3o ano-ensino-medio-ligacoes-quimicas exemplo

766 visualizações

Publicada em

Publicada em: Educação
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
766
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
32
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

3o ano-ensino-medio-ligacoes-quimicas exemplo

  1. 1. LIGAÇÕES QUÍMICAS  Conceito Geral: Consiste na combinação entre átomos, moléculas e íons onde cada espécie química procura uma maior estabilidade. Menos estáveis Mais estáveis Átomos isolados Átomos ligados Energia
  2. 2. Definições  Estado Natural dos Átomos: São encontrados na natureza combinados de modo a adquirir maior estabilidade possível.  Estabilidade Química: Necessidade de completar seus orbitais incompletos perdendo ou ganhando elétrons.  Camada de Valência: Corresponde à última camada eletrônica do átomo, em geral, responsável pelas ligações químicas.
  3. 3. Regra do Octeto  Descrição: O átomo adquire estabilidade ao completar oito elétrons camada de valência, imitando os gases nobres. Configuração Geral: ns2 np6 ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ Obs. Esta regra só é válida para os elementos representativos. Exceção para o H, Li, B e Be.
  4. 4. Regra do Dueto  Descrição: O átomo adquire estabilidade ao completar a camada de valência com dois elétrons, imitando o gás nobre - He. Configuração Geral: ns2 ↑ ↓ Obs. Esta regra só é válida para os elementos representativos: H, Li, B e Be.
  5. 5. TIPOS DE LIGAÇÃO  IÔNICA ou ELETROVALENTE  COVALENTE ou MOLECULAR: - Simples - Dupla - Tripla  INTERMOLECULAR  METÁLICA
  6. 6. LIGAÇÃO IÔNICA OU ELETROVALENTE  Definição: Os elétrons são transferidos definitivamente de um átomo muito eletropositivo para outro muito eletronega-tivo, dando origem a íons de cargas contrárias que se atraem. Exemplo: Formação do cloreto de sódio – NaCl. Na (Z = 11) → 1s2 , 2s2 , 2p6 , 3s1 Cl ( Z = 17) → 1s2 , 2s2 , 2p6 , 3s2 , 3p5 Na+ Cl- Na Cl
  7. 7. Ligação Iônica Configuração dos Átomos: Na Cl
  8. 8. Ligação Iônica Transferência do elétron: Na Cl
  9. 9. Ligação Iônica Formação dos íons: Na+ Cl-
  10. 10. Ligação Iônica Atração Eletrostática: Na+ Cl-
  11. 11. Ligação Iônica Atração Eletrostática: Na+ Cl-
  12. 12. Ligação Iônica Aglomerado Iônico ou Retículo Cristalino:
  13. 13. Fórmula dos Compostos Iônicos [A]+X Y [B]-Y X ∑ Cargas = + xy – xy = zero Exemplos: Ca+2 + Br-1 → CaBr2 Al+3 + S-2 → Al2S3
  14. 14. Ligações dos Grupos - Representativos Grupo Carga Grupo Carga 1 + 1 15 - 3 2 + 2 16 - 2 3 + 3 17 - 1 Exemplos: a) K+ Cl- → KCl b) Ca+2 I-1 → CaI2 c) Al+3 S-2 → Al2S3 d) Fe+3 O-2 → Fe2O3
  15. 15. Características dos Compostos Iônicos  Sólidos e cristalinos à temperatura ambiente.  Ponto de Fusão e Ebulição muito elevados (acima de 300º C).  Conduzem corrente elétrica fundidos ou em solução aquosa.  Solúvel em solventes polares. Melhor solvente é a água.
  16. 16. Participantes dos Compostos Iônicos Hidrogênio Metal + Ametal Radical salino (CO3 -2 , SO4 -2 ) Radical Catiônico (NH4 + ) com os ânions listados para os metais.
  17. 17. Exercícios de fixação: 1. Para que haja uma ligação iônica é necessário que: a) O potencial de ionização dos átomos participantes tenha valores próximos. b) A eletronegatividade dos átomos participantes tenha valores próximos. c) a eletronegatividade dos átomos participantes tenha valores bastantes diferentes. d) Os életrons de ligação sejam de orbitais s. e) As afinidades eletrônicas sejam nulas. 2. Átomos do elemento X (número atômico = 20) e do elemento Y (número atômico = 7) unem-se por ligações iônicas originando o composto de fórmula: a) XY b) X2Y c) X3Y2 d) X2Y3 e) X3Y4
  18. 18. Exercícios de fixação: 3. Os compostos iônicos, como o cloreto de sódio, apresentam as propriedades: a) Líquidos nas condições ambientais, bons condutores de eletricidade e baixo ponto de fusão. b) Líquidos ou gasosos, maus condutores de eletricidade em solução aquosa e baixo ponto de fusão. c) Sólidos, maus condutores de eletricidade em solução aquosa e baixo ponto de fusão. d) Sólidos, bons condutores de eletricidade no estado sólido e alto ponto de fusão. e) Sólidos, bons condutores de eletricidade em solução aquosa e elevado ponto de fusão.
  19. 19. LIGAÇÃO COVALENTE OU MOLECULAR  Definição: Ocorre através do compartilhamento de um ou mais pares de elétrons entre átomos que possuem pequena ou nenhuma diferença de eletronegatividade. Tipos de Ligações Covalentes: - Covalente Simples. - Covalente Dupla. - Covalente Tripla
  20. 20. Ligação Covalente Simples ou Normal  Definição: O par eletrônico compartilhado é formado por um elétron de cada átomo ligante. Exemplo: formação do cloro – Cl2. Cl ( Z = 17) → 1s2 ) 2s2 , 2p6 ) 3s2 , 3p5 ClCl Cl2 ou Cl - Cl Fórmula de Lewis Molecular Estrutural Plana
  21. 21. Ligação Covalente Simples ou Normal Configuração dos Átomos:
  22. 22. Ligação Covalente Simples ou Normal Atração Quântica:
  23. 23. Ligação Covalente Simples ou Normal Atração Quântica:
  24. 24. Ligação Covalente Simples ou Normal Nuvem Eletrônica ou Orbital Molecular: Cl Cl
  25. 25. Exemplos de Ligações Covalentes Duplas e Triplas O2 ou O = OOO N2 ou N ≡ NNN O HH H2O ou H - O - H ClH HCl ou H - Cl
  26. 26. Ligação Covalente além do Octeto  Definição: Se o elemento tem pares eletrônicos disponíveis e outro elemento necessita de dois elétrons, ocorre a formação de duplas ligações, onde o elemento central estabiliza-se com mais de oito elétrons no nível de valência. OS O+ OS O S = O + O → S = O O Exemplo: formação do SO2.
  27. 27. Moléculas do Tipo HxEOy Ácidos Oxigenados  Todos os átomos de oxigênio aparecem ligados ao elemento central e cada átomo de hidrogênio ficará ligado a um átomo de oxigênio. Exemplo: ácido sulfúrico - H2SO4 OO S O O HH H - O - S - O - H O O
  28. 28. LIGAÇÕES SÍGMA (σ) E PI (π)  Ligações σ: interpenetração de orbitais dos átomos ao longo de um mesmo eixo.  Ligações π: interpenetração lateral segundo eixos paralelos, ocorrem apenas com orbitais do tipo p. Obs. As ligações π só ocorrem após a ligação σ, que é única entre dois átomos.
  29. 29. Características dos Compostos Moleculares  Sólidos, líquidos ou gasosos a temperatura ambiente.  Ponto de Fusão e Ebulição inferiores aos dos compostos iônicos.  Bons isolantes: térmico e elétrico. Os compostos que ionizam conduzem corrente elétrica em solução.
  30. 30. Participantes dos Compostos Moleculares Ametal + Hidrogênio Ametal + Ametal Hidrogênio + Hidrogênio
  31. 31. POLARIDADE DAS LIGAÇÕES  Definição: Consiste no acúmulo de cargas elétricas iguais em regiões distintas da ligação – pólos.  Ligações iônicas: são fortemente polarizadas, cada íon define um pólo da ligação. + _
  32. 32. Polaridade das Ligações  Ligações covalentes: é função da diferença de eletronegatividade entre os átomos da ligação. Classificação: - Apolar: formadas por átomos de eletronegatividades iguais, a nuvem não se deforma. Ocorre apenas entre átomos de mesmo elemento químico. - Polar: formadas por átomos de eletronegatividade diferentes, a nuvem se deforma. Obs. Quanto maior a diferença de eletronegatividade entre os átomos maior a polarização.
  33. 33. Polaridade das Ligações Ligação covalente apolar: Ligação covalente polar: H2 → HCl → H H H Cl δ+ δ-
  34. 34. POLARIDADE DAS MOLÉCULAS  Definição: Consiste no acúmulo de cargas elétricas em regiões distintas da molécula, sua força depende da polaridade das ligações e da geometria molecular.  Momentum dipolar: é o vetor que orienta a polaridade da ligação, pólo positivo para o negativo. Ex: H → Cl µ  Momentum dipolar resultante (µr): vetor que define a polaridade da molécula, soma dos vetores.
  35. 35. Polaridade das Moléculas  Molécula apolar: momentum dipolar (µr) = zero. Ex: molécula do gás carbônico – CO2. µ µ O = C = O ⇒ O ← C → O ⇒ µr = Zero  Molécula polar: momentum dipolar (µr) ≠ zero. Ex: molécula da água – H2O. O H H ⇒ O ⇒ µr ≠ Zero (polar) H H
  36. 36. LIGAÇÕES INTERMOLECULARES  DEFINIÇÃO: ligações entre as moléculas de substâncias no estado sólido ou líquido.  Tipos de ligações intermoleculares: 1) Ligação Dipolo – Dipolo: ocorrem entre as moléculas polares. 2) Pontes de Hidrogênio: ocorrem entre moléculas fortemente polarizadas, quando o H se encontra ligado aos átomos de F, O e N. 3) Ligação Dipolo Induzido – Dipolo Induzido: ocorrem entre as moléculas apolares.
  37. 37. Forças Intermoleculares e as Propriedades PF e PE  Dois fatores influem nos PF e PE: 1) Ligações intermolecular: quanto maior a intensidade das forças de ligação, maiores os PF e PE da substância. Ordem crescente da intensidade de interação: Dipolo induzido < dipolo – dipolo < pontes de H 2) O tamanho das moléculas: quanto maior o tamanho das moléculas, maiores o PF e PE da substância.
  38. 38. Forças Intermoleculares e as Propriedades PF e PE  Exemplos: PE Tamanho da molécula 100 0 - 100 H2O H2S H2Se H2Te PE Tamanho da molécula CH4 SeH4 GeH4 SnH4
  39. 39. LIGAÇÃO METÁLICA  Definição: ligações entre átomos de metais que formam retículos cristalinos de cátions fixos unidos por uma nuvem de elétrons livres da camada de valência. Retículo Cristalino
  40. 40. Características dos Metais  Sólidos a temperatura ambiente, exceção do Hg (líquido).  Apresentam brilho metálico, fundidos perdem o brilho, exceção para o Mg e Al.  Densidade superior a da água, exceção para os alcalinos. Menor Li = 0,53 g/mL, maior Os = 22,5g/mL.  PF muito variável, menor Cs = 28,5°C, maior W = 3382°C.  Bons condutores de eletricidade e calor. Ag maior condutividade elétrica, seguida do Cu, Au e Al.  Maleabilidade e ductibilidade.
  41. 41. Ligas Metálicas  Definição: São materiais com propriedades metálicas que contém dois ou mais elementos, sendo pelo menos um deles metal. Exemplos: - Liga de metais para fusíveis ( Bi, Pb, Sn e Cd) - Liga de ouro de joalharia (Au, Ag e Cu) - Amálgama dental (Hg, Ag e Cu) - Bronze ( Cu e Sn) - Latão (Cu e Zn)
  42. 42. Exercícios de fixação: Considere as seguintes substâncias químicas: H2, CH4, HCl, H2S e H2O. Qual delas apresenta moléculas associados por pontes de hidrogênio? a) H2 b) CH4 c) HCl d) H2S e) H2O CH3OH CH3 OH H H H H H H H H O OC C CH3OH CH3OH CH3 H H O O CH3 CH3OH CH 3 OH CH3 OH CH3 OH CH3OH CH3OH CH 3OH CH3 OH OH CH3 CH+ 3 CH3OH CH3 OH CH+ 3 OH- OH- 2. A figura que melhor representa a evaporação do metanol (CH3OH) é: a) b) c) d) e)
  43. 43. Exercícios de fixação: 3. Dentre os cloretos a seguir, o mais volátil, provavelmente é: a) CCl4 b) SiCl4 c) GeCl4 d) SnCl4 e) PbCl4

×