Gabarito 29/03
Turma 1
1. Numa P.A., a3 + a6= 29 e a4 + a7= 35. Escreva essa progressão aritmética.
Sabemos que a fórmula ...
Concluímos que a P.A. é escrita como (4, 7, 10, 13, 16, 19, ...).
2) Ache 3 números em P.A. crescente , sabendo que a soma...
S=(a1+an).N/2
67500.2=2a1+7000
9000-7000=a1
a1=1000
a3=a1+2.r
a3=1000+2.500
a3=2000
Encontramos que no 3º dia foram percor...
an = a1+(n-1).r (fórmula)
250 = 4+(7-1).r
250 = 4+6r
250-4 = 6r
246 = 6r
r = 246/6
r = 41
R: Alternativa C ( 41 m)
Turma 2...
Seu período não segue um padrão de formalidade, por isso ele é um número IRRACIONAL.
4)Efetuando a/2x : 3/x², obtém-se:
a)...
5 é a herança inteira
5/5 – 1/5 = 4/5 restante do total do dinheiro sem a parte da viúva
4/5 : 2 = 2/5 parte da viúva
2/5 ...
múltiplos de 15? São múltiplos de 15 somados a 5, ou são múltiplos de 15 somados
a 10? São múltiplos de 15 somados a 10.
b...
4)Imagine que x e y sejam números inteiros negativos. Nesse caso, efetuando x.y.x/y
, obtém-se um número: *
o a) negativo
...
B: O time B jogou com os times A,C,D e E.
C: O time C jogou com os times A,B,D e E. Contando todas as combinaçōes foram
20...
Próximos SlideShares
Carregando em…5
×

29032014

527 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
527
No SlideShare
0
A partir de incorporações
0
Número de incorporações
27
Ações
Compartilhamentos
0
Downloads
1
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

29032014

  1. 1. Gabarito 29/03 Turma 1 1. Numa P.A., a3 + a6= 29 e a4 + a7= 35. Escreva essa progressão aritmética. Sabemos que a fórmula do termo geral de uma P.A. é an= a1 + r.(n - 1), então, podemos escrever os termos apresentados pelo enunciado desta maneira: a3= a1 + r.(3 - 1)= a1 + 2r a4= a1 + r.(4 - 1)= a1 + 3r a6= a1 + r.(6 - 1)= a1 + 5r a7= a1 + r.(7 - 1)= a1 + 6r Assim, as informações do enunciado correspondem á: a3 + a6= 29 (a1 + 2r) + (a1 + 5r)= 29 2.a1 + 7r= 29 a4 + a7= 35 (a1 + 3r) + (a1 + 6r)= 35 2.a1 + 9r= 35 Agora, temos duas igualdades que envolvem dois valores desconhecidos (as incógnitas a e r), ou seja, temos um sistema de equações e, para resolver e encontrar os valores numéricos das incógnitas, podemos usar o método da substituição. No método da substituição, isolamos um valor em função de outro e substituímos na outra igualdade: 2.a1 + 7r= 29 2.a1= 29 - 7r a1= (29 - 7r)/2 Substituímos o valor de a1 na segunda igualdade: 2.a1 + 9r= 35 2. [(29 - 7r)/2] + 9r= 35 29 -7r + 9r= 35 29 + 2r= 35 2r= 35 - 29 2r= 6 r= 6/2 r= 3 Com o valor numérico de r, podemos encontrar o valor de a1, que estava em função de r: a1= (29 - 7r)/2 a1= (29 - 7.3)/2 a1= 8/2 a1= 4 Chegamos a conclusão de que r=3 e a1=4. Dessa forma, é possível encontrar os termos dessa P.A.: a1= 4 a2= a1 + r= 4 + 3= 7 a3= a1 + 2r= 4 + 2.3= 10 a4= a1 + 3r= 4 + 3.3= 13 a5= a1 + 4r= 4 + 4.3= 16 a6= a1 + 5r= 4 + 5.3= 19 ...
  2. 2. Concluímos que a P.A. é escrita como (4, 7, 10, 13, 16, 19, ...). 2) Ache 3 números em P.A. crescente , sabendo que a soma é 15 e o produto é 105 . Resolução : sabendo que : n1+n2+n3 = 15 podemos concluir que n1 + n1+r + n1+2r = 15 3n1+3r= 15 n1+r=15/3 n1+r= 5 n1=5-r E sabendo que n1.n2.n3= 105 podemos concluir que (5-r).(5-r+r).(5-r+2r)=105 (5-r).5.(5+r)= 105 (25-5r).(5+r)=105 125+25r-25r-5r²=105 125-5r²=105 -5r²=105-125 -5r²=-20 r²=-20/-5 r²=4 r=2 Então n1=5-2 , n2=5 , e n3= 5+2 = 7 R: 0s três primeiros termos da P.A. são (3,5,7) 3) Um atleta corre sempre 500 metros a mais do que no dia anterior. Sabendo-se que ao final de 15 dias ele correu um total de 67 500 metros, o número de metros percorridos no 3 º dia foi: (a)1000 (b)1500 (c)2000 (d)2500 (e)2600 A razão dessa P.A. é 500 S=67500 (Soma da PA) N=15 dias a1= ? Já temos as informações então basta aplicar a fórmula: an=a1+(N-1)r a15=a1+14.500 a15=a1+7000 Agora é só usar a fórmula da soma.
  3. 3. S=(a1+an).N/2 67500.2=2a1+7000 9000-7000=a1 a1=1000 a3=a1+2.r a3=1000+2.500 a3=2000 Encontramos que no 3º dia foram percorridos 2000 metros. R:2000 metros 4-Interpolando-se 7 termos aritmédicos entre os números 10 e 98, obtém-se uma progressão aritmédica. Cujo o termo central é? a)45 b)52 c)54 d)55 e)57 Resolução: Primeiro encontrei a razão (r) seguindo esta regra: Para interporlar7 termos aritméticos entre 2 termos, é preciso criar uma sequência de 9 termos em progressão aritmética. Cujo primeiro termo é a1 = 10, e o último termo é a9 = 98. Logo, o termo central da progressão é o termo a5. a9 =a1 +8r 98 = 10 + 8.r 8r = 88 r = 11. a5 = a1 + 4r a5 = 10 + 4.11 a5 = 10 + 44 a5 = 54. 5) Em uma pista de caminhada de 260 metros, pedro percebeu que, a partir do quarto metro, existiam pequenas lixeiras que se distribuíam igualmente até o fim da pista. Se ele conta 7 lixeiras, qual é a distância entre elas? Primeiramente devemos anotar os dados que temos e logo em seguida montar a P.A. , e assim ir resolvendo passo a passo. an = 250 a1 = 4 n= 7
  4. 4. an = a1+(n-1).r (fórmula) 250 = 4+(7-1).r 250 = 4+6r 250-4 = 6r 246 = 6r r = 246/6 r = 41 R: Alternativa C ( 41 m) Turma 2 1)Faça os cálculos e responda sim ou não: a) se x = 2, o valor da expressão 1/(x-3) é um número inteiro? Sim b) se x = 2, o valor da expressão √(x-5) é um número real? Não c)se x = 4, o valor da expressão 1/(x-4) é um número real? Não d) se x = 4, o valor da expressão 1/√(x+1) é um número irracional? * Sim Pra se obter o resultado é só efetuar as substituições. Exercicio2: Fatore completamente: a) x elevado a 4 – 16 b) 12 x³ - 6x² + 9x c) 12x² - 3 d) 8a² + 24ab + 18b² Resolução: a) (x²+4)(x²- 4) = (x² + 4 )(x + 2 )(x – 2) b) 3x(4x²-2x+3) c) 3(4x²-1)= 3(2x + 1)(2x – 1) d) 2(4a²+12ab+9b²)= 2ab(2a + 3b)² 3-)É um número irracional: a) -7 b) 0, 131313... c) PI = 3, 14159265... d) raiz quadrada de 16 e) raiz quadrada de -4 Resolução: O número PI é igual a 3, 14159265...
  5. 5. Seu período não segue um padrão de formalidade, por isso ele é um número IRRACIONAL. 4)Efetuando a/2x : 3/x², obtém-se: a)ax/12 b)a/x c)ax/6 d)6ax e)ax Resolução: Primeiro devemos aplicar a propriedade da divisão de fração: conserva a primeira e inverte a segunda multiplicando: (a/2x).(3/x²) = ax²/6x Depois podemos dividir os x, resultando em: ax/6 Turma 3 1)Uma herança foi dividida assim: 1/5 para pagar impostos, metade do restante para a viúva e a outra metade foi repartida igualmente entre os dois filhos. Que fração da herança recebeu cada filho? * 1/5=impostos
  6. 6. 5 é a herança inteira 5/5 – 1/5 = 4/5 restante do total do dinheiro sem a parte da viúva 4/5 : 2 = 2/5 parte da viúva 2/5 parte dos filhos São dos filhos, então temos que dividir 2/5, (que é a parte para dividir entre os dois filhos) por 2 2/5 : 2 = 1/5 Cada filho irá receber 1/5 da herança. 2-Tirei 26 pontos num total de 40 na prova de geografia.Qual é a minha nota na escala de 0 a 10? 26 . 10= 260 : 40= 6,5 R:Minha nota na escala é de 6,5 3- O CD de um famoso cantor é vendido em várias lojas, e o preço varia de uma para a outra. O gráfico mostra a relação entre o número de CDs vendidos e o preço: De acordo com o gráfico, é verdade que: a) Aumentando o preço aumentam as vendas; b) A loja que cobra R$12,00 vendeu 40 CDs; c) Em geral, vende mais quem tem o menor preço; d) A loja que vendeu 16 CDs cobrou R$18,00 cada um; e) Sempre vende mais quem tem o menor preço. .A resposta certa é a letra C pois em geral das lojas citadas no gráfico, a loja que vende em menor preço, vende mais CDs. 5)No triângulo ABC, B mede o triplo de C e A mede o dobro de B. A medida de B é: a) 18° b) 36° c) 48° X) 54° e) 90° Porque: logo se sabe que o triângulo tem 180º, ai eu fui tentando um por um: 18º= então C seria 6, por que 6x3=18 e A seria 36º, por que 18x2=36º, então 6+18+36=60º então não podia ser, só que ai eu percebi que 60x3 é 180, então fiz 18x3 que deu 54, ai vi que tinha 54 na lista, ai fiz: 54º= C seria 18º, por que 18x3=54 e A 108º, por que 54x2=108, então fiz 18+54+108 e deu 180º, então só podia ser 54º. Turma 4 1)Certo cometa passa perto do planeta X a cada 15 minutos. Isso acontece há séculos e as duas últimas vezes ocorreram em 1975 e 1990. a) Esses números são
  7. 7. múltiplos de 15? São múltiplos de 15 somados a 5, ou são múltiplos de 15 somados a 10? São múltiplos de 15 somados a 10. b) Esse cometa passou em 1750? Por quê? *sim, porque 1750 = 116 . 15 + 10 2)O círculo menor esta dividido em 9 partes iguais e o maior em 12 partes iguais. a) dê as medidas dos ângulos a,b,c,d,e . 360°:9 = 40° a=40°, b=80°, c= 120°, d = 150°, e = 30° b) responda verdadeiro ou falso: a)b>d - falso b)a + b = c - verdadeiro c)a = e - falso d) d = 5.e verdadeiro f) c < d verdadeiro g)c = 4 . e *verdadeiro 3)Observe a tabela:Descubra os valores das letras a, b, c. depois, some esses valores. O resultado é: * (observe a imagem acima) o a) 0 o b) – 1 o c) – 2 o d) – 3
  8. 8. 4)Imagine que x e y sejam números inteiros negativos. Nesse caso, efetuando x.y.x/y , obtém-se um número: * o a) negativo o b) positivo o c) nem positivo nem negativo o d) nulo 5)O resultado de 13 – [3 . (- 5)] é: * o a) -2 o b) 2 o c) 28 o d) – 28 Turma 5 1)Em cada caso, diga qual é o quociente e qual é o resto. a) 2250 : 45 b) 1600: 15 c) 3125 : 25 d) 7615 : 80 * a) quociente:50 Resto:0 b) quociente:106 Resto:10 c) quociente:125 Resto:0 d) quociente :95 Resto:15 2)Na divisão de um número natural a por 13, o resto pode ser 10? Sim, pois 140 : 13 , o quociente é 10 e resto é 10. Prova real: 10 . 13 = 130 + 10 = 140. Pode ser 15? Não, porque o resto nunca pode ser maior que o divisor. Qual é o maior resto que se pode obter nessa divisão? Na divisão por 13 podemos ter resto 0,1,2,3,4,5,6,7,8,9,10,11 e 12. O maior resto é o 12, pois o resto é sempre menor que o divisor, ou seja, nunca pode ser 13 ou maior que 13. 3)Quantas partidas são disputadas num torneio de futebol de que participam cinco times se cada um enfrenta todos os outros apenas uma vez? * a) 5 b) 10 c) 15 d) 20 Resolução: Coloquei os cincos times representado por letras depois fiz combinaçōes. Veja como fiz. A: O time A jogou com os times B,C,D e E.
  9. 9. B: O time B jogou com os times A,C,D e E. C: O time C jogou com os times A,B,D e E. Contando todas as combinaçōes foram 20 partidas D: O time D jogou com os times A,B,C, e E. disputada.Letra D. E: O time E jogou com os timea A,B,C e D 4)Um videocassete começou a gravar um programa de TV às 17 horas e 35 minutos e desligou às 18 horas e 23 minutos, porque a fita havia terminado. Quantos minutos de programa foram gravados? Transformei tudo em minutos e depois subtrai: 18:23=1103 17:35=1055 1103-1055=48 minutos o a) 56 minutos o b) 52 minutos o c) 48 minutos o d) 43 minutos 5) Qual é o menor número que é maior que 100 e múltiplo comum de 3 e 4? a)96 b)102 c)104 d)108 Dividindo as alternativas 102,104,108 por 3 e 4 e a de resultado exato é 108. R: O menor número é 108, alternativa d.

×