SlideShare uma empresa Scribd logo
1 de 24
Baixar para ler offline
TÓPICOS DE MECÂNICA QUÂNTICA
PARA O ENSINO MÉDIO
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 2
1 EFEITO FOTOELÉTRICO
Já parou para pensar em como as lâmpadas da rua acendem ao entardecer e se apagam
ao amanhecer? E em como funcionam os sensores de presença? Tanto o acendimento
automático das lâmpadas da rua como os sensores de presença têm relação com o efeito
fotoelétrico!
Mas o que é o efeito fotoelétrico? O efeito fotoelétrico é um fenômeno que
ocorre quando uma onda eletromagnética incide em um meio material, principalmente
um metal, e ocorre a emissão de elétrons.
Esse conceito bastante simples passou por um longo processo de pesquisas,
experimentos e descobertas. Para compreendê-lo, vamos percorrer esse caminho!
Um breve histórico...
O efeito fotoelétrico tem seu marco inicial possivelmente com Heinrich
Hertz, em 1887. Em suas experiências para compreender a natureza
eletromagnética da luz, observou um fenômeno interessante: notou que faíscas
no transmissor aumentavam a sensibilidade do detector. A natureza dessas
faíscas ainda não estava clara, mas mais tarde Hertz concluiu que a luz poderia
gerar faíscas e, também, que o fenômeno provavelmente seria devido apenas à
luz ultravioleta.
Em 1903, Philip Von Lenard publicou os resultados de seus experimentos,
realizados com tubos de raios catódicos, sobre o efeito fotoelétrico. Baseado em
suas observações, ele propôs que o efeito fotoelétrico ocorria em função do
comportamento ondulatório das radiações.
No entanto, suas conclusões eram inviáveis para explicar o fenômeno,
pois na visão clássica a luz é uma onda contínua cuja energia está espalhada
sobre a onda. Desse modo, ao aumentar a intensidade da luz, a velocidade
cinética dos elétrons deveria aumentar, pois haveria mais energia. No resultado
dos seus experimentos, ele verificou que, quando aumentava a intensidade da
luz, mais elétrons eram ejetados, em vez de aumentar a sua energia cinética,
contrariando a teoria.
Em 1905 Albert Einstein, baseado nas ideias de Max Planck, publicou em
um trabalho a hipótese da quantização da radiação eletromagnética pela qual,
em certos processos, a luz comporta-se como pacotes concentrados de energia,
chamados fótons. Nessa ideia, a luz deveria ter um comportamento de partícula.
Com essa ideia, Einstein conseguiu explicar, de forma satisfatória, como
ocorria o efeito fotoelétrico. Porém, a sua aceitação pela comunidade científica
ocorreu somente em 1914, quando o físico Robert Millikan confirmou as previsões
de Einstein, que ganhou o prêmio Nobel em 1921, por haver explicado
antecipadamente às observações de Millikan.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 3
1.1 Modelos atômicos
Como explicar um mundo cheio de fenômenos que não se pode ver? Para
compreender como o efeito fotoelétrico ocorre, é preciso compreendê-lo em nível atômico.
Por isso, é necessário discutirmos e analisarmos como a descoberta e a construção de
modelos para explicar o átomo foram importantes para a compreensão desse fenômeno e
de muitos outros.
As primeiras ideias a respeito do átomo tiveram a sua origem com os gregos Leucipo
e Demócrito, no século IV a.C. Na época, eles se perguntaram o que aconteceria se a matéria
fosse dividida continuamente. A conclusão a que chegaram é de que, em algum momento
a matéria não poderia ser mais dividida. Então, chamaram de átomo (a = negação; tomo =
partes) a parte da matéria que não poderia ser dividida.
Embora tenham ficado no campo filosófico, pois não havia provas experimentais
da sua existência por um longo período, essas ideias começaram a ganhar força por volta
de 1600. Foi quando houve o advento do estudo dos gases, destacando-se as ideias do
inglês Robert Boyle (1627-1691), e a evolução dos estudos acerca da natureza corpuscular
da matéria. A partir de então, não só foi comprovada a teoria a respeito dos átomos, como
também foram propostos modelos para descrevê-los. A seguir, veremos a construção e
evolução dos modelos atômicos até a forma como os conhecemos hoje.
1.1.1 Modelo atômico de Dalton (1803)
O químico inglês John Dalton (1766-1844), baseado em estudos de outros cientistas,
descobriu que cada substância pura era constituída de átomos de
um único tipo, idênticos entre si quanto às suas propriedades, ao
tamanho e ao modo de reação química. Com essa descoberta,
desenvolveu uma teoria denominada de Teoria Atômica de
Dalton, que propunha um modelo de átomo com as seguintes
características:
- toda matéria é constituída por átomos;
- os átomos são esferas maciças, indivisíveis e neutras;
- os átomos não podem ser criados nem destruídos;
- os elementos químicos são formados por átomos simples;
- os átomos de determinado elemento são idênticos entre si em tamanho,
forma, massa e demais propriedades;
- um composto é formado pela combinação de átomos de dois ou mais
elementos que se unem entre si em várias proporções simples. Cada átomo
guarda sua identidade química.
A ideia apresentada sobre o átomo por Dalton existiu por um período
de tempo, mas descobertas de outros cientistas logo começaram a suscitar a
questão de que o átomo não poderia ser apenas uma bolinha maciça sem
cargas.
Figura 1 – Cada elemento químico era
formado por átomos simples.
Fonte: Arquivo Próprio
Bola de
Bilhar!
Figura 2 – O modelo atômico de Dalton
ficou conhecido como bola de bilhar.
Fonte:
http://paulosutil.blogspot.com.br/2012/0
4/modelos-atomicos-dalton.html
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 4
Nessa época, alguns trabalhos se destacavam, tais como:
 a ideia de que a eletricidade estivesse associada aos átomos por Faraday;
 a descoberta dos raios-X por Röentgen;
 a descoberta da radioatividade por Becquerel;
 a descoberta do rádio e do polônio por Marie e Pierre Curie.
1.1.2 Modelo atômico de Thomson (1803)
Joseph John Thomson (1856-1940), pesquisando descargas elétricas em alto
vácuo, descobriu os elétrons. Essa descoberta mostrou que o átomo não era indivisível
como propunham os gregos e não era neutro como Dalton o descreveu.
No modelo proposto por Thomson, o átomo tinha as seguintes
características:
- os átomos continham partículas de carga negativa, denominadas de elétrons;
- os elétrons distribuíam-se de maneira uniforme numa “massa” positiva;
- apresentavam distribuição uniforme e contínua, o que garantia a estabilidade do
átomo;
- o diâmetro do átomo seria da ordem de 10-10
m.
O modelo atômico de Thomson ficou conhecido como pudim de passas,
porque ele considerava que o átomo era uma esfera com carga positiva distribuída
de forma uniforme, e os elétrons, fazendo papel das passas, ficavam espalhados
dentro dessa “massa positiva” e permeável.
1.1.3 Modelo atômico de Rutherford (1911)
Em 1911, o físico neozelandês Ernest Rutherford (1871-1937) fez um
experimento denominado de espalhamento de partículas alfa. As conclusões
desse experimento trouxeram uma nova ideia a respeito da estrutura do
átomo.
Em sua experiência, Rutherford bombardeou uma fina folha de ouro
com partículas alfa (pequenas partículas emitidas por um decaimento
radiativo denominado desintegração alfa, portadoras de carga elétrica
positiva emitidas por átomos radioativos como o polônio). Com uma tela de
material fluorescente posicionada atrás da folha, ele detectou que a maioria
das partículas atravessava a lâmina, enquanto que outras mudavam de
direção e algumas ricocheteavam.
Com esses resultados, Rutherford concluiu que os átomos não deveriam
ser maciços e que algumas partículas eram ricocheteadas porque deveria haver
uma região densa em que as partículas eram refletidas. Desse modo, o modelo
proposto por ele tinha as seguintes características:
Pudim de
passas
Figura 3 – Modelo Atômico de
Thomson.
Fonte: Arquivo Próprio.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 5
- O átomo não é maciço, mas formado por uma região central,
denominada núcleo, muito pequeno em relação ao diâmetro
atômico.
- O núcleo é carregado com carga positiva, e ao seu redor,
estão os elétrons, distribuídos espaçadamente numa região
denominada de eletrosfera. A eletrosfera consiste em órbitas
circulares.
- Os elétrons são partículas muito mais leves que os
prótons, cerca de 1.836 vezes, que neutralizam a carga nuclear.
O modelo trouxe grandes avanços no entendimento do
átomo, mas algumas questões permaneciam sem respostas,
como, por exemplo: como os prótons, tendo carga de mesmo
sinal, se concentravam no núcleo do átomo em vez de se repelirem? Outra questão se
referia ao fato de que se sabia na época, graças aos trabalhos de Maxwell sobre
eletromagnetismo, que partículas carregadas e em movimento acelerado irradiam energia
na forma de ondas eletromagnéticas e, portanto, “gastam” energia. Segundo essa teoria,
os elétrons não poderiam ter órbita circular estável e estariam sofrendo perda constante
de energia durante seu giro em torno do núcleo, e, por consequência, deveriam cair no
núcleo.
1.1.4 Modelo atômico de Bohr (1913)
Em 1913, o físico dinamarquês Niels Bohr (1885-1962) propôs um modelo atômico
combinando os trabalhos de Planck, Einstein e Rutherford. O grande diferencial do seu
modelo foi aperfeiçoar o modelo de Rutherford explicando a estabilidade do átomo.
Bohr formulou a hipótese de que o elétron do átomo de hidrogênio girava em
torno do núcleo atraído pela carga positiva. De acordo com os estudos realizados até então
sobre o átomo, a órbita do elétron teria que ser circular ou elíptica como as órbitas dos
planetas ao redor do Sol. Para simplificar os cálculos, Bohr decidiu trabalhar com órbitas
circulares.
No modelo clássico do átomo, à medida que o elétron perde energia por radiação,
o raio da órbita se torna cada vez menor e a frequência da radiação emitida cada vez maior,
um processo que acaba apenas quando o elétron se choca com o núcleo. Desse modo, o
modelo de Bohr deveria prever que o átomo irradia energia de forma
contínua e possui uma vida muito curta. Mas na prática, a menos que
sejam excitados por um agente externo, os átomos não irradiam
energia contínua.
Sendo assim, Bohr fixou o referencial no núcleo atômico e
postulou as seguintes hipóteses sobre o átomo:
1. O movimento do elétron ao redor do núcleo atômico é
descrito pelas leis de Newton.
2. Os elétrons se movem em certas órbitas sem irradiar
energia. Essas órbitas foram chamadas por Bohr de estados
Figura 5 – Modelo atômico de Rutherford.
Fonte: Arquivo Próprio.
Modelo
Planetário
Próton
Nêutron
Elétron
Figura 6 – Modelo Atômico de Bohr.
Fonte: Arquivo Próprio.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 6
estacionários. Portanto, diz-se que o elétron está em um estado estacionário ou em um
nível de energia no qual cada órbita é caracterizada por um número quântico (n), que pode
assumir valores inteiros entre 1, 2, 3...
3. Um elétron que permanece em um dado estado estacionário não emite energia,
apresentando, assim, energia constante.
4. Para que um elétron passe de uma órbita para outra, é necessário que haja
absorção ou emissão de determinada quantidade de energia. Desse modo, para que um
elétron salte de uma órbita menos energética para outra mais energética, precisa absorver
uma quantidade de energia. Porém, o elétron não ficará nesse nível, devendo retornar ao
seu local de origem e, ao retornar, libera a energia excedente por meio de uma onda
eletromagnética.
5. A energia absorvida ou liberada na forma de radiação eletromagnética é
calculada pela expressão:
∆𝑬 = 𝒉. 𝒇 = 𝑬 𝒇 − 𝑬𝒊 = 𝒉. 𝒇
Ei = energia do estado inicial do orbital atômico
Ef = energia final
f = frequência da onda eletromagnética emitida ou absorvida
h = constante de Planck.
Com esses postulados, Bohr explicou como os elétrons giravam continuamente ao redor
do núcleo sem irradiar energia e, desse modo, evitando a colisão com o núcleo. Também mostrou
que, quando muda de órbita, o elétron ou absorve ou emite um fóton, e, portanto, a energia se
conserva.
1.1.4.1 Modelo de Bohr para átomos com um elétron
Para compreender o modelo proposto por Bohr, vamos analisar o átomo
de hidrogênio. O átomo de hidrogênio apresenta um único elétron “orbitando”
um próton. Nesse caso, segundo o modelo de Bohr, esse elétron está ocupando o
nível de menor energia, que corresponde a n = 1. Esse nível é chamado de estado
fundamental.
Se um elétron receber a energia adequada, ele passará para um estado
de maior energia, chamado de estado excitado, mas
ficará nesse estado por um curtíssimo intervalo de
tempo; rapidamente ele emitirá um fóton (onda
eletromagnética) e voltará para o estado
fundamental.
Se tomarmos como exemplo o hidrogênio,
podemos observar no diagrama de níveis de energia
que o estado fundamental do hidrogênio, ou seja,
nível 1, corresponde à energia de -13,6 eV. Isso quer
dizer que nesse estado o átomo de hidrogênio não
emite radiação. Para passar, por exemplo, para o
Figura 7 – Átomo de Hidrogênio.
Fonte: Arquivo Próprio.
Figura 8 – Níveis de energia de Bohr para o átomo de
hidrogênio.
Fonte:
http://osfundamentosdafisica.blogspot.com.br/2013/12/cur
sos-do-blog-eletricidade_11.html
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 7
estado 2 (n = 2), o elétron precisará absorver de alguma forma a energia
(por meio de choque de uma partícula tipo um gás e uma corrente elétrica
ou da absorção de uma radiação). Na realidade esse salto de nível pode
ocorrer do primeiro para o segundo, ou do primeiro para o terceiro, ou do
primeiro para o último, o que dependerá da quantidade de energia que o
elétron irá absorver. Como o elétron permanece um curtíssimo intervalo
de tempo no nível em que ocorreu o “salto”, ele retornará para o seu
estado fundamental, e esse retorno pode ocorrer nível por nível, pulando
algum nível, ou do nível do salto para o fundamental.
Em grupo, construa uma linha de tempo com todos os modelos atômicos, utilizando imagens
dos modelos e dos seus construtores. Para cada modelo, destaque as suas principais
características. Apresente para a turma a sua linha de tempo.
1.2 Modelo padrão das partículas elementares
Com o modelo do átomo proposto por Bohr, a explicação do átomo estava quase
completa. Restavam poucas coisas ainda por explicar, uma delas é o porquê o núcleo
atômico não se separa ou desintegra se cargas iguais (prótons) se repelem.
Em 1932, Chadwick (1891-1974) começa a responder a essa questão com a
descoberta do nêutron. O nêutron é uma partícula sem carga e que está, também, no
núcleo dos átomos junto aos prótons. Em 1930, o físico austríaco Wolfgang Pauli postulou
a existência de uma partícula de dificílima detecção, ao estudar o decaimento radioativo: o
neutrino. Hoje ele é bem conhecido, e sabe-se que é capaz de atravessar a Terra, vindo
através dos confins do Universo sem “interagir” com um átomo sequer. Origina-se em
grandes quantidades em explosões de supernovas e chegam-nos, também, nos raios
cósmicos, partículas de altíssima energia de origem desconhecida.
Com essas duas descobertas, na década de 1930, conhecia-se, então, o elétron (e-
), o próton (p), o nêutron (n) e o neutrino ( ), partículas ainda menores que o átomo. Com
o uso da técnica da aceleração de partículas e a colisão de altíssima energia, conseguiu-se
“partir” o núcleo, e novas partículas foram encontradas. Esse fato mostrou que o átomo
escondia um universo muito menor ainda!
A descoberta dessas partículas levou ao desenvolvimento do modelo padrão das
partículas elementares. Segundo Moreira (2009) o chamado modelo padrão das partículas
elementares não é propriamente um modelo; é uma teoria. E das melhores que temos.
Aliás, na opinião de muitos físicos, a melhor de todas sobre a natureza da matéria. Por
exemplo, segundo Gordon Kane, um físico teórico da Universidade de Michigan:
Atividade proposta
[...] o Modelo Padrão é, na história, a mais sofisticada teoria matemática
sobre a natureza. Apesar da palavra “modelo" em seu nome, o Modelo Padrão é uma
teoria compreensiva que identifica as partículas básicas e especifica como interagem.
Tudo o que acontece em nosso mundo (exceto os efeitos da gravidade) resulta das
partículas do Modelo Padrão interagindo de acordo com suas regras e equações. (ano,
p. 58). FALTA REFERÊNCIA NO FINAL
Figura 9- O elétron do átomo de hidrogênio recebe energia
(absorve) e muda de nível. Ao retornar ao seu nível, emite
um fóton (libera energia).
Fonte:
http://astro.unl.edu/naap/hydrogen/animations/hydrogen_atom.h
tml
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 8
Essa teoria é o que se tem de novo a respeito do mundo subatômico. É chamado
de partículas elementares porque são essas partículas que formam outras partículas, os
átomos e toda a matéria. Segundo o modelo padrão, temos seis partículas elementares da
família dos quarks e seis da família dos léptons, conforme o quadro abaixo:
Os quarks são as partículas fundamentais da natureza que estão no núcleo do
átomo e sofrem a influência da força nuclear forte. Apresentam carga elétrica fracionária e
podem se juntar para formar outras partículas denominadas de hádrons.
Os hádrons se subdividem em:
a) Mésons: partículas formadas por dois quarks, um quark e um antiquark.
Exemplo: méson K+, composto por um quark up e um antiquark.
b) Bárions: partículas formadas por três quarks (ou antiquarks). Exemplo: prótons
e nêutrons.
Para formar um próton, são necessários dois quarks up (de carga
elétrica igual a + 2/3 cada) e um quark down (de carga elétrica igual a - 1/3).
A soma das cargas dá + 1, que é a carga do próton.
Já para se formar um nêutron, são necessários dois quarks down (de
carga elétrica igual a - 1/3 cada) e um quark up (de carga elétrica igual a + 2/3),
cargas cuja soma é zero.
Os léptons não apresentam estruturas internas, nem dimensões mensuráveis;
comportam-se, portanto, como partículas pontuais nas interações com outras partículas e
ondas eletromagnéticas. Não sofrem a influência da força nuclear forte que mantém os
prótons e os nêutrons unidos, pois não ficam no núcleo e participam somente das
interações eletromagnéticas e fracas. Os mais conhecidos são o elétron e o neutrino.
Uma característica interessante dos léptons é a sua possibilidade de decair e
transmutar-se em outros léptons. O muon e o tau são instáveis, e este último se desintegra
espontaneamente em partículas que apresentam uma estrutura, isto é, uma partícula sem
estrutura pode gerar uma partícula com estrutura, ou uma partícula elementar pode gerar
uma partícula não elementar.
Figura 10 – Família dos quarks e dos
léptons.
Fonte: Arquivo Próprio.
Figura 11 – Representação de um próton (à direita) e um
nêutron (à esquerda)
Fonte: Arquivo Próprio.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 9
1.2.1 As forças e as partículas de interação
Na Física Moderna, as forças ou interações são transmitidas pela troca de
partículas mediadoras, denominadas de bósons. As quatro forças fundamentais – força
forte, gravitacional, eletromagnética e fraca – utilizam-se delas. Abaixo, veremos as quatro
forças e as partículas mediadoras de cada uma:
1 – Força gravitacional: sabemos que quaisquer corpos com massa se atraem,
como o Sol e a Terra. Mas até o momento, o gráviton não foi detectado experimentalmente,
e por isso a interação gravitacional não está incluída no modelo padrão descrito.
2 – Força eletromagnética: esta força envolve a carga elétrica que as partículas
apresentam. A interação ocorre por meio dos fótons (), que constituem a partícula
mediadora.
3 – Força forte: é a força que mantém os quarks unidos para formar os hádrons no
núcleo atômico. A partícula mediadora chama-se glúon (nome cuja origem vem do inglês
glue – cola) e é conhecida como força cor. Os experimentos mostram que os quarks só se
unem em combinações que sejam neutras em relação à cor. Para que se torne neutra, é
necessária a combinação do vermelho, verde e azul, resultando no branco, uma cor neutra.
Um bárion, por exemplo, pode ser a combinação de um vermelho com um verde e com um
azul.
4 – Força fraca: é responsável pelo decaimento radioativo 𝜷. Interage com os
neutrinos (que não têm carga elétrica e talvez não apresentem massa). As partículas
mediadoras dessa interação são o bóson de Higgs e partículas W+
, W-
, Z0
.
Resumindo:
Bósons
FORÇA PARTÍCULA MEDIADORA COR
Forte Glúon Sim
Fraca
𝑊+
𝑊−
𝑍0
Higgs
Neutra
Eletromagnética Fótons Neutra
Gravitacional Gráviton Neutra
1.2.2 Bóson de Higgs
Em 1964, um físico chamado Peter Higgs, na Escócia, teve uma ideia que fervilhava
na época: publicou a teoria que prediz a existência de um campo de energia que cobre todo
o universo, o campo de Higgs. Ele propôs esse campo, tendo em vista que ninguém entendia
por que algumas partículas subatômicas tinham muita massa, enquanto outras, pouca ou
nenhuma massa.
O campo de energia proposto por Higgs interagia com as partículas subatômicas e
lhes daria massa. As partículas com muita massa seriam aquelas que interagiam mais com
o campo, enquanto que as partículas sem massa seriam aquelas que não interagiam.
O bóson de Higgs, descoberto em julho de 2012 e confirmado em março de 2013,
faz parte do mecanismo que dá massa a toda a matéria e ganhou esse nome por causa de
Figura 12 - César Lattes (1924-
2005), codescobridor do méson pi,
descoberta que levou o Prêmio
Nobel de Física de 1950.
Fonte:
https://pt.wikipedia.org/wiki/C%C3%A9sar_L
attes
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 10
Peter Higgs. É o menor pedacinho do campo de Higgs. O campo de Higgs, que dá a massa
às partículas subatômicas, é feito de incontáveis bósons de Higgs!
O bóson de Higgs é popularmente conhecido como a Partícula de Deus. Isso se
deve ao livro publicado pelo cientista Leon Lederman sobre a partícula. Inicialmente, o título
do livro era intitulado The Goddamn Particle (A Partícula Maldita), devido ao fato de haver
uma frustação dos cientistas por não a encontrar. Como o nome não era interessante para
fins comerciais, o título foi alterado para The God Particle, A
Partícula de Deus.
O bóson de Higgs foi detectado no acelerador de partículas
Large Hadron Collide (LHC), no CERN. O laboratório localiza-
se em um túnel de 27 km de circunferência, 175 metros
abaixo do nível do solo na fronteira franco-suíça, próximo a
Genebra, na Suíça. É o maior acelerador de partículas e o de
maior energia existente do mundo. Depois de ficar dois anos
parado para manutenção, voltou a funcionar em abril de
2015, com a intenção de abrir uma nova fronteira para a
ciência e fazer descobertas sobre as origens do universo.
1. Após Bohr fornecer uma solução satisfatória para o fato de os elétrons apresentarem
valores definidos de energia permitidos em cada nível e por isso não emitirem energia
continuamente até caírem no núcleo, a Física Quântica (Física das Partículas) começa o seu
grande desenvolvimento. Sobre a Física das Partículas, responda:
a) O que é uma partícula? E uma partícula elementar?
b) Que tipos de partícula formam um próton e um nêutron?
c) Como os cientistas descobriram a existência de tais partículas?
2. No início da formação do universo, existia uma única força fundamental e um tipo de
partícula elementar. Mas, por um motivo ainda desconhecido, as forças começaram a se
separar, provocando a inflação do universo e o surgimento de diferentes partículas. A
respeito disso, responda:
a) O que é matéria? E o que é força?
b) Quais são as forças fundamentais do universo? Descreva as características de cada uma.
3. O bóson é uma partícula que possui spin inteiro e obedece à estatística de Bose-Einstein.
Ele tem esse nome em homenagem ao físico indiano Satyendra Nath Bose. Entre os
exemplos de bósons, estão as partículas elementares, como o fóton, o glúon, o bóson de
Higgs, e partículas compostas, como mésons e núcleos atômicos estáveis, como o hélio-4.
Em 2012, o bóson de Higgs foi descoberto e confirmado, de fato, em 2013. O que é o bóson
de Higgs? Qual a importância dessa descoberta?
Figura 13 – O novo equipamento conta agora com uma
potência duas vezes superior àquela que foi utilizada
para descobrir o bóson de Higgs.
Fonte: http://ciencia.estadao.com.br/noticias/geral,maior-acelerador-de-
particulas-do-mundo-volta-a-funcionar-imp-,1664182
Questões propostas
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 11
1.3 A Luz
1.3.1 O que é a luz
Numa definição geral, podemos dizer que a luz é uma onda eletromagnética que,
dentro do espectro eletromagnético, situa-se no intervalo em que o olho humano é
sensível. Por se tratar de uma onda eletromagnética, tem algumas características, dentre
as quais:
- é uma onda transversal;
- tem a capacidade de se propagar no vácuo (a velocidade de propagação no vácuo
é de 3.108
m/s ou 300.000 Km/s);
- pode ser polarizada.
Uma onda eletromagnética tem as seguintes
grandezas físicas associadas:
 Frequência: número de oscilações que seus
campos elétrico e magnético realizam durante um segundo.
 Comprimento de onda: distância entre duas
cristas ou dois vales. É determinado por: 𝝀= 𝒄/𝒇 (Lembrete: c
é a velocidade de propagação da luz).
 Velocidade de propagação: 𝒗 = 𝝀.𝒇.
A figura abaixo mostra o espectro eletromagnético. No espectro, podemos
observar que a faixa visível da luz está entre o ultravioleta e o infravermelho. A faixa visível
da luz é formada pelas cores violeta, azul, ciano, verde, amarelo, alaranjada, vermelha, que
juntas formam a cor branca.
A imagem mostra, ainda, o comprimento de onda das ondas eletromagnéticas. Os
raios gama, raios-x e ultravioleta apresentam comprimento de onda pequeno e uma grande
frequência. Essas ondas são chamadas de ondas ionizantes, pois têm a capacidade de
penetrar a célula de seres vivos e causar mutações. As ondas na faixa do infravermelho e
ondas de rádio apresentam comprimento de onda maior e baixa frequência. Essas ondas
são “ondas não ionizantes”, pois não afetam seres vivos.
Figura 15 - Espectro eletromagnético. Ilustração: Peter Hermes Furian / Shutterstock.com
Figura 14 – Grandezas físicas de uma onda.
Fonte: Arquivo Próprio.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 12
Do espectro visível, temos que a faixa do violeta apresenta o menor comprimento
de onda e, por consequência, a maior frequência, e a faixa do vermelho, o maior
comprimento e, por consequência, a menor frequência. Podemos comprovar isso
matematicamente da seguinte maneira:
𝒇 𝒗𝒊𝒐𝒍𝒆𝒕𝒂 =
𝟑. 𝟏𝟎 𝟖
𝟒𝟎𝟎. 𝟏𝟎−𝟗
= 𝟕, 𝟓 𝑷𝑯𝒛
𝒇 𝒗𝒆𝒓𝒎𝒆𝒍𝒉𝒂 =
𝟑. 𝟏𝟎 𝟖
𝟕𝟎𝟎. 𝟏𝟎−𝟗
= 𝟒, 𝟑 𝑷𝑯𝒛
Com esses resultados, podemos observar que a faixa de luz visível está entre as
frequências de 4,3 PHz a 7,5 PHz.
1.3.2 Dualidade onda-partícula da luz
No início do capítulo, vimos que, para explicar o efeito fotoelétrico, Einstein
estabeleceu que a luz deveria ser composta por partículas de energia, as quais chamou de
fótons. Ainda, baseado nas ideias de Planck, estabeleceu que a energia estava concentrada
em pacotes de energia, caracterizando um comportamento corpuscular da luz. Mesmo
sendo contraditória à teoria ondulatória da luz, a ideia conseguia explicar de maneira
satisfatória o efeito fotoelétrico.
Quando, definitivamente, a ideia de Einstein foi aceita, havia um problema: a luz
era uma onda ou uma partícula, afinal? Para resolver esse impasse, os físicos propuseram
que a luz apresentava uma natureza “dual”, ou seja, em determinados fenômenos, ela se
comporta como uma onda, tendo, portanto, uma natureza ondulatória, e, em outros
momentos, como se fosse uma partícula, com natureza corpuscular. Essa teoria foi
estabelecida, definitivamente, em 1923, depois do experimento em que se observou um
fenômeno conhecido hoje como Efeito Compton, realizado pelo físico Arthur Holly
Compton. Essa é a teoria que atualmente descreve a natureza da luz: dualidade onda-
partícula.
Em 1925, o físico francês Louis Victor de Broglie reforçou o caráter dual da luz e
trouxe à tona a possibilidade de o elétron ser também interpretado como uma onda, tendo,
desse modo, um caráter de partícula-onda – da mesma forma que a luz pode ser
interpretada como uma onda e como uma partícula.
Segundo essa ideia, a dualidade onda-partícula se estende, também, a toda a
matéria, como prótons, nêutrons, átomos e moléculas. Baseado na interpretação
matemática desenvolvida para as ondas eletromagnéticas, De Broglie propôs uma equação
em que é possível calcular o comprimento de onda quando uma partícula tem um
comportamento ondulatório. Essa equação é descrita abaixo:
𝝀 =
𝒉
𝒑
Onde:
𝝀 = 𝒄𝒐𝒎𝒑𝒓𝒊𝒎𝒆𝒏𝒕𝒐 𝒅𝒆 𝒐𝒏𝒅𝒂 𝒅𝒆 𝑩𝒓𝒐𝒈𝒍𝒊𝒆;
𝒑 (𝒎. 𝒗)
= 𝒎𝒐𝒎𝒆𝒏𝒕𝒐 𝒍𝒊𝒏𝒆𝒂𝒓 𝒅𝒂 𝒑𝒂𝒓𝒕í𝒄𝒖𝒍𝒂 (𝒑𝒓𝒐𝒅𝒖𝒕𝒐 𝒅𝒂 𝒎𝒂𝒔𝒔𝒂 𝒑𝒆𝒍𝒂 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅𝒆 𝒅𝒂 𝒑𝒂𝒓𝒕í𝒄𝒖𝒍𝒂)
𝒉 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 𝒅𝒆 𝑷𝒍𝒂𝒏𝒄𝒌
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 13
Analisando-se a equação, podemos notar que quanto maior é o momento linear
menor é o comprimento de onda. Em uma relação com a frequência, teremos que quanto
menor é o comprimento de onda maior é a frequência e, portanto, maior será a sua energia.
É interessante destacar que é difícil observar o caráter ondulatório de partículas.
1.3.3 A constante de Planck
No final do século XIX, o cientista escocês James Clerk Maxwell (1831-1879) havia
proposto, definitivamente, que a luz era uma onda eletromagnética. Com essa teoria, vários
fenômenos relacionados à luz puderam ser explicados. Mas havia um problema quanto à
explicação da cor que determinados objetos emitiam quando eram aquecidos. A questão
era a seguinte: um objeto é visualizado porque reflete a radiação incidente sobre ele em
determinada frequência e em determinado comprimento de onda correspondente à sua
cor, na faixa da luz visível. Quando é aquecido em temperaturas altíssimas, esse objeto não
reflete a luz que incide sobre ele, mas emite luz própria em intensidade suficiente para ser
visualizado.
Um exemplo disso pode ser representado pelo aquecimento do ferro. Quando
aquecido, ele vai mudando a sua cor à medida que sua temperatura aumenta. Primeiro fica
vermelho, depois amarelo, posteriormente branco e, em temperaturas extremamente
elevadas, o branco fica ligeiramente azul. Essa constatação demonstrou que a radiação
emitida dependia da variação da temperatura, e não do tipo do material. Esse
comportamento ficou conhecido como emissão do corpo negro. Vale salientar que corpo
negro não se refere à cor, mas sim a um objeto ideal que absorve toda a radiação incidente
sobre ele.
O que inquietava os cientistas da época era o fato de que os dados obtidos
experimentalmente se mostravam incompatíveis com a teoria ondulatória de Maxwell.
Segundo a teoria, um corpo negro deveria emitir uma radiação ultravioleta muito intensa,
o que causaria uma devastação ao seu redor, pela emissão de radiações de alta frequência.
Essa conclusão ficou conhecida como a catástrofe do ultravioleta. Mas o que era previsto
pela matemática na teoria não condizia com os experimentos observados.
Foi buscando a solução para esse problema que, em 1900, o físico Max Planck
lançou a hipótese de que os corpos aquecidos emitiam energia radiante em pacotes
discretos, e não de forma contínua como se imaginava. Esses pacotes de energia foram
denominados de quantum (quanta no plural), que vem do latim e significa “quantidade”.
Segundo a sua hipótese, a energia de cada pacote era proporcional à frequência da
radiação.
Podemos analisar a hipótese de Planck matematicamente pela expressão:
𝑬 = 𝒉. 𝒇
Onde:
E = energia do fóton
h = constante de Planck, cujo valor é 𝟔, 𝟔𝟑. 𝟏𝟎−𝟑𝟒
𝑱. 𝒔
f = frequência da onda eletromagnética
Essa equação expressa a menor quantidade de energia que pode ser convertida
em luz de frequência f.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 14
A constante proposta por Planck foi uma ideia revolucionária na época, tendo
como função inicial simplesmente ajustar os cálculos matemáticos referentes ao corpo
negro com a teoria. Mais tarde, no entanto, essa constante ganhou nova conotação no
cenário científico, tornando-se de grande importância para a Física Moderna. Inclusive,
como já visto anteriormente, para explicar o efeito fotoelétrico, Einstein se baseou nos
estudos de Planck e na sua constante.
Uma caneta laser (laser-pointer) é usada por um professor para apontar detalhes numa tela
de projeção. Um aluno pode ver melhor o dispositivo em suas mãos e percebe que nele está
escrito em letras pequenas “1mW – 660 nm”. O aluno, usando seus conhecimentos de Física
Moderna, resolve fazer alguns cálculos para determinar a frequência f da radiação emitida,
a energia E de cada fóton e o número N de fótons emitidos pela caneta em cada segundo.
Faça o mesmo que o aluno. Determine:
a) o valor de f;
b) o valor de E;
c) o valor de N.
(Questão extraída do livro: Tópicos de Física Moderna. Autor: Dulcídio Braz Jr. 2002).
Resolução:
A questão fornece os seguintes dados:
𝒄𝒐𝒎𝒑𝒓𝒊𝒎𝒆𝒏𝒕𝒐 𝒅𝒆 𝒐𝒏𝒅𝒂 (𝝀) = 𝟔𝟔𝟎 𝒏𝒎
𝒑𝒐𝒕ê𝒏𝒄𝒊𝒂 (𝑷) = 𝟏 𝒎𝑾
𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅𝒆 (𝒄) = 𝟑. 𝟏𝟎 𝟖
𝒎/𝒔
𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 𝒅𝒆 𝑷𝒍𝒂𝒏𝒄𝒌 (𝒉) = 𝟔, 𝟐𝟔. 𝟏𝟎−𝟑𝟒
𝑱. 𝒔
a) Para calcular a frequência, usaremos: 𝒇 =
𝒗
𝝀
. (Lembrete: como se trata de um laser (onda
eletromagnética), vamos considerar a velocidade como sendo a velocidade da luz no vácuo).
𝒇 =
𝟑. 𝟏𝟎 𝟖
𝟔𝟔𝟎. 𝟏𝟎−𝟗
= 𝟒, 𝟓𝟒. 𝟏𝟎 𝟏𝟒
𝑯𝒛.
b) A energia de um fóton é dada por: 𝑬 = 𝒉. 𝒇
𝑬 = 𝟔, 𝟐𝟔. 𝟏𝟎−𝟑𝟒
. 𝟒, 𝟓𝟒. 𝟏𝟎 𝟏𝟒
= 𝟐, 𝟖𝟒. 𝟏𝟎−𝟏𝟗
𝑱. 𝒔
c) A potência pode ser definida por: 𝑷 =
𝚫𝑬
𝚫𝑻
, onde: 𝚫𝑬 = 𝑵. 𝑬 será dado pela soma das
energias de cada fóton.
𝑵 =
𝚫𝑻𝐏
𝐄
=
𝟏. 𝟏. 𝟏𝟎−𝟑
𝟐, 𝟖𝟒. 𝟏𝟎−𝟏𝟗
= 𝟑, 𝟓. 𝟏𝟎 𝟏𝟓
𝒇ó𝒕𝒐𝒏𝒔
Exemplo resolvido
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 15
1. Como podemos definir a luz? Por que se diz que “a sua natureza é dual”?
2. O que significa dizer que a luz é quantizada? Por que não notamos a quantização da
energia nas atividades cotidianas?
3. Arrume, em ordem crescente de comprimento de onda, os seguintes tipos de fótons de
radiação eletromagnética: raios-X, ondas de rádio, radiação ultravioleta, radiação
infravermelha, luz visível, raios gama.
4. Classifique cada uma das seguintes afirmativas como falsas ou verdadeiras. Corrija as
afirmativas que são falsas.
a) A luz visível é uma forma de radiação eletromagnética.
b) A frequência de radiação aumenta à medida que o comprimento de onda aumenta.
c) A luz ultravioleta tem comprimentos de onda maiores que a luz visível.
d) A radiação eletromagnética e as ondas sonoras movem-se à mesma velocidade.
e) Uma onda eletromagnética pode se propagar no vácuo.
f) Os raios-X são um tipo de onda não ionizante, pois ao atingirem um ser vivo não causam
danos a sua célula.
5. Um tipo de queimadura de sol ocorre com a exposição à luz ultravioleta de comprimento
de onda próximo a 325 nm. Qual é a energia de um fóton com esse comprimento de onda?
6. Suponha que existam duas radiações, uma cujo comprimento de onda vale 0,452 pm e
outra cuja frequência é de 2,5 x 1016
Hz. A respeito dessas duas radiações, qual delas seria
visível a olho nu? Justifique a sua resposta.
Quantização da luz
A luz é “quantizada” porque a emissão da energia pelos átomos não se dá
de uma maneira contínua, mas sim aos saltos, em pequenas quantidades
denominadas quanta. Um "quantum" dessa energia quantizada é chamado de
fóton.
A título de exemplo, temos que a menor energia que um elétron pode
apresentar ao orbitar em torno de um núcleo de hidrogênio é -13,6eV. Para que esse
elétron salte para o nível seguinte cuja energia é de -3,4eV, ele precisa absorver um
valor específico de energia, pois jamais possuirá uma energia intermediária.
No nosso dia a dia, não percebemos que a luz é quantizada, pois, como
Planck demostrou, a energia de um fóton, por exemplo, é muito pequena (h.f).
Objetos macroscópicos ganham e perdem quantidades de energia muito maiores
que um “quantum de energia”.
Questões propostas
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 16
7. Átomos de mercúrio excitados emitem luz intensa em um comprimento de onda de 436
nm. Qual é a frequência dessa radiação? Utilizando as diferentes regiões do espectro
eletromagnético, determine a cor associada ao seu comprimento de onda.
8. Calcule a energia de um fóton amarelo cujo comprimento de onda é 589 nm.
9. Um anúncio luminoso emite luz azul e vermelha. O comprimento de onda da luz vermelha
é de 680 nm e o da luz azul é de 420 nm. Que tipo de radiação envolve menor energia, a luz
azul ou a luz vermelha?
10. Certo fóton de raios-X tem o comprimento de onda de 35,0 pm. Calcular:
a) energia do fóton;
b) a sua frequência.
11. A luz amarela de uma lâmpada de sódio, usada na iluminação de estradas, tem o
comprimento de onda de 589 nm. Qual a energia de um fóton emitido por uma dessas
lâmpadas?
1.4 Efeito fotoelétrico
Chegamos ao efeito fotoelétrico, assunto desse capítulo! Para chegarmos até aqui,
vimos os modelos atômicos, a teoria atual sobre as partículas, a natureza dual da luz e as
contribuições de Max Planck e Einstein no entendimento do fenômeno.
Para retomarmos o conceito, temos que:
O efeito fotoelétrico é um fenômeno que ocorre quando uma onda
eletromagnética incide em um meio material, principalmente um metal, e ocorre a
emissão de elétrons. Mas não são todos os metais em que ocorre tal fenômeno, pois é
necessária uma energia mínima para provocá-lo. Cada metal necessita de uma energia
mínima diferente, assim como a frequência da onda eletromagnética incidente poderá
fornecer ou não essa energia.
Para compreendermos melhor, vamos tomar como exemplo a simulação abaixo,
que retoma o experimento realizado por Lenard. (Sugestão: você poderá fazer a simulação na
sessão “Simulações – Efeito Fotoelétrico”).
Na simulação abaixo, temos, dentro de uma ampola de vidro, no vácuo, duas placas
de metal (o material pode ser definido): uma positiva e outra negativa. Ambas estão ligadas
a um circuito elétrico. Sobre a placa negativa existe uma fonte de luz, cuja frequência pode
ser definida do infravermelho ao violeta, e sua intensidade também pode variar.
Figura 16 - Simulador que representa o experimento realizado por Lenard.
Fonte: PHET, 2015.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 17
Quando a fonte de luz é ligada e a frequência do feixe apresenta energia suficiente,
elétrons são ejetados e atraídos pela placa positiva. Esse fluxo de elétrons irá produzir uma
corrente elétrica, identificada pelo amperímetro ligado ao
circuito. Caso a frequência não seja suficiente, os elétrons não
serão ejetados, e o efeito fotoelétrico não ocorrerá.
O que ocorre aqui é que a luz, ao atingir a superfície da
placa, “joga” pacotes de energia, ou seja, fótons assim
denominados por Einstein, com uma energia definida pela
frequência. Esses fótons interagem com a matéria como se
fossem partículas e se propagam de forma ondulatória. Uma
parte da energia transferida pelo fóton é usada para realizar o
trabalho de “arrancar” o elétron do material, e o restante é
transformado em energia cinética, que provoca o movimento do
elétron até a placa positiva.
Esse experimento comprova que:
1. Para determinada frequência, o número de elétrons
emitidos pela placa metálica iluminada é proporcional à intensidade da luz incidente na
placa, ou seja, ao aumentar a intensidade do feixe de luz, mais elétrons são arrancados.
2. A energia cinética dos elétrons emitidos pela placa é proporcional à frequência
da radiação incidente, independentemente da intensidade dessa radiação. Desse modo,
quanto maior for a frequência da luz incidente, maior será a sua energia cinética.
Analisando sob o aspecto do modelo atômico
proposto por Bohr, temos o efeito fotoelétrico da seguinte
maneira:
um fóton, ao incidir sobre um elétron, deve fornecer
uma energia específica que faça com que o mesmo salte de
um nível para o outro ou seja ejetado. Mas, para que ocorra o
efeito fotoelétrico, é necessário que o elétron seja ejetado!
1.4.1 Determinação da energia máxima de saída do elétron
Quando o elétron absorve a energia trazida pelo
fóton, uma parte dela é transformada em energia cinética, para que ele possa vencer a
barreira da superfície e seja ejetado. Assim, a energia de saída do elétron é igual à energia
do fóton menos a energia necessária para chegar até a superfície. Desse modo, temos que:
A energia de um fóton é dada por:
𝑬 = 𝒉. 𝒇
Essa energia de cada fóton se transforma em energia cinética e em trabalho
realizado para arrancar o elétron do material. Então, temos:
𝑬 = 𝝉 + 𝑬 𝒄𝒊𝒏 (𝒎á𝒙) → 𝒉. 𝒇 = 𝝉 +
𝒎.𝒗 𝒎á𝒙
𝟐
𝟐
,
Onde:
hf = energia do fóton incidente
𝝉 = função trabalho (energia necessária para o elétron, dentro do metal, ser
ejetado. Depende do material)
𝒎.𝒗 𝒎á𝒙
𝟐
𝟐
= energia cinética
Figura 17 - Os elétrons estão sendo ejetados e atraídos
pela placa positiva.
Fonte: PHET, 2015.
Fóton
Incidente
Elétron
Ejetado
Figura 18 – Um fóton incidindo em um elétron.
Fonte: Arquivo Próprio.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 18
Essa equação demonstra que:
- a intensidade da luz é proporcional ao número de porções de energia contido no
feixe luminoso;
- o número de elétrons é dado pela frequência da luz (f) e pelo trabalho (𝝉);
- o trabalho necessário para arrancar o elétron depende da natureza do metal e da
qualidade da superfície.
Cada elétron ligado a um material interage com o núcleo por uma força atrativa.
Assim, o elétron precisa receber uma quantidade mínima de energia para ser extraído. Se a
energia de cada fóton não superar essa quantidade mínima de energia, o elétron não é
extraído e o efeito fotoelétrico não acontece. Mas se a energia de cada fóton superar o
valor mínimo exigido, o elétron é extraído. Essa energia mínima, chamada de frequência de
corte (𝒇 𝒄 ), é dada por:
𝒇 𝒄 =
𝝉
𝒉
Onde:
𝒇 𝒄 = frequência de corte
𝝉 = função trabalho
h = constante de Planck
A função de trabalho do cobre é 4,3 eV. Um fotoelétron do cobre é expulso com energia
cinética máxima de 4,2 eV. Qual é a frequência f do fóton incidente que expulsou aquele
fóton-elétron? Dado: constante de Planck h = 6,62 x 10-34
J.s.
Resolução:
De acordo com a equação fotoelétrica de Einstein, temos: 𝐸 = 𝜏 + 𝐸 𝐶
O trabalho é: 𝝉 = 4,3 eV.
A energia cinética é: 𝑬 𝑪 = 4,2 eV
Logo:
𝐸 = 𝜏 + 𝐸 𝐶
𝐸 = 4,3 𝑒𝑉 + 4,2 𝑒𝑉 = 8,5 𝑒𝑉
Lembrando que 𝐸 = ℎ. 𝑓, teremos: ℎ. 𝑓 = 8,5 𝑒𝑉
Como o h (constante de Planck) vale: 6,62 x 10-34
J.s, é necessário converter 8,5 eV em J.s
1 𝑒𝑉 → 1,60 𝑥 10−19
6,62 𝑥 10−34
. 𝑓 = 13,6 𝑥 10−19
Exemplo resolvido
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 19
8,5 𝑒𝑉 → 𝑥 𝑓 =
13,6 𝑥 10−19 𝐽
6,62 𝑥 10−34 𝐽.𝑠
= 𝟐, 𝟎𝟓 𝒙 𝟏𝟎 𝟏𝟓
𝑯𝒛
𝑥 = 8,5 𝑥 1,60 𝑥10−19
𝑥 = 13,6 𝑥 10−19
𝐽 Logo, a frequência do fóton é 𝟐, 𝟎𝟓 𝒙 𝟏𝟎 𝟏𝟓
𝑯𝒛
1. (PUC-MG) O efeito fotoelétrico é um fenômeno pelo qual:
a) elétrons são arrancados de certas superfícies quando há incidência de luz sobre elas.
b) as lâmpadas incandescentes comuns emitem um brilho forte.
c) as correntes elétricas podem emitir luz.
d) as correntes elétricas podem ser fotografadas.
e) a fissão nuclear pode ser explicada.
2. (UFRGS-RS) Considere as seguintes afirmações sobre o efeito fotoelétrico.
I. O efeito fotoelétrico consiste na emissão de elétrons por uma superfície metálica atingida
por radiação eletromagnética.
II. O efeito fotoelétrico pode ser explicado satisfatoriamente com a adoção de um modelo
corpuscular para a luz.
III. Uma superfície metálica fotossensível somente emite fotoelétrons quando a frequência
da luz incidente nessa superfície excede um certo valor mínimo, que depende do metal.
Quais estão corretas?
a) apenas I.
b) apenas II.
c) apenas I e II.
d) apenas I e III.
e) I, II e III.
3. (UEPB) A descoberta do efeito fotoelétrico e sua explicação pelo físico Albert Einstein,
em 1905, teve grande importância para a compreensão mais profunda da natureza da luz.
No efeito fotoelétrico, os fotoelétrons são emitidos, de um cátodo C, com energia cinética
que depende da frequência da luz incidente e são coletados pelo ânodo A, formando a
corrente I mostrada. Atualmente, alguns aparelhos funcionam com base nesse efeito e um
exemplo muito comum é a fotocélula utilizada na construção de circuitos elétricos para
ligar/desligar as lâmpadas dos postes de rua. Considere que em um circuito foi construído
conforme a figura e que o cátodo é feito de um material com função trabalho φ = 3,0 eV
(elétron-volt). Se um feixe de luz incide sobre C, então o valor de frequência f da luz para
que sejam, sem qualquer outro efeito, emitidos fotoelétrons com energia cinética máxima
Ec = 3,6 eV, em hertz, vale:
Dados:
h = 6,6.10-34
J.s
1 eV = 1,6.10-19
J
a) 1,6.1015
.
b) 3,0.1015
.
c) 3,6.1015
.
Questões propostas
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 20
d) 6,6.1015
.
e) 3,2.1015
.
4. (UEPB-2006) “Quanta do latim
Plural de quantum
Quando quase não há
Quantidade que se medir
Qualidade que se expressar
Fragmento infinitésimo
Quase que apenas mental...”
(Gilberto Gil)
O trecho acima é da música Quanta, que faz referência ao “quanta”, denominação atribuída
aos pequenos pacotes de energia emitidos pela radiação eletromagnética, segundo o
modelo desenvolvido por Max Plank, em 1900. Mais tarde Einstein admite que a luz e as
demais radiações eletromagnéticas deveriam ser consideradas como um feixe desses
pacotes de energia, aos quais chamou de fótons, que significa “partículas de luz”, cada um
transportando uma quantidade de energia. Adote, h = 6,63. 10-34
J.s e 1ev = 1,6.10-19
J. Com
base nas informações do texto acima, pode-se afirmar que:
a) quando a frequência da luz incidente numa superfície metálica excede um certo valor
mínimo de frequência, que depende do metal de que foi feita a superfície, esta libera
elétrons;
b) as quantidades de energia emitidas por partículas oscilantes independem da frequência
da radiação emitida;
c) saltando de um nível de energia para outro, as partículas não emitem nem absorvem
energia, uma vez que mudaram de estado quântico;
d) a energia de um fóton de frequência 100MHz é de 663.10-28
ev;
5. O efeito fotoelétrico é usado em dispositivos para controlar o funcionamento das
lâmpadas nos postes de iluminação pública. Tal efeito evidencia a natureza
a) transversal de onda eletromagnética
b) longitudinal de onda eletromagnética
c) ondulatória da luz
d) corpuscular da luz
6. (Unicamp) O efeito fotoelétrico, cuja descrição por Albert Einstein está completando 100
anos em 2005 (ano internacional da Física), consiste na emissão de elétrons por um metal
no qual incide um feixe de luz. No processo, “pacotes” bem definidos de energia luminosa,
chamados fótons, são absorvidos um a um pelos elétrons do metal. O valor da energia de
cada fóton é dado por Efóton = hf, onde h = 4 × 10-15
eV.s é a chamada constante de Planck e
f é a frequência da luz incidente. Um elétron só é emitido do interior do metal se a energia
do fóton absorvido for maior que uma energia mínima. Para os elétrons mais fracamente
ligados ao metal, essa energia mínima é chamada função trabalho W e varia de metal para
metal (ver a tabela a seguir).
Considere c = 300.000km/s.
a) Calcule a energia do fóton (em eV), quando o comprimento de onda da luz incidente for
5×10-7m.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 21
b) A luz de 5 × 10-7m é capaz de arrancar elétrons de quais dos metais apresentados na
tabela?
c) Qual será a energia cinética de elétrons emitidos pelo potássio, se o comprimento de
onda da luz incidente for 3 ×10-7m? Considere os elétrons mais fracamente ligados do
potássio e que a diferença entre a energia do fóton absorvido e a função trabalho W é
inteiramente convertida em energia cinética.
7. Em um laboratório de física, estudantes fazem um experimento em que radiação
eletromagnética de comprimento de onda λ = 300 nm incide em uma placa de sódio,
provocando a emissão de elétrons. Os elétrons escapam da placa de sódio com energia
cinética máxima Ec = E – W, sendo E a energia de um fóton da radiação e W a energia mínima
necessária para extrair um elétron da placa. A energia de cada fóton é E = h f, sendo h a
constante de Planck e f a frequência da radiação. Determine
a) a frequência f da radiação incidente na placa de sódio;
b) a energia E de um fóton dessa radiação;
c) a energia cinética máxima Ec de um elétron que escapa da placa de sódio;
d) a frequência f0 da radiação eletromagnética, abaixo da qual é impossível haver emissão
de elétrons da placa de sódio.
NOTE E ADOTE
Velocidade da radiação eletromagnética:
c = 3 x 108
m/s. 1 nm = 10-9
m. h = 4 x 10-15
eV.s. W (sódio) = 2,3 eV. 1 eV = 1,6 x 10-19
J.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 22
1.4.2 Efeito fotoelétrico no cotidiano
O efeito fotoelétrico tem uma larga aplicação em muitos dispositivos utilizados
frequentemente, podendo-se destacar as células fotoelétricas que controlam a abertura de
portas de elevadores, portas automáticas, sensores de presença, funcionamento de
máquinas, células solares, dentre várias outras aplicações. A seguir, ilustraremos algumas
dessas aplicações.
1.4.2.1 Como ocorre o acendimento automático da luz da iluminação pública?
Um dos exemplos que podemos ilustrar da aplicação do efeito fotoelétrico é o
acendimento automático das lâmpadas da iluminação pública. Em cada poste é
instalada uma fotocélula, que terá a função de detectar o momento em que a luz
do Sol não é mais suficiente para iluminar o local. Então, ao sol se pôr e a incidência
de luz diminuir, a luz das lâmpadas é acesa. Quando amanhece, a fotocélula detecta
os primeiros raios de luz e sinaliza que as luzes já podem ser apagadas. Observe o
esquema abaixo.
De dia - Durante o dia, a luz
solar promove no LDR1
elétrons ligados a elétrons
livres. A resistência elétrica do LDR se
torna mais baixa e a corrente elétrica
atravessa a bobina, gerando um
campo magnético, como se ela fosse
um ímã. A chave do relé é, então,
atraída para a posição 2, impedindo
que a corrente elétrica passe pelo
filamento da lâmpada.
À noite - À noite, a resistência elétrica
do LDR é alta, pois a luz solar não está
presente, impedindo que a corrente
elétrica atravesse a bobina, que deixa
de atuar como ímã. A mola obriga,
então, a chave do relé a retornar para
a posição 1, acionando a lâmpada, que
se apagará automaticamente no dia
seguinte.
1
LDR - do inglês Light Dependent Resistor, em português Resistor Dependente de Luz.
Figura 20 – Esquema de Funcionamento da iluminação Pública.
Fonte: VALADARES, Eduardo de Campos; MOREIRA, Alysson Magalhães. Ensinando Física
Moderna no Ensino Médio: Efeito Fotoelétrico, Laser e Emissão de Corpo Negro. Caderno
Catarinense de Ensino de Física, v. 15, n. 2, ago. 1998.
Figura 21 - Esquema de Funcionamento da iluminação Pública.
Fonte: VALADARES, Eduardo de Campos; MOREIRA, Alysson Magalhães. Ensinando Física
Moderna no Ensino Médio: Efeito Fotoelétrico, Laser e Emissão de Corpo Negro. Caderno
Catarinense de Ensino de Física, v. 15, n. 2, ago. 1998.
Figura 19 – Iluminação Pública.
Fonte:
http://www.arenafm.com.br/home.php?pg=no
ticias&id=1284
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 23
1.4.2.2 Luminária de jardim
Outra aplicação interessante são as luminárias de jardim, daquelas que emitem luz
à noite. Na luminária, há uma placa solar que produz energia pelo efeito fotovoltaico, além
de um LED branco, um transistor e uma bateria recarregável. Durante o dia, a placa solar
captura a luz do sol e a tensão elétrica produzida pela placa recarrega a bateria com energia
elétrica. À noite, a tensão elétrica da placa é muito mais baixa do que a tensão da bateria,
e esta passa a fornecer energia ao LED, provocando o seu acendimento. A figura abaixo
representa uma luminária de jardim.
Figura 22 – Luminária de Jardim.
Fonte: Arquivo Próprio.
Tópicos de Mecânica Quântica para o Ensino Médio.
Prof. Marivane Biazus - marivanebiazus@gmail.com 24
REFERÊNCIAS
CARRON, Wilson; GUIMARÃES, Osvaldo. As faces da Física - volume único. 2. ed.
Porto Alegre: Moderna, 2002.
CHESMAN, Carlos. Física Moderna Experimental e Aplicada. 2. ed. São Paulo: Livraria
da Física, 2004.
HEWIT, Paul G. Física Conceitual. 9. ed. Tradução de Trieste Freire Ricci e Maria
Helena Gravina. Porto Alegre: Bookman, 2002.
PHET. Efeito fotoelétrico. Disponível em:
<http://phet.colorado.edu/en/simulation/photoelectric>. Acesso em: 27 jun. 2015.
MÁXIMO, Antônio; ALVARENGA, Beatriz. Curso de Física - volume 3. 5. ed. São Paulo:
Scipione, 2000.
MOREIRA, Marco Antonio. O Modelo Padrão da Física de Partículas. Revista Brasileira
de Ensino de Física, v. 31, n. 1, p. 1306, 2009.
PENTEADO, Paulo Cézar; TORRES M., Carlos Magno A. Física, Ciência e Tecnologia -
volume 3. Porto Alegre: Moderna, 2005.
SEARS, Young; ZEMANSKY, Freedman. Física IV: Ótica e Física Moderna. São Paulo:
Addison-Wesley, 2009.
VALADARES, Eduardo de Campos; MOREIRA, Alysson Magalhães. Ensinando Física
Moderna no Ensino Médio: Efeito Fotoelétrico, Laser e Emissão de Corpo Negro.
Caderno Catarinense de Ensino de Física, v. 1521, n. Especial, p. 359-372, nov. 2004.

Mais conteúdo relacionado

Mais procurados

Relatório de preparação e caracterização da amônia
Relatório de preparação e caracterização da amôniaRelatório de preparação e caracterização da amônia
Relatório de preparação e caracterização da amôniaIvys Antônio
 
SO de computadores pessoais
SO de computadores pessoaisSO de computadores pessoais
SO de computadores pessoaisAmanda Larentis
 
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIO
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIORELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIO
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIOEzequias Guimaraes
 
Nbr 14011 2001 - auditoria ambiental procedimentos
Nbr 14011 2001 - auditoria ambiental procedimentosNbr 14011 2001 - auditoria ambiental procedimentos
Nbr 14011 2001 - auditoria ambiental procedimentosZailda Firmino
 
Relatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo IIRelatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo IIErica Souza
 
Pratica 03 - teste da chama
Pratica 03 -  teste da chamaPratica 03 -  teste da chama
Pratica 03 - teste da chamacmdantasba
 
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)Luis Henrique Bembo Filho
 
Sabões e detergentes
Sabões e detergentesSabões e detergentes
Sabões e detergentesarceariane87
 
Aula 1 preparo de soluções
Aula 1   preparo de soluçõesAula 1   preparo de soluções
Aula 1 preparo de soluçõesJosué Fogaça
 
Equilíbrio parte2
Equilíbrio parte2Equilíbrio parte2
Equilíbrio parte2iqscquimica
 
Como calcular o quadro de iluminação e ventilação
Como calcular o quadro de iluminação e ventilaçãoComo calcular o quadro de iluminação e ventilação
Como calcular o quadro de iluminação e ventilaçãoEdmar Rocha
 
Consumo de energia eletrica
Consumo de energia eletricaConsumo de energia eletrica
Consumo de energia eletricaCreuza201011
 
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG...
 RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG... RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG...
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG...Ezequias Guimaraes
 

Mais procurados (20)

Relatório de preparação e caracterização da amônia
Relatório de preparação e caracterização da amôniaRelatório de preparação e caracterização da amônia
Relatório de preparação e caracterização da amônia
 
SO de computadores pessoais
SO de computadores pessoaisSO de computadores pessoais
SO de computadores pessoais
 
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIO
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIORELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIO
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DO ALUMÍNIO METÁLICO E DO CLORETO DE ALUMÍNIO
 
Nbr 14011 2001 - auditoria ambiental procedimentos
Nbr 14011 2001 - auditoria ambiental procedimentosNbr 14011 2001 - auditoria ambiental procedimentos
Nbr 14011 2001 - auditoria ambiental procedimentos
 
Produção de amônia
Produção de amôniaProdução de amônia
Produção de amônia
 
Relatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo IIRelatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo II
 
Pratica 03 - teste da chama
Pratica 03 -  teste da chamaPratica 03 -  teste da chama
Pratica 03 - teste da chama
 
Aulas 11 e 12 dissociação e ionização - 1º ano
Aulas 11 e 12   dissociação e ionização - 1º anoAulas 11 e 12   dissociação e ionização - 1º ano
Aulas 11 e 12 dissociação e ionização - 1º ano
 
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
 
Sabões e detergentes
Sabões e detergentesSabões e detergentes
Sabões e detergentes
 
Teoria estruturas ii_aula1
Teoria estruturas ii_aula1Teoria estruturas ii_aula1
Teoria estruturas ii_aula1
 
Aula 1 preparo de soluções
Aula 1   preparo de soluçõesAula 1   preparo de soluções
Aula 1 preparo de soluções
 
Equilíbrio parte2
Equilíbrio parte2Equilíbrio parte2
Equilíbrio parte2
 
Como calcular o quadro de iluminação e ventilação
Como calcular o quadro de iluminação e ventilaçãoComo calcular o quadro de iluminação e ventilação
Como calcular o quadro de iluminação e ventilação
 
Consumo de energia eletrica
Consumo de energia eletricaConsumo de energia eletrica
Consumo de energia eletrica
 
Aula 8 -_proc_redox
Aula 8 -_proc_redoxAula 8 -_proc_redox
Aula 8 -_proc_redox
 
Gases
GasesGases
Gases
 
Aula cations e anions via umida
Aula cations e anions via umidaAula cations e anions via umida
Aula cations e anions via umida
 
Jogo 1 trilha do átomo
Jogo 1  trilha do átomoJogo 1  trilha do átomo
Jogo 1 trilha do átomo
 
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG...
 RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG... RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG...
RELATÓRIO DE AULA PRÁTICA: REAÇÕES DOS METAIS ALCALINOS E OBTENÇÃO DO HIDROG...
 

Destaque

Questões Corrigidas, em Word: Física Moderna - Conteúdo vinculado ao blog ...
Questões Corrigidas, em Word:  Física Moderna  - Conteúdo vinculado ao blog  ...Questões Corrigidas, em Word:  Física Moderna  - Conteúdo vinculado ao blog  ...
Questões Corrigidas, em Word: Física Moderna - Conteúdo vinculado ao blog ...Rodrigo Penna
 
A radiação infravermelha cutânea reflete o fluxo raascunho
A radiação infravermelha cutânea reflete o fluxo raascunhoA radiação infravermelha cutânea reflete o fluxo raascunho
A radiação infravermelha cutânea reflete o fluxo raascunhoSergio Câmara
 
TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...
TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...
TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...Marivane Biazus
 
Aula 2 tabela periódica
Aula 2 tabela periódicaAula 2 tabela periódica
Aula 2 tabela periódicaFernando Lucas
 
Sandrogreco Gabarito Da Lista De ExercíCios 2 Q. Geral I Eng. Quim. 2007
Sandrogreco Gabarito Da Lista De ExercíCios 2   Q. Geral I Eng. Quim.  2007Sandrogreco Gabarito Da Lista De ExercíCios 2   Q. Geral I Eng. Quim.  2007
Sandrogreco Gabarito Da Lista De ExercíCios 2 Q. Geral I Eng. Quim. 2007Profª Cristiana Passinato
 
Radiação Ultravioleta e Infravermelha
Radiação Ultravioleta e InfravermelhaRadiação Ultravioleta e Infravermelha
Radiação Ultravioleta e InfravermelhaSara Silva
 
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...Rodrigo Penna
 

Destaque (10)

Questões Corrigidas, em Word: Física Moderna - Conteúdo vinculado ao blog ...
Questões Corrigidas, em Word:  Física Moderna  - Conteúdo vinculado ao blog  ...Questões Corrigidas, em Word:  Física Moderna  - Conteúdo vinculado ao blog  ...
Questões Corrigidas, em Word: Física Moderna - Conteúdo vinculado ao blog ...
 
A radiação infravermelha cutânea reflete o fluxo raascunho
A radiação infravermelha cutânea reflete o fluxo raascunhoA radiação infravermelha cutânea reflete o fluxo raascunho
A radiação infravermelha cutânea reflete o fluxo raascunho
 
Moderna02
Moderna02Moderna02
Moderna02
 
TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...
TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...
TÓPICOS DE FÍSICA MODERNA E CONTEMPORÂNEA NO ENSINO MÉDIO: INTERFACES DE UMA ...
 
2ºTeste 10 Diurno
2ºTeste 10 Diurno2ºTeste 10 Diurno
2ºTeste 10 Diurno
 
Aula 2 tabela periódica
Aula 2 tabela periódicaAula 2 tabela periódica
Aula 2 tabela periódica
 
Sandrogreco Gabarito Da Lista De ExercíCios 2 Q. Geral I Eng. Quim. 2007
Sandrogreco Gabarito Da Lista De ExercíCios 2   Q. Geral I Eng. Quim.  2007Sandrogreco Gabarito Da Lista De ExercíCios 2   Q. Geral I Eng. Quim.  2007
Sandrogreco Gabarito Da Lista De ExercíCios 2 Q. Geral I Eng. Quim. 2007
 
Radiacao solar
Radiacao solar Radiacao solar
Radiacao solar
 
Radiação Ultravioleta e Infravermelha
Radiação Ultravioleta e InfravermelhaRadiação Ultravioleta e Infravermelha
Radiação Ultravioleta e Infravermelha
 
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
 

Semelhante a Mecânica Quântica Ensino Médio

Modelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGRO
Modelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGROModelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGRO
Modelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGROWaldir Montenegro
 
Evolução do modelo atómico
Evolução do modelo atómicoEvolução do modelo atómico
Evolução do modelo atómicoInês Mota
 
Evolução dos modelos atómicos
Evolução dos modelos atómicosEvolução dos modelos atómicos
Evolução dos modelos atómicosPatrícia Morais
 
Quimica
QuimicaQuimica
Quimicavitor
 
Leis ponderais e modelos atômicos
Leis ponderais e modelos atômicosLeis ponderais e modelos atômicos
Leis ponderais e modelos atômicosRoberta Almeida
 
MODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOS
MODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOSMODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOS
MODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOSGABRIELLYMACIEL4
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicosLara Lídia
 
Apresentação modelos atômicos elenice
Apresentação modelos atômicos  eleniceApresentação modelos atômicos  elenice
Apresentação modelos atômicos eleniceEEB Paulo Bauer
 
Os modelos atómicos de dalton, rutherford, bohr e modelo atual
Os modelos atómicos de dalton, rutherford, bohr e modelo atualOs modelos atómicos de dalton, rutherford, bohr e modelo atual
Os modelos atómicos de dalton, rutherford, bohr e modelo atualPaulo Soares
 
Estrutura atômica para apresntação
Estrutura atômica para apresntaçãoEstrutura atômica para apresntação
Estrutura atômica para apresntaçãosimone1444
 
Aula Modelo Atômico - Professor Henrique
Aula Modelo Atômico - Professor HenriqueAula Modelo Atômico - Professor Henrique
Aula Modelo Atômico - Professor HenriqueMarianaMartinsR
 

Semelhante a Mecânica Quântica Ensino Médio (20)

Modelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGRO
Modelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGROModelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGRO
Modelos Atômicos -CSSA 2014.PROF: WALDIR MONTENEGRO
 
Evolução do modelo atómico
Evolução do modelo atómicoEvolução do modelo atómico
Evolução do modelo atómico
 
Evolução dos modelos atómicos
Evolução dos modelos atómicosEvolução dos modelos atómicos
Evolução dos modelos atómicos
 
Modelos
 Modelos Modelos
Modelos
 
Estrutura atômica
Estrutura atômica Estrutura atômica
Estrutura atômica
 
Quimica
QuimicaQuimica
Quimica
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
Química - Modelos Atômicos - (dupla Luíza Lira e Manuela Pessoa Amorim)
Química - Modelos Atômicos - (dupla Luíza Lira e Manuela Pessoa Amorim)Química - Modelos Atômicos - (dupla Luíza Lira e Manuela Pessoa Amorim)
Química - Modelos Atômicos - (dupla Luíza Lira e Manuela Pessoa Amorim)
 
Historia da-energia-nuclear
Historia da-energia-nuclearHistoria da-energia-nuclear
Historia da-energia-nuclear
 
Leis ponderais e modelos atômicos
Leis ponderais e modelos atômicosLeis ponderais e modelos atômicos
Leis ponderais e modelos atômicos
 
Evolução do modelo atômico
Evolução do modelo atômicoEvolução do modelo atômico
Evolução do modelo atômico
 
MODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOS
MODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOSMODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOS
MODELOS ATOMICOS, TABELA PERIÓDICA, CÁLCULOS QUÍMICOS
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
Apresentação modelos atômicos elenice
Apresentação modelos atômicos  eleniceApresentação modelos atômicos  elenice
Apresentação modelos atômicos elenice
 
Modelos atõmicos
Modelos atõmicosModelos atõmicos
Modelos atõmicos
 
Modelo atômico
Modelo atômicoModelo atômico
Modelo atômico
 
Os modelos atómicos de dalton, rutherford, bohr e modelo atual
Os modelos atómicos de dalton, rutherford, bohr e modelo atualOs modelos atómicos de dalton, rutherford, bohr e modelo atual
Os modelos atómicos de dalton, rutherford, bohr e modelo atual
 
Estrutura atômica para apresntação
Estrutura atômica para apresntaçãoEstrutura atômica para apresntação
Estrutura atômica para apresntação
 
Aula Modelo Atômico - Professor Henrique
Aula Modelo Atômico - Professor HenriqueAula Modelo Atômico - Professor Henrique
Aula Modelo Atômico - Professor Henrique
 

Último

FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃOFASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃOAulasgravadas3
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdfLeloIurk1
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números Mary Alvarenga
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...azulassessoria9
 
Rotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riquezaRotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riquezaronaldojacademico
 
Atividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptxAtividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptxDianaSheila2
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...Rosalina Simão Nunes
 
ATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos DescritoresATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos DescritoresAnaCarinaKucharski1
 
GEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdf
GEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdfGEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdf
GEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdfElianeElika
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfMárcio Azevedo
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxTainTorres4
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...azulassessoria9
 
Aula de História Ensino Médio Mesopotâmia.pdf
Aula de História Ensino Médio Mesopotâmia.pdfAula de História Ensino Médio Mesopotâmia.pdf
Aula de História Ensino Médio Mesopotâmia.pdfFernandaMota99
 
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...azulassessoria9
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?AnabelaGuerreiro7
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãIlda Bicacro
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 

Último (20)

FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃOFASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
 
Rotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riquezaRotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riqueza
 
Atividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptxAtividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptx
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
 
ATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos DescritoresATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
 
GEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdf
GEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdfGEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdf
GEOGRAFIA - ENSINO FUNDAMENTAL ANOS FINAIS.pdf
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdf
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
 
Aula de História Ensino Médio Mesopotâmia.pdf
Aula de História Ensino Médio Mesopotâmia.pdfAula de História Ensino Médio Mesopotâmia.pdf
Aula de História Ensino Médio Mesopotâmia.pdf
 
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! Sertã
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 

Mecânica Quântica Ensino Médio

  • 1. TÓPICOS DE MECÂNICA QUÂNTICA PARA O ENSINO MÉDIO
  • 2. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 2 1 EFEITO FOTOELÉTRICO Já parou para pensar em como as lâmpadas da rua acendem ao entardecer e se apagam ao amanhecer? E em como funcionam os sensores de presença? Tanto o acendimento automático das lâmpadas da rua como os sensores de presença têm relação com o efeito fotoelétrico! Mas o que é o efeito fotoelétrico? O efeito fotoelétrico é um fenômeno que ocorre quando uma onda eletromagnética incide em um meio material, principalmente um metal, e ocorre a emissão de elétrons. Esse conceito bastante simples passou por um longo processo de pesquisas, experimentos e descobertas. Para compreendê-lo, vamos percorrer esse caminho! Um breve histórico... O efeito fotoelétrico tem seu marco inicial possivelmente com Heinrich Hertz, em 1887. Em suas experiências para compreender a natureza eletromagnética da luz, observou um fenômeno interessante: notou que faíscas no transmissor aumentavam a sensibilidade do detector. A natureza dessas faíscas ainda não estava clara, mas mais tarde Hertz concluiu que a luz poderia gerar faíscas e, também, que o fenômeno provavelmente seria devido apenas à luz ultravioleta. Em 1903, Philip Von Lenard publicou os resultados de seus experimentos, realizados com tubos de raios catódicos, sobre o efeito fotoelétrico. Baseado em suas observações, ele propôs que o efeito fotoelétrico ocorria em função do comportamento ondulatório das radiações. No entanto, suas conclusões eram inviáveis para explicar o fenômeno, pois na visão clássica a luz é uma onda contínua cuja energia está espalhada sobre a onda. Desse modo, ao aumentar a intensidade da luz, a velocidade cinética dos elétrons deveria aumentar, pois haveria mais energia. No resultado dos seus experimentos, ele verificou que, quando aumentava a intensidade da luz, mais elétrons eram ejetados, em vez de aumentar a sua energia cinética, contrariando a teoria. Em 1905 Albert Einstein, baseado nas ideias de Max Planck, publicou em um trabalho a hipótese da quantização da radiação eletromagnética pela qual, em certos processos, a luz comporta-se como pacotes concentrados de energia, chamados fótons. Nessa ideia, a luz deveria ter um comportamento de partícula. Com essa ideia, Einstein conseguiu explicar, de forma satisfatória, como ocorria o efeito fotoelétrico. Porém, a sua aceitação pela comunidade científica ocorreu somente em 1914, quando o físico Robert Millikan confirmou as previsões de Einstein, que ganhou o prêmio Nobel em 1921, por haver explicado antecipadamente às observações de Millikan.
  • 3. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 3 1.1 Modelos atômicos Como explicar um mundo cheio de fenômenos que não se pode ver? Para compreender como o efeito fotoelétrico ocorre, é preciso compreendê-lo em nível atômico. Por isso, é necessário discutirmos e analisarmos como a descoberta e a construção de modelos para explicar o átomo foram importantes para a compreensão desse fenômeno e de muitos outros. As primeiras ideias a respeito do átomo tiveram a sua origem com os gregos Leucipo e Demócrito, no século IV a.C. Na época, eles se perguntaram o que aconteceria se a matéria fosse dividida continuamente. A conclusão a que chegaram é de que, em algum momento a matéria não poderia ser mais dividida. Então, chamaram de átomo (a = negação; tomo = partes) a parte da matéria que não poderia ser dividida. Embora tenham ficado no campo filosófico, pois não havia provas experimentais da sua existência por um longo período, essas ideias começaram a ganhar força por volta de 1600. Foi quando houve o advento do estudo dos gases, destacando-se as ideias do inglês Robert Boyle (1627-1691), e a evolução dos estudos acerca da natureza corpuscular da matéria. A partir de então, não só foi comprovada a teoria a respeito dos átomos, como também foram propostos modelos para descrevê-los. A seguir, veremos a construção e evolução dos modelos atômicos até a forma como os conhecemos hoje. 1.1.1 Modelo atômico de Dalton (1803) O químico inglês John Dalton (1766-1844), baseado em estudos de outros cientistas, descobriu que cada substância pura era constituída de átomos de um único tipo, idênticos entre si quanto às suas propriedades, ao tamanho e ao modo de reação química. Com essa descoberta, desenvolveu uma teoria denominada de Teoria Atômica de Dalton, que propunha um modelo de átomo com as seguintes características: - toda matéria é constituída por átomos; - os átomos são esferas maciças, indivisíveis e neutras; - os átomos não podem ser criados nem destruídos; - os elementos químicos são formados por átomos simples; - os átomos de determinado elemento são idênticos entre si em tamanho, forma, massa e demais propriedades; - um composto é formado pela combinação de átomos de dois ou mais elementos que se unem entre si em várias proporções simples. Cada átomo guarda sua identidade química. A ideia apresentada sobre o átomo por Dalton existiu por um período de tempo, mas descobertas de outros cientistas logo começaram a suscitar a questão de que o átomo não poderia ser apenas uma bolinha maciça sem cargas. Figura 1 – Cada elemento químico era formado por átomos simples. Fonte: Arquivo Próprio Bola de Bilhar! Figura 2 – O modelo atômico de Dalton ficou conhecido como bola de bilhar. Fonte: http://paulosutil.blogspot.com.br/2012/0 4/modelos-atomicos-dalton.html
  • 4. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 4 Nessa época, alguns trabalhos se destacavam, tais como:  a ideia de que a eletricidade estivesse associada aos átomos por Faraday;  a descoberta dos raios-X por Röentgen;  a descoberta da radioatividade por Becquerel;  a descoberta do rádio e do polônio por Marie e Pierre Curie. 1.1.2 Modelo atômico de Thomson (1803) Joseph John Thomson (1856-1940), pesquisando descargas elétricas em alto vácuo, descobriu os elétrons. Essa descoberta mostrou que o átomo não era indivisível como propunham os gregos e não era neutro como Dalton o descreveu. No modelo proposto por Thomson, o átomo tinha as seguintes características: - os átomos continham partículas de carga negativa, denominadas de elétrons; - os elétrons distribuíam-se de maneira uniforme numa “massa” positiva; - apresentavam distribuição uniforme e contínua, o que garantia a estabilidade do átomo; - o diâmetro do átomo seria da ordem de 10-10 m. O modelo atômico de Thomson ficou conhecido como pudim de passas, porque ele considerava que o átomo era uma esfera com carga positiva distribuída de forma uniforme, e os elétrons, fazendo papel das passas, ficavam espalhados dentro dessa “massa positiva” e permeável. 1.1.3 Modelo atômico de Rutherford (1911) Em 1911, o físico neozelandês Ernest Rutherford (1871-1937) fez um experimento denominado de espalhamento de partículas alfa. As conclusões desse experimento trouxeram uma nova ideia a respeito da estrutura do átomo. Em sua experiência, Rutherford bombardeou uma fina folha de ouro com partículas alfa (pequenas partículas emitidas por um decaimento radiativo denominado desintegração alfa, portadoras de carga elétrica positiva emitidas por átomos radioativos como o polônio). Com uma tela de material fluorescente posicionada atrás da folha, ele detectou que a maioria das partículas atravessava a lâmina, enquanto que outras mudavam de direção e algumas ricocheteavam. Com esses resultados, Rutherford concluiu que os átomos não deveriam ser maciços e que algumas partículas eram ricocheteadas porque deveria haver uma região densa em que as partículas eram refletidas. Desse modo, o modelo proposto por ele tinha as seguintes características: Pudim de passas Figura 3 – Modelo Atômico de Thomson. Fonte: Arquivo Próprio.
  • 5. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 5 - O átomo não é maciço, mas formado por uma região central, denominada núcleo, muito pequeno em relação ao diâmetro atômico. - O núcleo é carregado com carga positiva, e ao seu redor, estão os elétrons, distribuídos espaçadamente numa região denominada de eletrosfera. A eletrosfera consiste em órbitas circulares. - Os elétrons são partículas muito mais leves que os prótons, cerca de 1.836 vezes, que neutralizam a carga nuclear. O modelo trouxe grandes avanços no entendimento do átomo, mas algumas questões permaneciam sem respostas, como, por exemplo: como os prótons, tendo carga de mesmo sinal, se concentravam no núcleo do átomo em vez de se repelirem? Outra questão se referia ao fato de que se sabia na época, graças aos trabalhos de Maxwell sobre eletromagnetismo, que partículas carregadas e em movimento acelerado irradiam energia na forma de ondas eletromagnéticas e, portanto, “gastam” energia. Segundo essa teoria, os elétrons não poderiam ter órbita circular estável e estariam sofrendo perda constante de energia durante seu giro em torno do núcleo, e, por consequência, deveriam cair no núcleo. 1.1.4 Modelo atômico de Bohr (1913) Em 1913, o físico dinamarquês Niels Bohr (1885-1962) propôs um modelo atômico combinando os trabalhos de Planck, Einstein e Rutherford. O grande diferencial do seu modelo foi aperfeiçoar o modelo de Rutherford explicando a estabilidade do átomo. Bohr formulou a hipótese de que o elétron do átomo de hidrogênio girava em torno do núcleo atraído pela carga positiva. De acordo com os estudos realizados até então sobre o átomo, a órbita do elétron teria que ser circular ou elíptica como as órbitas dos planetas ao redor do Sol. Para simplificar os cálculos, Bohr decidiu trabalhar com órbitas circulares. No modelo clássico do átomo, à medida que o elétron perde energia por radiação, o raio da órbita se torna cada vez menor e a frequência da radiação emitida cada vez maior, um processo que acaba apenas quando o elétron se choca com o núcleo. Desse modo, o modelo de Bohr deveria prever que o átomo irradia energia de forma contínua e possui uma vida muito curta. Mas na prática, a menos que sejam excitados por um agente externo, os átomos não irradiam energia contínua. Sendo assim, Bohr fixou o referencial no núcleo atômico e postulou as seguintes hipóteses sobre o átomo: 1. O movimento do elétron ao redor do núcleo atômico é descrito pelas leis de Newton. 2. Os elétrons se movem em certas órbitas sem irradiar energia. Essas órbitas foram chamadas por Bohr de estados Figura 5 – Modelo atômico de Rutherford. Fonte: Arquivo Próprio. Modelo Planetário Próton Nêutron Elétron Figura 6 – Modelo Atômico de Bohr. Fonte: Arquivo Próprio.
  • 6. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 6 estacionários. Portanto, diz-se que o elétron está em um estado estacionário ou em um nível de energia no qual cada órbita é caracterizada por um número quântico (n), que pode assumir valores inteiros entre 1, 2, 3... 3. Um elétron que permanece em um dado estado estacionário não emite energia, apresentando, assim, energia constante. 4. Para que um elétron passe de uma órbita para outra, é necessário que haja absorção ou emissão de determinada quantidade de energia. Desse modo, para que um elétron salte de uma órbita menos energética para outra mais energética, precisa absorver uma quantidade de energia. Porém, o elétron não ficará nesse nível, devendo retornar ao seu local de origem e, ao retornar, libera a energia excedente por meio de uma onda eletromagnética. 5. A energia absorvida ou liberada na forma de radiação eletromagnética é calculada pela expressão: ∆𝑬 = 𝒉. 𝒇 = 𝑬 𝒇 − 𝑬𝒊 = 𝒉. 𝒇 Ei = energia do estado inicial do orbital atômico Ef = energia final f = frequência da onda eletromagnética emitida ou absorvida h = constante de Planck. Com esses postulados, Bohr explicou como os elétrons giravam continuamente ao redor do núcleo sem irradiar energia e, desse modo, evitando a colisão com o núcleo. Também mostrou que, quando muda de órbita, o elétron ou absorve ou emite um fóton, e, portanto, a energia se conserva. 1.1.4.1 Modelo de Bohr para átomos com um elétron Para compreender o modelo proposto por Bohr, vamos analisar o átomo de hidrogênio. O átomo de hidrogênio apresenta um único elétron “orbitando” um próton. Nesse caso, segundo o modelo de Bohr, esse elétron está ocupando o nível de menor energia, que corresponde a n = 1. Esse nível é chamado de estado fundamental. Se um elétron receber a energia adequada, ele passará para um estado de maior energia, chamado de estado excitado, mas ficará nesse estado por um curtíssimo intervalo de tempo; rapidamente ele emitirá um fóton (onda eletromagnética) e voltará para o estado fundamental. Se tomarmos como exemplo o hidrogênio, podemos observar no diagrama de níveis de energia que o estado fundamental do hidrogênio, ou seja, nível 1, corresponde à energia de -13,6 eV. Isso quer dizer que nesse estado o átomo de hidrogênio não emite radiação. Para passar, por exemplo, para o Figura 7 – Átomo de Hidrogênio. Fonte: Arquivo Próprio. Figura 8 – Níveis de energia de Bohr para o átomo de hidrogênio. Fonte: http://osfundamentosdafisica.blogspot.com.br/2013/12/cur sos-do-blog-eletricidade_11.html
  • 7. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 7 estado 2 (n = 2), o elétron precisará absorver de alguma forma a energia (por meio de choque de uma partícula tipo um gás e uma corrente elétrica ou da absorção de uma radiação). Na realidade esse salto de nível pode ocorrer do primeiro para o segundo, ou do primeiro para o terceiro, ou do primeiro para o último, o que dependerá da quantidade de energia que o elétron irá absorver. Como o elétron permanece um curtíssimo intervalo de tempo no nível em que ocorreu o “salto”, ele retornará para o seu estado fundamental, e esse retorno pode ocorrer nível por nível, pulando algum nível, ou do nível do salto para o fundamental. Em grupo, construa uma linha de tempo com todos os modelos atômicos, utilizando imagens dos modelos e dos seus construtores. Para cada modelo, destaque as suas principais características. Apresente para a turma a sua linha de tempo. 1.2 Modelo padrão das partículas elementares Com o modelo do átomo proposto por Bohr, a explicação do átomo estava quase completa. Restavam poucas coisas ainda por explicar, uma delas é o porquê o núcleo atômico não se separa ou desintegra se cargas iguais (prótons) se repelem. Em 1932, Chadwick (1891-1974) começa a responder a essa questão com a descoberta do nêutron. O nêutron é uma partícula sem carga e que está, também, no núcleo dos átomos junto aos prótons. Em 1930, o físico austríaco Wolfgang Pauli postulou a existência de uma partícula de dificílima detecção, ao estudar o decaimento radioativo: o neutrino. Hoje ele é bem conhecido, e sabe-se que é capaz de atravessar a Terra, vindo através dos confins do Universo sem “interagir” com um átomo sequer. Origina-se em grandes quantidades em explosões de supernovas e chegam-nos, também, nos raios cósmicos, partículas de altíssima energia de origem desconhecida. Com essas duas descobertas, na década de 1930, conhecia-se, então, o elétron (e- ), o próton (p), o nêutron (n) e o neutrino ( ), partículas ainda menores que o átomo. Com o uso da técnica da aceleração de partículas e a colisão de altíssima energia, conseguiu-se “partir” o núcleo, e novas partículas foram encontradas. Esse fato mostrou que o átomo escondia um universo muito menor ainda! A descoberta dessas partículas levou ao desenvolvimento do modelo padrão das partículas elementares. Segundo Moreira (2009) o chamado modelo padrão das partículas elementares não é propriamente um modelo; é uma teoria. E das melhores que temos. Aliás, na opinião de muitos físicos, a melhor de todas sobre a natureza da matéria. Por exemplo, segundo Gordon Kane, um físico teórico da Universidade de Michigan: Atividade proposta [...] o Modelo Padrão é, na história, a mais sofisticada teoria matemática sobre a natureza. Apesar da palavra “modelo" em seu nome, o Modelo Padrão é uma teoria compreensiva que identifica as partículas básicas e especifica como interagem. Tudo o que acontece em nosso mundo (exceto os efeitos da gravidade) resulta das partículas do Modelo Padrão interagindo de acordo com suas regras e equações. (ano, p. 58). FALTA REFERÊNCIA NO FINAL Figura 9- O elétron do átomo de hidrogênio recebe energia (absorve) e muda de nível. Ao retornar ao seu nível, emite um fóton (libera energia). Fonte: http://astro.unl.edu/naap/hydrogen/animations/hydrogen_atom.h tml
  • 8. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 8 Essa teoria é o que se tem de novo a respeito do mundo subatômico. É chamado de partículas elementares porque são essas partículas que formam outras partículas, os átomos e toda a matéria. Segundo o modelo padrão, temos seis partículas elementares da família dos quarks e seis da família dos léptons, conforme o quadro abaixo: Os quarks são as partículas fundamentais da natureza que estão no núcleo do átomo e sofrem a influência da força nuclear forte. Apresentam carga elétrica fracionária e podem se juntar para formar outras partículas denominadas de hádrons. Os hádrons se subdividem em: a) Mésons: partículas formadas por dois quarks, um quark e um antiquark. Exemplo: méson K+, composto por um quark up e um antiquark. b) Bárions: partículas formadas por três quarks (ou antiquarks). Exemplo: prótons e nêutrons. Para formar um próton, são necessários dois quarks up (de carga elétrica igual a + 2/3 cada) e um quark down (de carga elétrica igual a - 1/3). A soma das cargas dá + 1, que é a carga do próton. Já para se formar um nêutron, são necessários dois quarks down (de carga elétrica igual a - 1/3 cada) e um quark up (de carga elétrica igual a + 2/3), cargas cuja soma é zero. Os léptons não apresentam estruturas internas, nem dimensões mensuráveis; comportam-se, portanto, como partículas pontuais nas interações com outras partículas e ondas eletromagnéticas. Não sofrem a influência da força nuclear forte que mantém os prótons e os nêutrons unidos, pois não ficam no núcleo e participam somente das interações eletromagnéticas e fracas. Os mais conhecidos são o elétron e o neutrino. Uma característica interessante dos léptons é a sua possibilidade de decair e transmutar-se em outros léptons. O muon e o tau são instáveis, e este último se desintegra espontaneamente em partículas que apresentam uma estrutura, isto é, uma partícula sem estrutura pode gerar uma partícula com estrutura, ou uma partícula elementar pode gerar uma partícula não elementar. Figura 10 – Família dos quarks e dos léptons. Fonte: Arquivo Próprio. Figura 11 – Representação de um próton (à direita) e um nêutron (à esquerda) Fonte: Arquivo Próprio.
  • 9. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 9 1.2.1 As forças e as partículas de interação Na Física Moderna, as forças ou interações são transmitidas pela troca de partículas mediadoras, denominadas de bósons. As quatro forças fundamentais – força forte, gravitacional, eletromagnética e fraca – utilizam-se delas. Abaixo, veremos as quatro forças e as partículas mediadoras de cada uma: 1 – Força gravitacional: sabemos que quaisquer corpos com massa se atraem, como o Sol e a Terra. Mas até o momento, o gráviton não foi detectado experimentalmente, e por isso a interação gravitacional não está incluída no modelo padrão descrito. 2 – Força eletromagnética: esta força envolve a carga elétrica que as partículas apresentam. A interação ocorre por meio dos fótons (), que constituem a partícula mediadora. 3 – Força forte: é a força que mantém os quarks unidos para formar os hádrons no núcleo atômico. A partícula mediadora chama-se glúon (nome cuja origem vem do inglês glue – cola) e é conhecida como força cor. Os experimentos mostram que os quarks só se unem em combinações que sejam neutras em relação à cor. Para que se torne neutra, é necessária a combinação do vermelho, verde e azul, resultando no branco, uma cor neutra. Um bárion, por exemplo, pode ser a combinação de um vermelho com um verde e com um azul. 4 – Força fraca: é responsável pelo decaimento radioativo 𝜷. Interage com os neutrinos (que não têm carga elétrica e talvez não apresentem massa). As partículas mediadoras dessa interação são o bóson de Higgs e partículas W+ , W- , Z0 . Resumindo: Bósons FORÇA PARTÍCULA MEDIADORA COR Forte Glúon Sim Fraca 𝑊+ 𝑊− 𝑍0 Higgs Neutra Eletromagnética Fótons Neutra Gravitacional Gráviton Neutra 1.2.2 Bóson de Higgs Em 1964, um físico chamado Peter Higgs, na Escócia, teve uma ideia que fervilhava na época: publicou a teoria que prediz a existência de um campo de energia que cobre todo o universo, o campo de Higgs. Ele propôs esse campo, tendo em vista que ninguém entendia por que algumas partículas subatômicas tinham muita massa, enquanto outras, pouca ou nenhuma massa. O campo de energia proposto por Higgs interagia com as partículas subatômicas e lhes daria massa. As partículas com muita massa seriam aquelas que interagiam mais com o campo, enquanto que as partículas sem massa seriam aquelas que não interagiam. O bóson de Higgs, descoberto em julho de 2012 e confirmado em março de 2013, faz parte do mecanismo que dá massa a toda a matéria e ganhou esse nome por causa de Figura 12 - César Lattes (1924- 2005), codescobridor do méson pi, descoberta que levou o Prêmio Nobel de Física de 1950. Fonte: https://pt.wikipedia.org/wiki/C%C3%A9sar_L attes
  • 10. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 10 Peter Higgs. É o menor pedacinho do campo de Higgs. O campo de Higgs, que dá a massa às partículas subatômicas, é feito de incontáveis bósons de Higgs! O bóson de Higgs é popularmente conhecido como a Partícula de Deus. Isso se deve ao livro publicado pelo cientista Leon Lederman sobre a partícula. Inicialmente, o título do livro era intitulado The Goddamn Particle (A Partícula Maldita), devido ao fato de haver uma frustação dos cientistas por não a encontrar. Como o nome não era interessante para fins comerciais, o título foi alterado para The God Particle, A Partícula de Deus. O bóson de Higgs foi detectado no acelerador de partículas Large Hadron Collide (LHC), no CERN. O laboratório localiza- se em um túnel de 27 km de circunferência, 175 metros abaixo do nível do solo na fronteira franco-suíça, próximo a Genebra, na Suíça. É o maior acelerador de partículas e o de maior energia existente do mundo. Depois de ficar dois anos parado para manutenção, voltou a funcionar em abril de 2015, com a intenção de abrir uma nova fronteira para a ciência e fazer descobertas sobre as origens do universo. 1. Após Bohr fornecer uma solução satisfatória para o fato de os elétrons apresentarem valores definidos de energia permitidos em cada nível e por isso não emitirem energia continuamente até caírem no núcleo, a Física Quântica (Física das Partículas) começa o seu grande desenvolvimento. Sobre a Física das Partículas, responda: a) O que é uma partícula? E uma partícula elementar? b) Que tipos de partícula formam um próton e um nêutron? c) Como os cientistas descobriram a existência de tais partículas? 2. No início da formação do universo, existia uma única força fundamental e um tipo de partícula elementar. Mas, por um motivo ainda desconhecido, as forças começaram a se separar, provocando a inflação do universo e o surgimento de diferentes partículas. A respeito disso, responda: a) O que é matéria? E o que é força? b) Quais são as forças fundamentais do universo? Descreva as características de cada uma. 3. O bóson é uma partícula que possui spin inteiro e obedece à estatística de Bose-Einstein. Ele tem esse nome em homenagem ao físico indiano Satyendra Nath Bose. Entre os exemplos de bósons, estão as partículas elementares, como o fóton, o glúon, o bóson de Higgs, e partículas compostas, como mésons e núcleos atômicos estáveis, como o hélio-4. Em 2012, o bóson de Higgs foi descoberto e confirmado, de fato, em 2013. O que é o bóson de Higgs? Qual a importância dessa descoberta? Figura 13 – O novo equipamento conta agora com uma potência duas vezes superior àquela que foi utilizada para descobrir o bóson de Higgs. Fonte: http://ciencia.estadao.com.br/noticias/geral,maior-acelerador-de- particulas-do-mundo-volta-a-funcionar-imp-,1664182 Questões propostas
  • 11. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 11 1.3 A Luz 1.3.1 O que é a luz Numa definição geral, podemos dizer que a luz é uma onda eletromagnética que, dentro do espectro eletromagnético, situa-se no intervalo em que o olho humano é sensível. Por se tratar de uma onda eletromagnética, tem algumas características, dentre as quais: - é uma onda transversal; - tem a capacidade de se propagar no vácuo (a velocidade de propagação no vácuo é de 3.108 m/s ou 300.000 Km/s); - pode ser polarizada. Uma onda eletromagnética tem as seguintes grandezas físicas associadas:  Frequência: número de oscilações que seus campos elétrico e magnético realizam durante um segundo.  Comprimento de onda: distância entre duas cristas ou dois vales. É determinado por: 𝝀= 𝒄/𝒇 (Lembrete: c é a velocidade de propagação da luz).  Velocidade de propagação: 𝒗 = 𝝀.𝒇. A figura abaixo mostra o espectro eletromagnético. No espectro, podemos observar que a faixa visível da luz está entre o ultravioleta e o infravermelho. A faixa visível da luz é formada pelas cores violeta, azul, ciano, verde, amarelo, alaranjada, vermelha, que juntas formam a cor branca. A imagem mostra, ainda, o comprimento de onda das ondas eletromagnéticas. Os raios gama, raios-x e ultravioleta apresentam comprimento de onda pequeno e uma grande frequência. Essas ondas são chamadas de ondas ionizantes, pois têm a capacidade de penetrar a célula de seres vivos e causar mutações. As ondas na faixa do infravermelho e ondas de rádio apresentam comprimento de onda maior e baixa frequência. Essas ondas são “ondas não ionizantes”, pois não afetam seres vivos. Figura 15 - Espectro eletromagnético. Ilustração: Peter Hermes Furian / Shutterstock.com Figura 14 – Grandezas físicas de uma onda. Fonte: Arquivo Próprio.
  • 12. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 12 Do espectro visível, temos que a faixa do violeta apresenta o menor comprimento de onda e, por consequência, a maior frequência, e a faixa do vermelho, o maior comprimento e, por consequência, a menor frequência. Podemos comprovar isso matematicamente da seguinte maneira: 𝒇 𝒗𝒊𝒐𝒍𝒆𝒕𝒂 = 𝟑. 𝟏𝟎 𝟖 𝟒𝟎𝟎. 𝟏𝟎−𝟗 = 𝟕, 𝟓 𝑷𝑯𝒛 𝒇 𝒗𝒆𝒓𝒎𝒆𝒍𝒉𝒂 = 𝟑. 𝟏𝟎 𝟖 𝟕𝟎𝟎. 𝟏𝟎−𝟗 = 𝟒, 𝟑 𝑷𝑯𝒛 Com esses resultados, podemos observar que a faixa de luz visível está entre as frequências de 4,3 PHz a 7,5 PHz. 1.3.2 Dualidade onda-partícula da luz No início do capítulo, vimos que, para explicar o efeito fotoelétrico, Einstein estabeleceu que a luz deveria ser composta por partículas de energia, as quais chamou de fótons. Ainda, baseado nas ideias de Planck, estabeleceu que a energia estava concentrada em pacotes de energia, caracterizando um comportamento corpuscular da luz. Mesmo sendo contraditória à teoria ondulatória da luz, a ideia conseguia explicar de maneira satisfatória o efeito fotoelétrico. Quando, definitivamente, a ideia de Einstein foi aceita, havia um problema: a luz era uma onda ou uma partícula, afinal? Para resolver esse impasse, os físicos propuseram que a luz apresentava uma natureza “dual”, ou seja, em determinados fenômenos, ela se comporta como uma onda, tendo, portanto, uma natureza ondulatória, e, em outros momentos, como se fosse uma partícula, com natureza corpuscular. Essa teoria foi estabelecida, definitivamente, em 1923, depois do experimento em que se observou um fenômeno conhecido hoje como Efeito Compton, realizado pelo físico Arthur Holly Compton. Essa é a teoria que atualmente descreve a natureza da luz: dualidade onda- partícula. Em 1925, o físico francês Louis Victor de Broglie reforçou o caráter dual da luz e trouxe à tona a possibilidade de o elétron ser também interpretado como uma onda, tendo, desse modo, um caráter de partícula-onda – da mesma forma que a luz pode ser interpretada como uma onda e como uma partícula. Segundo essa ideia, a dualidade onda-partícula se estende, também, a toda a matéria, como prótons, nêutrons, átomos e moléculas. Baseado na interpretação matemática desenvolvida para as ondas eletromagnéticas, De Broglie propôs uma equação em que é possível calcular o comprimento de onda quando uma partícula tem um comportamento ondulatório. Essa equação é descrita abaixo: 𝝀 = 𝒉 𝒑 Onde: 𝝀 = 𝒄𝒐𝒎𝒑𝒓𝒊𝒎𝒆𝒏𝒕𝒐 𝒅𝒆 𝒐𝒏𝒅𝒂 𝒅𝒆 𝑩𝒓𝒐𝒈𝒍𝒊𝒆; 𝒑 (𝒎. 𝒗) = 𝒎𝒐𝒎𝒆𝒏𝒕𝒐 𝒍𝒊𝒏𝒆𝒂𝒓 𝒅𝒂 𝒑𝒂𝒓𝒕í𝒄𝒖𝒍𝒂 (𝒑𝒓𝒐𝒅𝒖𝒕𝒐 𝒅𝒂 𝒎𝒂𝒔𝒔𝒂 𝒑𝒆𝒍𝒂 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅𝒆 𝒅𝒂 𝒑𝒂𝒓𝒕í𝒄𝒖𝒍𝒂) 𝒉 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 𝒅𝒆 𝑷𝒍𝒂𝒏𝒄𝒌
  • 13. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 13 Analisando-se a equação, podemos notar que quanto maior é o momento linear menor é o comprimento de onda. Em uma relação com a frequência, teremos que quanto menor é o comprimento de onda maior é a frequência e, portanto, maior será a sua energia. É interessante destacar que é difícil observar o caráter ondulatório de partículas. 1.3.3 A constante de Planck No final do século XIX, o cientista escocês James Clerk Maxwell (1831-1879) havia proposto, definitivamente, que a luz era uma onda eletromagnética. Com essa teoria, vários fenômenos relacionados à luz puderam ser explicados. Mas havia um problema quanto à explicação da cor que determinados objetos emitiam quando eram aquecidos. A questão era a seguinte: um objeto é visualizado porque reflete a radiação incidente sobre ele em determinada frequência e em determinado comprimento de onda correspondente à sua cor, na faixa da luz visível. Quando é aquecido em temperaturas altíssimas, esse objeto não reflete a luz que incide sobre ele, mas emite luz própria em intensidade suficiente para ser visualizado. Um exemplo disso pode ser representado pelo aquecimento do ferro. Quando aquecido, ele vai mudando a sua cor à medida que sua temperatura aumenta. Primeiro fica vermelho, depois amarelo, posteriormente branco e, em temperaturas extremamente elevadas, o branco fica ligeiramente azul. Essa constatação demonstrou que a radiação emitida dependia da variação da temperatura, e não do tipo do material. Esse comportamento ficou conhecido como emissão do corpo negro. Vale salientar que corpo negro não se refere à cor, mas sim a um objeto ideal que absorve toda a radiação incidente sobre ele. O que inquietava os cientistas da época era o fato de que os dados obtidos experimentalmente se mostravam incompatíveis com a teoria ondulatória de Maxwell. Segundo a teoria, um corpo negro deveria emitir uma radiação ultravioleta muito intensa, o que causaria uma devastação ao seu redor, pela emissão de radiações de alta frequência. Essa conclusão ficou conhecida como a catástrofe do ultravioleta. Mas o que era previsto pela matemática na teoria não condizia com os experimentos observados. Foi buscando a solução para esse problema que, em 1900, o físico Max Planck lançou a hipótese de que os corpos aquecidos emitiam energia radiante em pacotes discretos, e não de forma contínua como se imaginava. Esses pacotes de energia foram denominados de quantum (quanta no plural), que vem do latim e significa “quantidade”. Segundo a sua hipótese, a energia de cada pacote era proporcional à frequência da radiação. Podemos analisar a hipótese de Planck matematicamente pela expressão: 𝑬 = 𝒉. 𝒇 Onde: E = energia do fóton h = constante de Planck, cujo valor é 𝟔, 𝟔𝟑. 𝟏𝟎−𝟑𝟒 𝑱. 𝒔 f = frequência da onda eletromagnética Essa equação expressa a menor quantidade de energia que pode ser convertida em luz de frequência f.
  • 14. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 14 A constante proposta por Planck foi uma ideia revolucionária na época, tendo como função inicial simplesmente ajustar os cálculos matemáticos referentes ao corpo negro com a teoria. Mais tarde, no entanto, essa constante ganhou nova conotação no cenário científico, tornando-se de grande importância para a Física Moderna. Inclusive, como já visto anteriormente, para explicar o efeito fotoelétrico, Einstein se baseou nos estudos de Planck e na sua constante. Uma caneta laser (laser-pointer) é usada por um professor para apontar detalhes numa tela de projeção. Um aluno pode ver melhor o dispositivo em suas mãos e percebe que nele está escrito em letras pequenas “1mW – 660 nm”. O aluno, usando seus conhecimentos de Física Moderna, resolve fazer alguns cálculos para determinar a frequência f da radiação emitida, a energia E de cada fóton e o número N de fótons emitidos pela caneta em cada segundo. Faça o mesmo que o aluno. Determine: a) o valor de f; b) o valor de E; c) o valor de N. (Questão extraída do livro: Tópicos de Física Moderna. Autor: Dulcídio Braz Jr. 2002). Resolução: A questão fornece os seguintes dados: 𝒄𝒐𝒎𝒑𝒓𝒊𝒎𝒆𝒏𝒕𝒐 𝒅𝒆 𝒐𝒏𝒅𝒂 (𝝀) = 𝟔𝟔𝟎 𝒏𝒎 𝒑𝒐𝒕ê𝒏𝒄𝒊𝒂 (𝑷) = 𝟏 𝒎𝑾 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅𝒆 (𝒄) = 𝟑. 𝟏𝟎 𝟖 𝒎/𝒔 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 𝒅𝒆 𝑷𝒍𝒂𝒏𝒄𝒌 (𝒉) = 𝟔, 𝟐𝟔. 𝟏𝟎−𝟑𝟒 𝑱. 𝒔 a) Para calcular a frequência, usaremos: 𝒇 = 𝒗 𝝀 . (Lembrete: como se trata de um laser (onda eletromagnética), vamos considerar a velocidade como sendo a velocidade da luz no vácuo). 𝒇 = 𝟑. 𝟏𝟎 𝟖 𝟔𝟔𝟎. 𝟏𝟎−𝟗 = 𝟒, 𝟓𝟒. 𝟏𝟎 𝟏𝟒 𝑯𝒛. b) A energia de um fóton é dada por: 𝑬 = 𝒉. 𝒇 𝑬 = 𝟔, 𝟐𝟔. 𝟏𝟎−𝟑𝟒 . 𝟒, 𝟓𝟒. 𝟏𝟎 𝟏𝟒 = 𝟐, 𝟖𝟒. 𝟏𝟎−𝟏𝟗 𝑱. 𝒔 c) A potência pode ser definida por: 𝑷 = 𝚫𝑬 𝚫𝑻 , onde: 𝚫𝑬 = 𝑵. 𝑬 será dado pela soma das energias de cada fóton. 𝑵 = 𝚫𝑻𝐏 𝐄 = 𝟏. 𝟏. 𝟏𝟎−𝟑 𝟐, 𝟖𝟒. 𝟏𝟎−𝟏𝟗 = 𝟑, 𝟓. 𝟏𝟎 𝟏𝟓 𝒇ó𝒕𝒐𝒏𝒔 Exemplo resolvido
  • 15. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 15 1. Como podemos definir a luz? Por que se diz que “a sua natureza é dual”? 2. O que significa dizer que a luz é quantizada? Por que não notamos a quantização da energia nas atividades cotidianas? 3. Arrume, em ordem crescente de comprimento de onda, os seguintes tipos de fótons de radiação eletromagnética: raios-X, ondas de rádio, radiação ultravioleta, radiação infravermelha, luz visível, raios gama. 4. Classifique cada uma das seguintes afirmativas como falsas ou verdadeiras. Corrija as afirmativas que são falsas. a) A luz visível é uma forma de radiação eletromagnética. b) A frequência de radiação aumenta à medida que o comprimento de onda aumenta. c) A luz ultravioleta tem comprimentos de onda maiores que a luz visível. d) A radiação eletromagnética e as ondas sonoras movem-se à mesma velocidade. e) Uma onda eletromagnética pode se propagar no vácuo. f) Os raios-X são um tipo de onda não ionizante, pois ao atingirem um ser vivo não causam danos a sua célula. 5. Um tipo de queimadura de sol ocorre com a exposição à luz ultravioleta de comprimento de onda próximo a 325 nm. Qual é a energia de um fóton com esse comprimento de onda? 6. Suponha que existam duas radiações, uma cujo comprimento de onda vale 0,452 pm e outra cuja frequência é de 2,5 x 1016 Hz. A respeito dessas duas radiações, qual delas seria visível a olho nu? Justifique a sua resposta. Quantização da luz A luz é “quantizada” porque a emissão da energia pelos átomos não se dá de uma maneira contínua, mas sim aos saltos, em pequenas quantidades denominadas quanta. Um "quantum" dessa energia quantizada é chamado de fóton. A título de exemplo, temos que a menor energia que um elétron pode apresentar ao orbitar em torno de um núcleo de hidrogênio é -13,6eV. Para que esse elétron salte para o nível seguinte cuja energia é de -3,4eV, ele precisa absorver um valor específico de energia, pois jamais possuirá uma energia intermediária. No nosso dia a dia, não percebemos que a luz é quantizada, pois, como Planck demostrou, a energia de um fóton, por exemplo, é muito pequena (h.f). Objetos macroscópicos ganham e perdem quantidades de energia muito maiores que um “quantum de energia”. Questões propostas
  • 16. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 16 7. Átomos de mercúrio excitados emitem luz intensa em um comprimento de onda de 436 nm. Qual é a frequência dessa radiação? Utilizando as diferentes regiões do espectro eletromagnético, determine a cor associada ao seu comprimento de onda. 8. Calcule a energia de um fóton amarelo cujo comprimento de onda é 589 nm. 9. Um anúncio luminoso emite luz azul e vermelha. O comprimento de onda da luz vermelha é de 680 nm e o da luz azul é de 420 nm. Que tipo de radiação envolve menor energia, a luz azul ou a luz vermelha? 10. Certo fóton de raios-X tem o comprimento de onda de 35,0 pm. Calcular: a) energia do fóton; b) a sua frequência. 11. A luz amarela de uma lâmpada de sódio, usada na iluminação de estradas, tem o comprimento de onda de 589 nm. Qual a energia de um fóton emitido por uma dessas lâmpadas? 1.4 Efeito fotoelétrico Chegamos ao efeito fotoelétrico, assunto desse capítulo! Para chegarmos até aqui, vimos os modelos atômicos, a teoria atual sobre as partículas, a natureza dual da luz e as contribuições de Max Planck e Einstein no entendimento do fenômeno. Para retomarmos o conceito, temos que: O efeito fotoelétrico é um fenômeno que ocorre quando uma onda eletromagnética incide em um meio material, principalmente um metal, e ocorre a emissão de elétrons. Mas não são todos os metais em que ocorre tal fenômeno, pois é necessária uma energia mínima para provocá-lo. Cada metal necessita de uma energia mínima diferente, assim como a frequência da onda eletromagnética incidente poderá fornecer ou não essa energia. Para compreendermos melhor, vamos tomar como exemplo a simulação abaixo, que retoma o experimento realizado por Lenard. (Sugestão: você poderá fazer a simulação na sessão “Simulações – Efeito Fotoelétrico”). Na simulação abaixo, temos, dentro de uma ampola de vidro, no vácuo, duas placas de metal (o material pode ser definido): uma positiva e outra negativa. Ambas estão ligadas a um circuito elétrico. Sobre a placa negativa existe uma fonte de luz, cuja frequência pode ser definida do infravermelho ao violeta, e sua intensidade também pode variar. Figura 16 - Simulador que representa o experimento realizado por Lenard. Fonte: PHET, 2015.
  • 17. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 17 Quando a fonte de luz é ligada e a frequência do feixe apresenta energia suficiente, elétrons são ejetados e atraídos pela placa positiva. Esse fluxo de elétrons irá produzir uma corrente elétrica, identificada pelo amperímetro ligado ao circuito. Caso a frequência não seja suficiente, os elétrons não serão ejetados, e o efeito fotoelétrico não ocorrerá. O que ocorre aqui é que a luz, ao atingir a superfície da placa, “joga” pacotes de energia, ou seja, fótons assim denominados por Einstein, com uma energia definida pela frequência. Esses fótons interagem com a matéria como se fossem partículas e se propagam de forma ondulatória. Uma parte da energia transferida pelo fóton é usada para realizar o trabalho de “arrancar” o elétron do material, e o restante é transformado em energia cinética, que provoca o movimento do elétron até a placa positiva. Esse experimento comprova que: 1. Para determinada frequência, o número de elétrons emitidos pela placa metálica iluminada é proporcional à intensidade da luz incidente na placa, ou seja, ao aumentar a intensidade do feixe de luz, mais elétrons são arrancados. 2. A energia cinética dos elétrons emitidos pela placa é proporcional à frequência da radiação incidente, independentemente da intensidade dessa radiação. Desse modo, quanto maior for a frequência da luz incidente, maior será a sua energia cinética. Analisando sob o aspecto do modelo atômico proposto por Bohr, temos o efeito fotoelétrico da seguinte maneira: um fóton, ao incidir sobre um elétron, deve fornecer uma energia específica que faça com que o mesmo salte de um nível para o outro ou seja ejetado. Mas, para que ocorra o efeito fotoelétrico, é necessário que o elétron seja ejetado! 1.4.1 Determinação da energia máxima de saída do elétron Quando o elétron absorve a energia trazida pelo fóton, uma parte dela é transformada em energia cinética, para que ele possa vencer a barreira da superfície e seja ejetado. Assim, a energia de saída do elétron é igual à energia do fóton menos a energia necessária para chegar até a superfície. Desse modo, temos que: A energia de um fóton é dada por: 𝑬 = 𝒉. 𝒇 Essa energia de cada fóton se transforma em energia cinética e em trabalho realizado para arrancar o elétron do material. Então, temos: 𝑬 = 𝝉 + 𝑬 𝒄𝒊𝒏 (𝒎á𝒙) → 𝒉. 𝒇 = 𝝉 + 𝒎.𝒗 𝒎á𝒙 𝟐 𝟐 , Onde: hf = energia do fóton incidente 𝝉 = função trabalho (energia necessária para o elétron, dentro do metal, ser ejetado. Depende do material) 𝒎.𝒗 𝒎á𝒙 𝟐 𝟐 = energia cinética Figura 17 - Os elétrons estão sendo ejetados e atraídos pela placa positiva. Fonte: PHET, 2015. Fóton Incidente Elétron Ejetado Figura 18 – Um fóton incidindo em um elétron. Fonte: Arquivo Próprio.
  • 18. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 18 Essa equação demonstra que: - a intensidade da luz é proporcional ao número de porções de energia contido no feixe luminoso; - o número de elétrons é dado pela frequência da luz (f) e pelo trabalho (𝝉); - o trabalho necessário para arrancar o elétron depende da natureza do metal e da qualidade da superfície. Cada elétron ligado a um material interage com o núcleo por uma força atrativa. Assim, o elétron precisa receber uma quantidade mínima de energia para ser extraído. Se a energia de cada fóton não superar essa quantidade mínima de energia, o elétron não é extraído e o efeito fotoelétrico não acontece. Mas se a energia de cada fóton superar o valor mínimo exigido, o elétron é extraído. Essa energia mínima, chamada de frequência de corte (𝒇 𝒄 ), é dada por: 𝒇 𝒄 = 𝝉 𝒉 Onde: 𝒇 𝒄 = frequência de corte 𝝉 = função trabalho h = constante de Planck A função de trabalho do cobre é 4,3 eV. Um fotoelétron do cobre é expulso com energia cinética máxima de 4,2 eV. Qual é a frequência f do fóton incidente que expulsou aquele fóton-elétron? Dado: constante de Planck h = 6,62 x 10-34 J.s. Resolução: De acordo com a equação fotoelétrica de Einstein, temos: 𝐸 = 𝜏 + 𝐸 𝐶 O trabalho é: 𝝉 = 4,3 eV. A energia cinética é: 𝑬 𝑪 = 4,2 eV Logo: 𝐸 = 𝜏 + 𝐸 𝐶 𝐸 = 4,3 𝑒𝑉 + 4,2 𝑒𝑉 = 8,5 𝑒𝑉 Lembrando que 𝐸 = ℎ. 𝑓, teremos: ℎ. 𝑓 = 8,5 𝑒𝑉 Como o h (constante de Planck) vale: 6,62 x 10-34 J.s, é necessário converter 8,5 eV em J.s 1 𝑒𝑉 → 1,60 𝑥 10−19 6,62 𝑥 10−34 . 𝑓 = 13,6 𝑥 10−19 Exemplo resolvido
  • 19. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 19 8,5 𝑒𝑉 → 𝑥 𝑓 = 13,6 𝑥 10−19 𝐽 6,62 𝑥 10−34 𝐽.𝑠 = 𝟐, 𝟎𝟓 𝒙 𝟏𝟎 𝟏𝟓 𝑯𝒛 𝑥 = 8,5 𝑥 1,60 𝑥10−19 𝑥 = 13,6 𝑥 10−19 𝐽 Logo, a frequência do fóton é 𝟐, 𝟎𝟓 𝒙 𝟏𝟎 𝟏𝟓 𝑯𝒛 1. (PUC-MG) O efeito fotoelétrico é um fenômeno pelo qual: a) elétrons são arrancados de certas superfícies quando há incidência de luz sobre elas. b) as lâmpadas incandescentes comuns emitem um brilho forte. c) as correntes elétricas podem emitir luz. d) as correntes elétricas podem ser fotografadas. e) a fissão nuclear pode ser explicada. 2. (UFRGS-RS) Considere as seguintes afirmações sobre o efeito fotoelétrico. I. O efeito fotoelétrico consiste na emissão de elétrons por uma superfície metálica atingida por radiação eletromagnética. II. O efeito fotoelétrico pode ser explicado satisfatoriamente com a adoção de um modelo corpuscular para a luz. III. Uma superfície metálica fotossensível somente emite fotoelétrons quando a frequência da luz incidente nessa superfície excede um certo valor mínimo, que depende do metal. Quais estão corretas? a) apenas I. b) apenas II. c) apenas I e II. d) apenas I e III. e) I, II e III. 3. (UEPB) A descoberta do efeito fotoelétrico e sua explicação pelo físico Albert Einstein, em 1905, teve grande importância para a compreensão mais profunda da natureza da luz. No efeito fotoelétrico, os fotoelétrons são emitidos, de um cátodo C, com energia cinética que depende da frequência da luz incidente e são coletados pelo ânodo A, formando a corrente I mostrada. Atualmente, alguns aparelhos funcionam com base nesse efeito e um exemplo muito comum é a fotocélula utilizada na construção de circuitos elétricos para ligar/desligar as lâmpadas dos postes de rua. Considere que em um circuito foi construído conforme a figura e que o cátodo é feito de um material com função trabalho φ = 3,0 eV (elétron-volt). Se um feixe de luz incide sobre C, então o valor de frequência f da luz para que sejam, sem qualquer outro efeito, emitidos fotoelétrons com energia cinética máxima Ec = 3,6 eV, em hertz, vale: Dados: h = 6,6.10-34 J.s 1 eV = 1,6.10-19 J a) 1,6.1015 . b) 3,0.1015 . c) 3,6.1015 . Questões propostas
  • 20. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 20 d) 6,6.1015 . e) 3,2.1015 . 4. (UEPB-2006) “Quanta do latim Plural de quantum Quando quase não há Quantidade que se medir Qualidade que se expressar Fragmento infinitésimo Quase que apenas mental...” (Gilberto Gil) O trecho acima é da música Quanta, que faz referência ao “quanta”, denominação atribuída aos pequenos pacotes de energia emitidos pela radiação eletromagnética, segundo o modelo desenvolvido por Max Plank, em 1900. Mais tarde Einstein admite que a luz e as demais radiações eletromagnéticas deveriam ser consideradas como um feixe desses pacotes de energia, aos quais chamou de fótons, que significa “partículas de luz”, cada um transportando uma quantidade de energia. Adote, h = 6,63. 10-34 J.s e 1ev = 1,6.10-19 J. Com base nas informações do texto acima, pode-se afirmar que: a) quando a frequência da luz incidente numa superfície metálica excede um certo valor mínimo de frequência, que depende do metal de que foi feita a superfície, esta libera elétrons; b) as quantidades de energia emitidas por partículas oscilantes independem da frequência da radiação emitida; c) saltando de um nível de energia para outro, as partículas não emitem nem absorvem energia, uma vez que mudaram de estado quântico; d) a energia de um fóton de frequência 100MHz é de 663.10-28 ev; 5. O efeito fotoelétrico é usado em dispositivos para controlar o funcionamento das lâmpadas nos postes de iluminação pública. Tal efeito evidencia a natureza a) transversal de onda eletromagnética b) longitudinal de onda eletromagnética c) ondulatória da luz d) corpuscular da luz 6. (Unicamp) O efeito fotoelétrico, cuja descrição por Albert Einstein está completando 100 anos em 2005 (ano internacional da Física), consiste na emissão de elétrons por um metal no qual incide um feixe de luz. No processo, “pacotes” bem definidos de energia luminosa, chamados fótons, são absorvidos um a um pelos elétrons do metal. O valor da energia de cada fóton é dado por Efóton = hf, onde h = 4 × 10-15 eV.s é a chamada constante de Planck e f é a frequência da luz incidente. Um elétron só é emitido do interior do metal se a energia do fóton absorvido for maior que uma energia mínima. Para os elétrons mais fracamente ligados ao metal, essa energia mínima é chamada função trabalho W e varia de metal para metal (ver a tabela a seguir). Considere c = 300.000km/s. a) Calcule a energia do fóton (em eV), quando o comprimento de onda da luz incidente for 5×10-7m.
  • 21. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 21 b) A luz de 5 × 10-7m é capaz de arrancar elétrons de quais dos metais apresentados na tabela? c) Qual será a energia cinética de elétrons emitidos pelo potássio, se o comprimento de onda da luz incidente for 3 ×10-7m? Considere os elétrons mais fracamente ligados do potássio e que a diferença entre a energia do fóton absorvido e a função trabalho W é inteiramente convertida em energia cinética. 7. Em um laboratório de física, estudantes fazem um experimento em que radiação eletromagnética de comprimento de onda λ = 300 nm incide em uma placa de sódio, provocando a emissão de elétrons. Os elétrons escapam da placa de sódio com energia cinética máxima Ec = E – W, sendo E a energia de um fóton da radiação e W a energia mínima necessária para extrair um elétron da placa. A energia de cada fóton é E = h f, sendo h a constante de Planck e f a frequência da radiação. Determine a) a frequência f da radiação incidente na placa de sódio; b) a energia E de um fóton dessa radiação; c) a energia cinética máxima Ec de um elétron que escapa da placa de sódio; d) a frequência f0 da radiação eletromagnética, abaixo da qual é impossível haver emissão de elétrons da placa de sódio. NOTE E ADOTE Velocidade da radiação eletromagnética: c = 3 x 108 m/s. 1 nm = 10-9 m. h = 4 x 10-15 eV.s. W (sódio) = 2,3 eV. 1 eV = 1,6 x 10-19 J.
  • 22. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 22 1.4.2 Efeito fotoelétrico no cotidiano O efeito fotoelétrico tem uma larga aplicação em muitos dispositivos utilizados frequentemente, podendo-se destacar as células fotoelétricas que controlam a abertura de portas de elevadores, portas automáticas, sensores de presença, funcionamento de máquinas, células solares, dentre várias outras aplicações. A seguir, ilustraremos algumas dessas aplicações. 1.4.2.1 Como ocorre o acendimento automático da luz da iluminação pública? Um dos exemplos que podemos ilustrar da aplicação do efeito fotoelétrico é o acendimento automático das lâmpadas da iluminação pública. Em cada poste é instalada uma fotocélula, que terá a função de detectar o momento em que a luz do Sol não é mais suficiente para iluminar o local. Então, ao sol se pôr e a incidência de luz diminuir, a luz das lâmpadas é acesa. Quando amanhece, a fotocélula detecta os primeiros raios de luz e sinaliza que as luzes já podem ser apagadas. Observe o esquema abaixo. De dia - Durante o dia, a luz solar promove no LDR1 elétrons ligados a elétrons livres. A resistência elétrica do LDR se torna mais baixa e a corrente elétrica atravessa a bobina, gerando um campo magnético, como se ela fosse um ímã. A chave do relé é, então, atraída para a posição 2, impedindo que a corrente elétrica passe pelo filamento da lâmpada. À noite - À noite, a resistência elétrica do LDR é alta, pois a luz solar não está presente, impedindo que a corrente elétrica atravesse a bobina, que deixa de atuar como ímã. A mola obriga, então, a chave do relé a retornar para a posição 1, acionando a lâmpada, que se apagará automaticamente no dia seguinte. 1 LDR - do inglês Light Dependent Resistor, em português Resistor Dependente de Luz. Figura 20 – Esquema de Funcionamento da iluminação Pública. Fonte: VALADARES, Eduardo de Campos; MOREIRA, Alysson Magalhães. Ensinando Física Moderna no Ensino Médio: Efeito Fotoelétrico, Laser e Emissão de Corpo Negro. Caderno Catarinense de Ensino de Física, v. 15, n. 2, ago. 1998. Figura 21 - Esquema de Funcionamento da iluminação Pública. Fonte: VALADARES, Eduardo de Campos; MOREIRA, Alysson Magalhães. Ensinando Física Moderna no Ensino Médio: Efeito Fotoelétrico, Laser e Emissão de Corpo Negro. Caderno Catarinense de Ensino de Física, v. 15, n. 2, ago. 1998. Figura 19 – Iluminação Pública. Fonte: http://www.arenafm.com.br/home.php?pg=no ticias&id=1284
  • 23. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 23 1.4.2.2 Luminária de jardim Outra aplicação interessante são as luminárias de jardim, daquelas que emitem luz à noite. Na luminária, há uma placa solar que produz energia pelo efeito fotovoltaico, além de um LED branco, um transistor e uma bateria recarregável. Durante o dia, a placa solar captura a luz do sol e a tensão elétrica produzida pela placa recarrega a bateria com energia elétrica. À noite, a tensão elétrica da placa é muito mais baixa do que a tensão da bateria, e esta passa a fornecer energia ao LED, provocando o seu acendimento. A figura abaixo representa uma luminária de jardim. Figura 22 – Luminária de Jardim. Fonte: Arquivo Próprio.
  • 24. Tópicos de Mecânica Quântica para o Ensino Médio. Prof. Marivane Biazus - marivanebiazus@gmail.com 24 REFERÊNCIAS CARRON, Wilson; GUIMARÃES, Osvaldo. As faces da Física - volume único. 2. ed. Porto Alegre: Moderna, 2002. CHESMAN, Carlos. Física Moderna Experimental e Aplicada. 2. ed. São Paulo: Livraria da Física, 2004. HEWIT, Paul G. Física Conceitual. 9. ed. Tradução de Trieste Freire Ricci e Maria Helena Gravina. Porto Alegre: Bookman, 2002. PHET. Efeito fotoelétrico. Disponível em: <http://phet.colorado.edu/en/simulation/photoelectric>. Acesso em: 27 jun. 2015. MÁXIMO, Antônio; ALVARENGA, Beatriz. Curso de Física - volume 3. 5. ed. São Paulo: Scipione, 2000. MOREIRA, Marco Antonio. O Modelo Padrão da Física de Partículas. Revista Brasileira de Ensino de Física, v. 31, n. 1, p. 1306, 2009. PENTEADO, Paulo Cézar; TORRES M., Carlos Magno A. Física, Ciência e Tecnologia - volume 3. Porto Alegre: Moderna, 2005. SEARS, Young; ZEMANSKY, Freedman. Física IV: Ótica e Física Moderna. São Paulo: Addison-Wesley, 2009. VALADARES, Eduardo de Campos; MOREIRA, Alysson Magalhães. Ensinando Física Moderna no Ensino Médio: Efeito Fotoelétrico, Laser e Emissão de Corpo Negro. Caderno Catarinense de Ensino de Física, v. 1521, n. Especial, p. 359-372, nov. 2004.