições Interação entre variáveis Desacoplamento Controle preditivo multivariável Impacto econômico Otimização on-line Controle Otimizante
  • 16.
    Quando Utilizar ControleAvançadoQuando Utilizar Controle Avançado ? • Antes de partir para o controle avançado, deve-se tentar otimizar o controle regulatório: – Sintonizando os parâmetros dos PID´s; – Verificando a instrumentação. • O investimento em Controle Avançado custa de dez a quinze vezes mais em relação a melhorias no sistema de controle regulatório.
  • 17.
    CaracterísticasCaracterísticas • O ControleAvançado amplamente utilizado na indústria de processo é multivariável, tem característica preditivacaracterística preditiva e apresenta uma função linear de otimizaçãootimização econômica;econômica; • Utiliza um modelo linearmodelo linear do processo obtido através de testestestes efetuados na planta; • As suas variáveis manipuladas são os Set-Set- PointsPoints dos controladores PID do SDCD e atualizadas em torno de uma vez por minuto.
  • 18.
    Implantação de CAVImplantaçãode CAV • A implantação do controle avançado (CAV) envolve desde o projeto funcional, que define as diretrizes para maximizar a lucratividade de determinado processo, até a implementação do controle preditivo multivariável e o treinamento dos operadores e técnicos das empresas.
  • 19.
    Passos da Implantaçãode CAVPassos da Implantação de CAV • Projeto funcionalProjeto funcional: diretrizes para maximizar a lucratividade de determinado processo; • Revisão e ajuste de malhas regulatóriasRevisão e ajuste de malhas regulatórias: sintonia dos controladores PID, avaliação da instrumentação (sensores, válvulas, etc); • Identificação do processoIdentificação do processo: seleção do melhor modelo em uma classe, estimação dos parâmetros, validação; • Implementação do controle preditivoImplementação do controle preditivo multivariável;multivariável; • Treinamento de operadores.Treinamento de operadores.
  • 20.
    Otimização em TempoRealOtimização em Tempo Real
  • 21.
  • 22.
    Modelos de ProcessoModelosde Processo • Qualquer descrição de um sistema pode ser considerada como seu modelo; • Em termos de propósitos de controle, o modelo deve conter informações que permitam predizer as conseqüências das mudanças das condições operacionais dos processos; • Um modelo pode ser desde uma descrição matemática ou até qualitativa do comportamento de um processo.
  • 23.
  • 24.
  • 25.
    Controle Baseado noModeloControle Baseado no Modelo • Modelo Inverso; • PID; • Adaptativo; • Preditivo com Restrições; • Multivariável; • Robusto; • Globalmente Linearizante.
  • 26.
    Modelo InversoModelo Inverso •ImpraticávelImpraticável devido: – Incertezas no modelo G(s); – Processos de fase não-mínima; – Limitações no sinal de controle u. uy y G(s)1/G(s)
  • 27.
    PID ClássicoPID Clássico •Utilizado em mais de 80% das malhas de controle existentes na indústria; • Pode ser sintonizado (selecionados os 3 parâmetros) empiricamente ou pelo uso do modelo do processo; • É ótimo para processos de 1a ordem com atraso ou para processos de 2a ordem sem atraso; • Na prática, as características dos processos são não-lineares e/ou variantes; • Possível solução: escalamento de ganho.
  • 28.
  • 29.
    Controle AdaptativoControle Adaptativo •Os parâmetros do modelo são atualizados periodicamente; • Os parâmetros atualizados são então usados pelo controlador; • São comercialmente disponíveis controladores PID com auto-sintonia; • Permite o uso de modelos não-lineares: redes neurais, séries temporais não-lineares.
  • 30.
    Controle Preditivo comControlePreditivo com RestriçõesRestrições
  • 31.
    Controle Preditivo com Restrições •Controladores PID não são adequados para sistemas com grandes atrasos; • Controladores preditivos são uma boa alternativa; • Controle Preditivo Generalizado (GPC) é largamente usado na indústria; • No GPC o cálculo do sinal de controle é um problema de otimização, onde objetivosobjetivos econômicos e restriçõeseconômicos e restrições (limites em fluxos, pressões, temperaturas, emissões na atmosfera, etc) podem ser incluídos na formulação do problema.
  • 32.
    Controle MultivariávelControle Multivariável CONTROLADORPLANTA SP Variáveis Controladas Perturbações Variáveis Manipuladas
  • 33.
    Controle MultivariávelControle Multivariável •Processos com mais de uma entrada (Variável Manipulada) e/ou mais de uma saída (Variável de Processo); • Exemplo: reator químico, em que nível, temperatura e pressão devem ser controlados; • Em muitos casos a alteração de uma variável manipulada causa mudanças em mais de uma variável de processo (acoplamento).
  • 34.
    Controle RobustoControle Robusto •Quantificação das incertezas no modelo “nominal” do processo (faixa de operação); • Projeto de um controlador que deve manter a estabilidade, bem como um desempenho especificado sobre a faixa de condições de operação.
  • 35.
  • 36.
    Controle GlobalmenteControle Globalmente LinearizanteLinearizante •Controladores adaptativos ou robustos não tem bom desempenho no controle de processos fortemente não-lineares; • Processo é linearizado por realimentação de estado.
  • 37.
  • 38.
    Controle InferencialControle Inferencial •Pela monitoração de variáveis secundárias é possível inferir a variável primária, geralmente uma medida da qualidade do produto; • Os estimadores de inferência podem ser por equações de relação; • O uso de Redes Neurais tem tido sucesso; • Um exemplo típico é o controle de composição. Em misturas binárias em fase vapor, esta composição pode ser determinada a partir da pressão e da temperatura por meio de uma equação de estado.
  • 39.
    Controle em Cascata,Relação eControle em Cascata, Relação e AntecipatórioAntecipatório • Alternativas ao tradicional controle por realimentação; • Não substituem o controlador porNão substituem o controlador por realimentação convencionalrealimentação convencional, mas são alterações ou adições que possibilitam melhorar o desempenho do sistema de controle.
  • 40.
    Controle em CascataControleem Cascata • É um método simples, envolvendo dois controladores por realimentação em cascata; • O controle em cascata é definido como a configuração onde o sinal de saída de um controlador é o SetPoint de pelo um outro controlador.
  • 41.
  • 42.
  • 43.
    Controle em Cascata- exemploControle em Cascata - exemplo
  • 44.
    OperaçãoOperação • Quando ocorreum aumento na vazão de entrada, o nível aumentará e o controlador de nível aumentará o sinal de Set Point para o controlador da vazão de saída, fazendo com que a mesma aumente, retornando o nível do tanque ao valor do Set Point ajustado para o mesmo; • Quando ocorre uma mudança na pressão na linha de descarga, o controlador de vazão ajustará a válvula de saída antes que o nível do tanque seja significativamente alterado.
  • 45.
    Controle de RelaçãoControlede Relação • Existem muitas situações nos processos industriais onde é necessário manter duas variáveis numa proporção ou relação definida; • Uma variável flutua livremente de acordo com as exigências do processo e é chamada de variável livre; • A outra variável é proporcional à variável livre e é chamada de variável manipulada; • Exemplos: a mistura de aditivos à gasolina, mistura proporcional de reagentes de um reator químico e a mistura de fluxos quentes e frios para se obter uma determinada temperatura da mistura.
  • 46.
    Controle de RelaçãoControlede Relação exemploexemplo
  • 47.
    • O controleantecipatório ou feedforward é proposto para suprir uma deficiência do controle por realimentação, que é a necessidade da existência de um erro para que o controlador tome alguma atitude; • A idéia do controle antecipatório é medir os distúrbios que perturbam o processo e tomar uma atitude antes que os mesmos perturbem a saída do processo. Controle AntecipatórioControle Antecipatório
  • 48.
    • O distúrbioé medido e baseado num valor do Set-Point para a variável controlada, é calculado o valor necessário para a variável manipulada de maneira a evitar que a variável controlada seja alterada; • Para tanto, é necessário o conhecimento da dinâmica do processo, o atraso de transporte, constante de tempo e ganho, no caso de um processo de primeira ordem. Controle AntecipatórioControle Antecipatório
  • 49.
  • 50.