Resumo sobre o estudo das matrizes
Definição
As matrizes são tabelas de
números reais utilizadas em quase todos
os ramos d...
colunas, isto é,
Exemplo: [ ] é uma matriz de
ordem 2
____________________________________________________________________...
Texto matrizes wq
Próximos SlideShares
Carregando em…5
×

Texto matrizes wq

461 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
461
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
2
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Texto matrizes wq

  1. 1. Resumo sobre o estudo das matrizes Definição As matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência e da Engenharia. Várias operações executadas por cérebros eletrônicos são computações por matrizes. São utilizadas na Estatística, na Economia, na Física etc. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem mx n (lê-se m por n), sendo m ≥ 1 e n ≥ 1 Representação Uma matriz pode ser representada por: A= [ ] Como o quadro A é bastante extenso, a matriz será representada abreviadamente por: A = O elemento é afetado de dois índices: o primeiro, , representa a linha, e o segundo, , indica a coluna às quais o elemento pertence. Assim, temos: (lê-se: a um um) - elemento localizado na 1ª linha e 1ª coluna. (lê-se: a três dois) - elemento localizado na 3ª linha e 2ª coluna. ______________________________________________________________________ Tipos de matrizes Matriz linha  é a matriz que possui uma única linha, ou seja, tem ordem Exemplo: A= [ ] _____________________________________________________________________________ Matriz coluna  é a matriz que possui uma única coluna, ou seja, tem ordem . Exemplo: [ ] _____________________________________________________________________________ Diagonal principal  A diagonal principal da matriz é indicada pelos elementos da forma onde A outra diagonal é dita diagonal secundária. A= [ ] diagonal secundária Matriz quadrada é a matriz que tem o número de linhas igual ao número de
  2. 2. colunas, isto é, Exemplo: [ ] é uma matriz de ordem 2 _____________________________________________________________________________ Matriz nula é aquela que possui todos os elementos iguais a zero. Exemplo [ ] _____________________________________________________________________________ Matriz identidade denotada por tem os elementos da diagonal principal iguais a 1 e zero fora da diagonal principal. Exemplo: [ ] _____________________________________________________________________________ Matriz transposta  é uma matriz cuja ordem é , sendo suas linhas ordenadamente iguais às colunas da matriz A. É indicada por At . Exemplo: 𝐴 [ ], então At = [ ] _____________________________________________________________________

×