A RADIOATIVIADE NA MEDICINA 
DIAGNÓSTICO DE DOENÇAS: 
131 
I 
: Tireóide. 
32 
P 
: Tumores dos olhos e câncer de pele. 
197 
Hg 
: Tumores cerebrais. 
24 
Na 
: Obstruções do sistema circulatório. 
TRATAMENTO DE DOENÇAS: 
60 
Co 
: câncer. 
131 
I 
: câncer na tireóide.
Por meio da irradiação, carnes e frutas 
podem ser esterilizados 
(ficando livres de fungos e bactérias) 
ou ser conservados por um tempo 
mais prolongado 
A RADIOATIVIADE NA AGRICULTURA
A RADIOATIVIDADE NA 
ARQUEOLOGIA E GEOLOGIA 
Os três métodos mais comuns de 
DATAÇÃO 
são os baseados nas seguintes desintegrações: 
238 
U 
206 
Pb 
para 
: usado na datação de rochas. 
40 
K 
40 
Ar 
para 
: usado na datação de rochas.
14 
C 
14 
N 
para 
: usado na datação de fósseis.
A RADIOATIVIDADE FONTE DE ENERGIA 
REATORNUCLEAR: 
É um dispositivo que permite controlar o 
processo de fissão nuclear 
A energia liberada durante o processo é usada para transformar água 
líquida em vapor, que faz girar uma turbina, gerando energia elétrica
ARMAZENAMENTO DO LIXO NUCLEAR
ARMAS NUCLEARES
A radioatividade natural ocorre, geralmente, com os 
átomos de números atômicos maiores que 82
É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, 
para se tornarem estáveis
A reação que ocorre nestas condições, isto é, alterando o núcleo do átomo chama-se 
REAÇÃONUCLEAR
As emissões radioativas 
não são afetadas pelas variações de temperatura, pressão, 
estado físico, etc
As emissões radioativas naturais quando são submetidas a um campo magnético ou elétrico sofre uma subdivisão em três tipos bem distintos 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
– 
– 
– 
– 
– 
– 
– 
– 
– 
– 
material 
radioativo 
bloco de 
chumbo 
campo magnético 
campo magnético 
placa fluorescente 
emissão beta 
emissão gama 
emissão alfa
(a ) 
As partículas alfa possuem carga elétrica + 2, 
devido aos prótons, e 
massa igual a 4
(a ) 
São partículas constituídas por 2 PRÓTONSe 2 NÊUTRONS, 
que são jogados, em alta velocidade, para fora de um núcleo instável
a 
2 
4
Em 1911, Frederick Soddy enunciou a 
1ª LEI DA RADIOATIVIDADE 
“Quando um núcleo emite 
uma partícula alfa, seu 
número atômico 
diminui de duas unidades e seu número de massa 
diminui de quatro unidades”
Observe que a equação nuclear mantém um balanço de massas e de cargas elétricas nucleares 
U 
Th 
+ 
2 
4 
90 
235 
92 
a 
231
( b ) 
São constituídas por 
ELÉTRONS 
atirados, em altíssima velocidade, para fora de um núcleo instável
–1 
0 
b
Como não existe elétron no núcleo, ele é formado a partir de um nêutron de acordo com o esquema: 
O próton permanece no núcleo; 
o elétron e o neutrino são atirados 
para fora do núcleo 
nêutron próton + elétron + neutrino 
n 
1 
e 
+ 
p 
0 
1 
+1 
0 
–1 
+ 
h 
0 
0
Soddy, Fajans, Russell enunciaram a 
2ª LEI DA RADIOATIVIDADE 
“Quando um núcleo emite uma partícula beta, seu número atômico 
aumenta de uma unidade e 
seu número de massa 
permanece inalterado”
Bi 
Po 
84 
210 
83 
210 
–1 
b 
0 
+ 
Observe que a equação nuclear 
mantém um balanço de massas e de 
cargas elétricas nucleares
As emissões gama 
são ondas eletromagnéticas 
semelhantes à luz 
( g ) 
0 
0 
g
01)(Covest-2004)Onúcleoatômicodealgunselementosé 
bastanteinstávelesofreprocessosradioativospara 
removersuainstabilidade.Sobreostrêstiposde 
radiação,e,podemosdizerque: 
b 
a 
g 
Aoemitirradiação,umnúcleotemseunúmero 
demassaaumentado. 
0 
0 
a 
1 
1 
Aoemitirradiação,umnúcleotemseunúmero 
demassainalterado. 
b 
2 
2 
Aradiaçãoéconstituídapornúcleosdeátomosdehélio 
a 
3 
Aoemitirradiação,umnúcleonãosofre 
alteraçãoemsuamassa. 
3 
g 
Aoemitirradiação,umnúcleotemseunúmeroatômicoaumentadoemumaunidade. 
b 
4 
4
02)Quandoumátomoemiteumapartículaalfae,em 
seguida,duaspartículasbeta,osátomosiniciale 
final: 
a)Têmomesmonúmerodemassa. 
b)Sãoisótoposradioativos. 
c)Nãoocupamomesmolugarnatabelaperiódica. 
d)Possuemnúmerosatômicosdiferentes. 
e)Sãoisóbarosradioativos. 
A 
Y 
X 
Z 
2 
+ 
+ 
–1 
0 
b 
a 
2 
4 
Z’ 
A’ 
A = 4 + A’ 
Z = 2 –2 + Z’ 
Z = Z’ 
Têm mesmo número atômico e diferentes números de massa, 
então, são ISÓTOPOS
03) Ao se desintegrar, o átomo Rnemite 3 partículas 
alfa e 4 partículas beta. O nº atômico e o nº de 
massa do átomo final são, respectivamente: 
86 
222 
a)84e210. 
b)210e84. 
c)82e210. 
d)210e82. 
e)86e208. 
3 
222 
Rn 
X 
86 
4 
+ 
+ 
–1 
0 
b 
a 
2 
4 
Z 
A 
86 = 3 x2 + 4 x(–1) + Z 
Z = 86 –2 
Z = 84 
86 = 6 –4 + Z 
222 = 3 x4 + 4 x0 + A 
222 = 12 + A 
222 –12 = A 
A = 210
04)NatransformaçãoUemPb,quantaspartículas 
alfaequantaspartículasbetaforamemitidaspor 
átomodeurânioinicial? 
92 
238 
82 
206 
a) 8 e 6. 
b) 6 e 8. 
c) 4 e 0. 
d) 0 e 4. 
e) 8 e 8. 
82 
206 
x 
238 
U 
Pb 
92 
y 
+ 
+ 
–1 
0 
b 
a 
2 
4 
238 = 4 xx + 206 
4 xx = 238 –206 
4 xx = 32 
x = 32 : 4 
x = 8 partículas alfa 
92 = 2 x8 –y+ 82 
92 = 16–y+ 82 
y = 98 –92 
y = 6 partículas beta
05)Nafamíliaradioativanaturaldotório,parte-sedotório, 
Th,echega-senoPb.Osnúmerosdepartículas 
alfaebetaemitidasnoprocessosão,respectivamente: 
90 
232 
82 
208 
a)1e1. 
b)4e6. 
c)6e4. 
d)12e16. 
e)16e12. 
82 
208 
x 
232 
Th 
Pb 
90 
y 
+ 
+ 
–1 
0 
b 
a 
2 
4 
232 = 4 xx + 208 
4 xx = 232 –208 
4 xx = 24 
x = 24 : 4 
x = 6 partículas alfa 
90 = 2 x6 –y+ 82 
90 = 12–y+ 82 
y = 94 –90 
y = 4 partículas beta
06)(UFF-RJ)Dadaasériedourânioabaixorepresentada,assinale 
aalternativaqueapresenta,respectivamente,onúmerode 
nêutrons,prótonseelétronsemitidosnadesintegraçãodeum 
núcleodeUatéPb. 
92 
238 
82 
206 
a)32,32e10. 
b)16,16e6. 
c)10,10e5. 
d)8,8e6. 
e)8,8e5. 
82 
206 
x 
238 
U 
Pb 
92 
y 
+ 
+ 
–1 
0 
b 
a 
2 
4 
238 = 4 xx + 206 
4 xx = 238 –206 
4 xx = 32 
x = 32 : 4 
x = 8 partículas alfa 
92 = 2 x8 –y+ 82 
92 = 16–y+ 82 
y = 98 –82 
y = 6 partículas beta 
NÊUTRONS 
8 x2= 16 
PRÓTONS 
8 x2= 16 
ELÉTRONS 
6 x1= 6
O poder de ionização das emissões 
se encontra na seguinte 
ordem crescente: 
g 
b 
a 
< 
<
g 
b 
a 
FOLHA DE 
PAPEL 
2 mm de 
CHUMBO 
6 cm de 
CHUMBO 
g 
b 
a 
< 
<
01)Relacioneasradiaçõesnaturaisalfa,betaegamacom 
suasrespectivascaracterísticas: 
1.alfa.2.beta.3.gama. 
Possui alto poder de penetração, podendo causar 
danos irreparáveis ao ser humano. 
3 
2 
3 
1 
São partículas leves, com carga elétrica negativa 
e massa desprezível 
São ondas eletromagnéticas semelhantes aos raios X, não possuem carga elétrica nem massa. 
São partículas pesadas de carga elétrica positiva que, ao incidirem sobre o corpo humano, causam apenas queimaduras leves. 
Aseqüênciacorreta,decimaparabaixo,é: 
a)1,2,3,2. 
b)2,1,2,3. 
c)1,3,1,2. 
d)3,2,3,1. 
e)3,1,2,1.
É o conjunto de elementos que têm origem na emissão de partículas alfa e beta, resultando, como elemento final, um isótopo estável do chumbo
SÉRIES RADIOATIVAS 
NOME DA SÉRIE 
1º ELEMENTO 
ÚLTIMO ELEMENTO 
Existem três séries radioativas naturais 
e uma artificial 
Nº DE MASSA 
TÓRIO 
URÂNIO 
ACTÍNIO 
NETÚNIO 
Th 
Pb 
232 
90 
82 
208 
4n 
4n + 1 
4n + 2 
4n + 3 
U 
Pb 
92 
238 
206 
82 
U 
Pb 
92 
235 
207 
82 
Np 
Bi 
93 
237 
209 
83
Th 
90 
232 
Ra 
88 
228 
Ac 
89 
228 
Th 
90 
228 
Ra 
88 
224 
Rn 
86 
220 
Po 
84 
216 
Pb 
82 
212 
Bi 
83 
212 
Po 
84 
212 
Pb 
82 
208 
78 
80 
82 
84 
86 
88 
90 
92
Np 
93 
237 
Pa 
91 
233 
U 
92 
233 
Th 
90 
229 
Ra 
88 
225 
Ac 
89 
225 
Fr 
87 
221 
At 
85 
217 
Bi 
83 
213 
Po 
84 
213 
Pb 
82 
209 
Bi 
83 
209 
94 
80 
82 
84 
86 
88 
90 
92
78 
80 
82 
84 
86 
88 
90 
92 
U 
92 
238 
Th 
90 
234 
Pa 
91 
234 
U 
92 
234 
Th 
90 
230 
Ra 
88 
226 
Rn 
86 
222 
Po 
84 
218 
At 
85 
218 
Bi 
83 
214 
Po 
84 
214 
Pb 
82 
210 
Pa 
83 
210 
Po 
84 
210 
Pb 
82 
206
78 
80 
82 
84 
86 
88 
90 
92 
U 
92 
235 
Th 
90 
231 
Pa 
91 
231 
Ac 
89 
227 
Th 
90 
227 
Ra 
88 
223 
Rn 
86 
219 
Po 
84 
215 
At 
85 
215 
Bi 
83 
211 
Po 
84 
211 
Pb 
82 
207
Podemos identificar a série radioativa 
de um nuclídeo através das expressões: 
O número de massa (A) dos elementos desta 
série é representado pela expressão: 
A=4xn 
Ra 
236 
236 
4 
59 
: 
= 
comrestozero,istoé, 
236=4x59
O número de massa (A) dos elementos desta 
série é representado pela expressão: 
A=4xn+2 
Th 
234 
234 
4 
58 
: 
= 
comresto2,istoé, 
234=4x58+2
O número de massa (A) dos elementos desta 
série é representado pela expressão: 
A=4xn+3 
Pa 
234 
231 
4 
57 
: 
= 
comresto3,istoé, 
231=4x57+3
É o tempo necessário para que a quantidade de uma amostra radioativa seja reduzida à metade 
mo 
mo 
m 
= 
x 
P 
2 
P 
mo 
4 
P 
mo 
8 
P 
... 
mo 
16 
mo 
2 
t = x . P
01)Umasubstânciaradiativatemmeia-vidade8h. 
Partindode100gdomaterialradiativo,que 
massadasubstânciaradiativarestaráapós32h? 
a)32g. 
b)6,25g. 
c)12,5g. 
d)25g. 
e)50g. 
m 
0 
= 
100g 
t 
= 
32 h 
P 
= 
8 h 
m 
= 
? 
m 
= 
x 
mo 
2 
t = x . P 
x = t : P 
x = 32 : 8 
x = 4 
= 
16 
100 
= 
6,25g 
100g 
8 h 
50g 
8 h 
25g 
8 h 
12,5g 
8 h 
6,25g 
outro modo de fazer
02)Oiodo125,variedaderadioativadoiodocom 
aplicaçõesmedicinais,temmeia-vidade60dias. 
Quantosgramasdoiodo125irãorestar,após6 
meses,apartirdeumaamostracontendo2,0gdo 
radioisótopo? 
a)1,50g. 
b)0,75g. 
c)0,66g. 
d)0,25g. 
e)0,10g. 
m 
0 
= 
2,0 g 
t 
= 
6 meses 
P 
= 
60 dias 
m 
= 
? 
= 
2 meses 
= 
= 
3 meias-vidas 
x 
m 
= 
2 
2 
3 
= 
8 
2 
= 
0,25g 
6 
2
03)Umelementoradiativotemumisótopocuja 
meia–vidaé250anos.Quepercentagemda 
amostrainicial,desteisótopo,existirádepois 
de1000anos? 
a)25%. 
b)12,5%. 
c)1,25%. 
d)6,25%. 
e)4%. 
m 
0 
= 
100% 
t 
= 
1000 anos 
P 
= 
250 anos 
m 
= 
? 
= 
= 
4 meias-vidas 
x 
m 
= 
2 
250 
4 
= 
16 
100 
= 
6,25% 
1000 
100
Verifica-se que o 
PERÍODO DE SEMIDESINTEGRAÇÃO 
ou 
MEIA-VIDA 
é aproximadamente 70%da VIDA MÉDIAdo respectivo isótopo radioativo
01)Qualavida–médiadosátomosdeuma 
amostraradioativa,sabendoque,em63hde 
dedesintegração,40gdessaamostrasereduzem 
a5g? 
a)21h. 
b)15h. 
c)7h. 
d)30h. 
e)63h. 
m 
0 
= 
40g 
t 
= 
63 h 
P 
= 
m 
= 
5g 
VM 
= 
? 
40g 
20g 
10g 
5g 
P 
P 
P 
x 
= 
3 meias-vidas 
3 
63 
21 h 
P 
= 
0,7 
x 
VM 
= 
21 
= 
0,7 
x 
VM 
VM 
= 
21 
0,7 
= 
30 h
O lançamento de partículas 
contra o núcleo de um átomo, realizado em condições controladas de laboratório, transforma um átomo em outro 
Esta transformação recebe o nome de 
TRANSMUTAÇÃO ARTIFICIAL 
N 
O 
2 
2 
a 
4 
2 
+ 
+ 
p 
1 
1
É a divisão de um núcleo 
em dois núcleos menores, com a liberação de uma quantidade 
de energia muito grande 
Uma fissão nuclear importante é reação que explica o princípio de funcionamento da bomba atômica 
U 
Kr 
n 
Ba 
+ 
+ 
92 
235 
56 
140 
36 
93 
0 
1 
n 
+ 
0 
1 
3
01)(Covest–98)Umadasmaisfamosasreações 
nucleareséafissãodourâniousadanabomba 
atômica: 
U 
X 
n 
Ba 
+ 
+ 
92 
235 
56 
139 
Z 
A 
0 
1 
n 
+ 
0 
1 
3 
QualovalordonúmeroatômicodoelementoX, 
nestareação? 
92 
+ 
Z 
56 
= 
– 
Z 
= 
92 
56 
Z 
= 
36
02)Nareaçãodefissão: 
U 
....... 
n 
Rb 
+ 
+ 
92 
235 
37 
90 
Ce 
a) 
0 
1 
n 
+ 
0 
1 
2 
Oprodutoqueestáfaltandoéo: 
b) 
c) 
d) 
e) 
La 
Sm 
Eu 
Cs 
144 
58 
146 
57 
160 
62 
157 
63 
144 
55 
X 
Z 
A 
+ 
+ 
235 
90 
1 
+ 
2 
A 
= 
– 
236 
92 
= 
144 
A 
= 
A 
+ 
92 
37 
Z 
= 
– 
92 
37 
Z 
= 
= 
55 
Z
É a junção de núcleos atômicos produzindo um núcleo maior, 
com liberação de uma 
grande quantidade de energia 
Este processo ocorre no sol, onde núcleos de hidrogênio leve se fundem, 
formando núcleos de hélio, com liberação de grande quantidade de energia 
1 
He 
H 
1 
energia 
+ 
4 
2 
4 
b 
+1 
0 
+ 
2
01)Nareaçãodefusãonuclearrepresentadapor: 
1 
n 
H 
3 
+ 
4 
0 
1 
+ 
1 
H 
2 
E 
Ocorreliberaçãodeumnêutron(n).AespécieE 
deveser: 
a)2prótonse2nêutrons. 
b)2prótonse3nêutrons. 
c)2prótonse5nêutrons. 
d)2prótonse3elétrons. 
e)4prótonse3elétrons. 
+ 
2 
3 
+ 
1 
A 
= 
A 
= 
5 
– 
1 
A 
= 
4 
+ 
1 
1 
Z 
= 
Z 
= 
2 
E 
2 
2 prótons 
N 
= 
4 
– 
2 
= 
2 nêutrons
02)(Covest–2006)Oselementosquímicos,emsua 
maioria,foram,sintetizadosatravésdeprocessos 
nuclearesqueocorrememestrelas.Umexemplo 
estámostradonaseqüênciadereaçõesabaixo: 
He 
4 
+ 
He 
4 
I ) 
Be 
8 
He 
3 
+ 
Be 
8 
II ) 
C 
12 
g 
+ 
Destas reações, podemos afirmar que: 
1)Sãoreaçõesdefissãonuclear. 
2)Nareação(II),deveriaestarescritoHeno 
lugardeHe. 
3)HeeHesãoisótopos. 
Está(ão) correta(s): 
a)1,2e3 
b)1apenas 
c)3apenas 
d)1e2apenas 
e)2e3apenas 
4 
4 
3 
8 
3 
As reações produzem núcleos maiores 
que os iniciais, então, é uma FUSÃO 
F 
+ 
3 
= 
12 
+ 
0 
se 
4 
V 
São átomos de mesmo elemento 
químico e diferentes números de 
massa, então são ISÓTOPOS 
V
03)Nadeterminaçãodaidadedeobjetosque 
fizerampartedeorganismosvivos,utiliza-seo 
radioisótopoC,cujameia-vidaéemtornode 
5700anos.Algunsfragmentosdeossos 
encontradosemumaescavaçãopossuíamC 
radioativoemquantidadede6,25%daquela 
dosanimaisvivos.Essesfragmentosdevemter 
idadeaproximadade: 
14 
14 
a)5700anos. 
b)11400anos. 
c)17100anos. 
d)22800anos. 
e)28500anos. 
100% 
50% 
25% 
12,5% 
6,25% 
5700 a 
x 
5700 
5700 a 
5700 a 
5700 a 
t 
= 
4 
22800 anos 
t 
=
04)OacidentedoreatornucleardeChernobyl,em1986, 
lançouparaaatmosferagrandequantidadedeSr 
radioativo,cujameia-vidaéde28anos.Supondoser 
esteisótopoaúnicacontaminaçãoradioativaeque 
olocalpoderáserconsideradoseguroquandoa 
quantidadeSrsereduzir,pordesintegraçãoa 
1/16daquantidadeinicialmentepresente,olocal 
poderáserhabitadonovamenteapartirdoanode: 
38 
90 
38 
90 
a)2014. 
b)2098. 
c)2266. 
d)2986. 
e)3000. 
mo 
2 
mo 
28 anos 
x 
28 
28 anos 
28 anos 
t 
= 
4 
112 anos 
t 
= 
mo 
4 
28 anos 
mo 
8 
mo 
16 
Será habitado em: 
1986 
+ 
112 
= 
2098
Radioatividade - Química
Radioatividade - Química
Radioatividade - Química

Radioatividade - Química

  • 4.
    A RADIOATIVIADE NAMEDICINA DIAGNÓSTICO DE DOENÇAS: 131 I : Tireóide. 32 P : Tumores dos olhos e câncer de pele. 197 Hg : Tumores cerebrais. 24 Na : Obstruções do sistema circulatório. TRATAMENTO DE DOENÇAS: 60 Co : câncer. 131 I : câncer na tireóide.
  • 5.
    Por meio dairradiação, carnes e frutas podem ser esterilizados (ficando livres de fungos e bactérias) ou ser conservados por um tempo mais prolongado A RADIOATIVIADE NA AGRICULTURA
  • 6.
    A RADIOATIVIDADE NA ARQUEOLOGIA E GEOLOGIA Os três métodos mais comuns de DATAÇÃO são os baseados nas seguintes desintegrações: 238 U 206 Pb para : usado na datação de rochas. 40 K 40 Ar para : usado na datação de rochas.
  • 7.
    14 C 14 N para : usado na datação de fósseis.
  • 8.
    A RADIOATIVIDADE FONTEDE ENERGIA REATORNUCLEAR: É um dispositivo que permite controlar o processo de fissão nuclear A energia liberada durante o processo é usada para transformar água líquida em vapor, que faz girar uma turbina, gerando energia elétrica
  • 9.
  • 10.
  • 11.
    A radioatividade naturalocorre, geralmente, com os átomos de números atômicos maiores que 82
  • 12.
    É a propriedadeque os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis
  • 13.
    A reação queocorre nestas condições, isto é, alterando o núcleo do átomo chama-se REAÇÃONUCLEAR
  • 14.
    As emissões radioativas não são afetadas pelas variações de temperatura, pressão, estado físico, etc
  • 15.
    As emissões radioativasnaturais quando são submetidas a um campo magnético ou elétrico sofre uma subdivisão em três tipos bem distintos + + + + + + + + + + – – – – – – – – – – material radioativo bloco de chumbo campo magnético campo magnético placa fluorescente emissão beta emissão gama emissão alfa
  • 16.
    (a ) Aspartículas alfa possuem carga elétrica + 2, devido aos prótons, e massa igual a 4
  • 17.
    (a ) Sãopartículas constituídas por 2 PRÓTONSe 2 NÊUTRONS, que são jogados, em alta velocidade, para fora de um núcleo instável
  • 18.
  • 19.
    Em 1911, FrederickSoddy enunciou a 1ª LEI DA RADIOATIVIDADE “Quando um núcleo emite uma partícula alfa, seu número atômico diminui de duas unidades e seu número de massa diminui de quatro unidades”
  • 20.
    Observe que aequação nuclear mantém um balanço de massas e de cargas elétricas nucleares U Th + 2 4 90 235 92 a 231
  • 21.
    ( b ) São constituídas por ELÉTRONS atirados, em altíssima velocidade, para fora de um núcleo instável
  • 22.
  • 23.
    Como não existeelétron no núcleo, ele é formado a partir de um nêutron de acordo com o esquema: O próton permanece no núcleo; o elétron e o neutrino são atirados para fora do núcleo nêutron próton + elétron + neutrino n 1 e + p 0 1 +1 0 –1 + h 0 0
  • 24.
    Soddy, Fajans, Russellenunciaram a 2ª LEI DA RADIOATIVIDADE “Quando um núcleo emite uma partícula beta, seu número atômico aumenta de uma unidade e seu número de massa permanece inalterado”
  • 25.
    Bi Po 84 210 83 210 –1 b 0 + Observe que a equação nuclear mantém um balanço de massas e de cargas elétricas nucleares
  • 26.
    As emissões gama são ondas eletromagnéticas semelhantes à luz ( g ) 0 0 g
  • 27.
    01)(Covest-2004)Onúcleoatômicodealgunselementosé bastanteinstávelesofreprocessosradioativospara removersuainstabilidade.Sobreostrêstiposde radiação,e,podemosdizerque: b a g Aoemitirradiação,umnúcleotemseunúmero demassaaumentado. 0 0 a 1 1 Aoemitirradiação,umnúcleotemseunúmero demassainalterado. b 2 2 Aradiaçãoéconstituídapornúcleosdeátomosdehélio a 3 Aoemitirradiação,umnúcleonãosofre alteraçãoemsuamassa. 3 g Aoemitirradiação,umnúcleotemseunúmeroatômicoaumentadoemumaunidade. b 4 4
  • 28.
    02)Quandoumátomoemiteumapartículaalfae,em seguida,duaspartículasbeta,osátomosiniciale final: a)Têmomesmonúmerodemassa. b)Sãoisótoposradioativos. c)Nãoocupamomesmolugarnatabelaperiódica. d)Possuemnúmerosatômicosdiferentes. e)Sãoisóbarosradioativos. A Y X Z 2 + + –1 0 b a 2 4 Z’ A’ A = 4 + A’ Z = 2 –2 + Z’ Z = Z’ Têm mesmo número atômico e diferentes números de massa, então, são ISÓTOPOS
  • 29.
    03) Ao sedesintegrar, o átomo Rnemite 3 partículas alfa e 4 partículas beta. O nº atômico e o nº de massa do átomo final são, respectivamente: 86 222 a)84e210. b)210e84. c)82e210. d)210e82. e)86e208. 3 222 Rn X 86 4 + + –1 0 b a 2 4 Z A 86 = 3 x2 + 4 x(–1) + Z Z = 86 –2 Z = 84 86 = 6 –4 + Z 222 = 3 x4 + 4 x0 + A 222 = 12 + A 222 –12 = A A = 210
  • 30.
    04)NatransformaçãoUemPb,quantaspartículas alfaequantaspartículasbetaforamemitidaspor átomodeurânioinicial? 92 238 82 206 a) 8 e 6. b) 6 e 8. c) 4 e 0. d) 0 e 4. e) 8 e 8. 82 206 x 238 U Pb 92 y + + –1 0 b a 2 4 238 = 4 xx + 206 4 xx = 238 –206 4 xx = 32 x = 32 : 4 x = 8 partículas alfa 92 = 2 x8 –y+ 82 92 = 16–y+ 82 y = 98 –92 y = 6 partículas beta
  • 31.
    05)Nafamíliaradioativanaturaldotório,parte-sedotório, Th,echega-senoPb.Osnúmerosdepartículas alfaebetaemitidasnoprocessosão,respectivamente: 90 232 82 208 a)1e1. b)4e6. c)6e4. d)12e16. e)16e12. 82 208 x 232 Th Pb 90 y + + –1 0 b a 2 4 232 = 4 xx + 208 4 xx = 232 –208 4 xx = 24 x = 24 : 4 x = 6 partículas alfa 90 = 2 x6 –y+ 82 90 = 12–y+ 82 y = 94 –90 y = 4 partículas beta
  • 32.
    06)(UFF-RJ)Dadaasériedourânioabaixorepresentada,assinale aalternativaqueapresenta,respectivamente,onúmerode nêutrons,prótonseelétronsemitidosnadesintegraçãodeum núcleodeUatéPb. 92 238 82 206 a)32,32e10. b)16,16e6. c)10,10e5. d)8,8e6. e)8,8e5. 82 206 x 238 U Pb 92 y + + –1 0 b a 2 4 238 = 4 xx + 206 4 xx = 238 –206 4 xx = 32 x = 32 : 4 x = 8 partículas alfa 92 = 2 x8 –y+ 82 92 = 16–y+ 82 y = 98 –82 y = 6 partículas beta NÊUTRONS 8 x2= 16 PRÓTONS 8 x2= 16 ELÉTRONS 6 x1= 6
  • 33.
    O poder deionização das emissões se encontra na seguinte ordem crescente: g b a < <
  • 34.
    g b a FOLHA DE PAPEL 2 mm de CHUMBO 6 cm de CHUMBO g b a < <
  • 35.
    01)Relacioneasradiaçõesnaturaisalfa,betaegamacom suasrespectivascaracterísticas: 1.alfa.2.beta.3.gama. Possui alto poder de penetração, podendo causar danos irreparáveis ao ser humano. 3 2 3 1 São partículas leves, com carga elétrica negativa e massa desprezível São ondas eletromagnéticas semelhantes aos raios X, não possuem carga elétrica nem massa. São partículas pesadas de carga elétrica positiva que, ao incidirem sobre o corpo humano, causam apenas queimaduras leves. Aseqüênciacorreta,decimaparabaixo,é: a)1,2,3,2. b)2,1,2,3. c)1,3,1,2. d)3,2,3,1. e)3,1,2,1.
  • 36.
    É o conjuntode elementos que têm origem na emissão de partículas alfa e beta, resultando, como elemento final, um isótopo estável do chumbo
  • 37.
    SÉRIES RADIOATIVAS NOMEDA SÉRIE 1º ELEMENTO ÚLTIMO ELEMENTO Existem três séries radioativas naturais e uma artificial Nº DE MASSA TÓRIO URÂNIO ACTÍNIO NETÚNIO Th Pb 232 90 82 208 4n 4n + 1 4n + 2 4n + 3 U Pb 92 238 206 82 U Pb 92 235 207 82 Np Bi 93 237 209 83
  • 38.
    Th 90 232 Ra 88 228 Ac 89 228 Th 90 228 Ra 88 224 Rn 86 220 Po 84 216 Pb 82 212 Bi 83 212 Po 84 212 Pb 82 208 78 80 82 84 86 88 90 92
  • 39.
    Np 93 237 Pa 91 233 U 92 233 Th 90 229 Ra 88 225 Ac 89 225 Fr 87 221 At 85 217 Bi 83 213 Po 84 213 Pb 82 209 Bi 83 209 94 80 82 84 86 88 90 92
  • 40.
    78 80 82 84 86 88 90 92 U 92 238 Th 90 234 Pa 91 234 U 92 234 Th 90 230 Ra 88 226 Rn 86 222 Po 84 218 At 85 218 Bi 83 214 Po 84 214 Pb 82 210 Pa 83 210 Po 84 210 Pb 82 206
  • 41.
    78 80 82 84 86 88 90 92 U 92 235 Th 90 231 Pa 91 231 Ac 89 227 Th 90 227 Ra 88 223 Rn 86 219 Po 84 215 At 85 215 Bi 83 211 Po 84 211 Pb 82 207
  • 42.
    Podemos identificar asérie radioativa de um nuclídeo através das expressões: O número de massa (A) dos elementos desta série é representado pela expressão: A=4xn Ra 236 236 4 59 : = comrestozero,istoé, 236=4x59
  • 43.
    O número demassa (A) dos elementos desta série é representado pela expressão: A=4xn+2 Th 234 234 4 58 : = comresto2,istoé, 234=4x58+2
  • 44.
    O número demassa (A) dos elementos desta série é representado pela expressão: A=4xn+3 Pa 234 231 4 57 : = comresto3,istoé, 231=4x57+3
  • 45.
    É o temponecessário para que a quantidade de uma amostra radioativa seja reduzida à metade mo mo m = x P 2 P mo 4 P mo 8 P ... mo 16 mo 2 t = x . P
  • 46.
    01)Umasubstânciaradiativatemmeia-vidade8h. Partindode100gdomaterialradiativo,que massadasubstânciaradiativarestaráapós32h? a)32g. b)6,25g. c)12,5g. d)25g. e)50g. m 0 = 100g t = 32 h P = 8 h m = ? m = x mo 2 t = x . P x = t : P x = 32 : 8 x = 4 = 16 100 = 6,25g 100g 8 h 50g 8 h 25g 8 h 12,5g 8 h 6,25g outro modo de fazer
  • 47.
    02)Oiodo125,variedaderadioativadoiodocom aplicaçõesmedicinais,temmeia-vidade60dias. Quantosgramasdoiodo125irãorestar,após6 meses,apartirdeumaamostracontendo2,0gdo radioisótopo? a)1,50g. b)0,75g. c)0,66g. d)0,25g. e)0,10g. m 0 = 2,0 g t = 6 meses P = 60 dias m = ? = 2 meses = = 3 meias-vidas x m = 2 2 3 = 8 2 = 0,25g 6 2
  • 48.
    03)Umelementoradiativotemumisótopocuja meia–vidaé250anos.Quepercentagemda amostrainicial,desteisótopo,existirádepois de1000anos? a)25%. b)12,5%. c)1,25%. d)6,25%. e)4%. m 0 = 100% t = 1000 anos P = 250 anos m = ? = = 4 meias-vidas x m = 2 250 4 = 16 100 = 6,25% 1000 100
  • 49.
    Verifica-se que o PERÍODO DE SEMIDESINTEGRAÇÃO ou MEIA-VIDA é aproximadamente 70%da VIDA MÉDIAdo respectivo isótopo radioativo
  • 50.
    01)Qualavida–médiadosátomosdeuma amostraradioativa,sabendoque,em63hde dedesintegração,40gdessaamostrasereduzem a5g? a)21h. b)15h. c)7h. d)30h. e)63h. m 0 = 40g t = 63 h P = m = 5g VM = ? 40g 20g 10g 5g P P P x = 3 meias-vidas 3 63 21 h P = 0,7 x VM = 21 = 0,7 x VM VM = 21 0,7 = 30 h
  • 51.
    O lançamento departículas contra o núcleo de um átomo, realizado em condições controladas de laboratório, transforma um átomo em outro Esta transformação recebe o nome de TRANSMUTAÇÃO ARTIFICIAL N O 2 2 a 4 2 + + p 1 1
  • 52.
    É a divisãode um núcleo em dois núcleos menores, com a liberação de uma quantidade de energia muito grande Uma fissão nuclear importante é reação que explica o princípio de funcionamento da bomba atômica U Kr n Ba + + 92 235 56 140 36 93 0 1 n + 0 1 3
  • 53.
    01)(Covest–98)Umadasmaisfamosasreações nucleareséafissãodourâniousadanabomba atômica: U X n Ba + + 92 235 56 139 Z A 0 1 n + 0 1 3 QualovalordonúmeroatômicodoelementoX, nestareação? 92 + Z 56 = – Z = 92 56 Z = 36
  • 54.
    02)Nareaçãodefissão: U ....... n Rb + + 92 235 37 90 Ce a) 0 1 n + 0 1 2 Oprodutoqueestáfaltandoéo: b) c) d) e) La Sm Eu Cs 144 58 146 57 160 62 157 63 144 55 X Z A + + 235 90 1 + 2 A = – 236 92 = 144 A = A + 92 37 Z = – 92 37 Z = = 55 Z
  • 55.
    É a junçãode núcleos atômicos produzindo um núcleo maior, com liberação de uma grande quantidade de energia Este processo ocorre no sol, onde núcleos de hidrogênio leve se fundem, formando núcleos de hélio, com liberação de grande quantidade de energia 1 He H 1 energia + 4 2 4 b +1 0 + 2
  • 56.
    01)Nareaçãodefusãonuclearrepresentadapor: 1 n H 3 + 4 0 1 + 1 H 2 E Ocorreliberaçãodeumnêutron(n).AespécieE deveser: a)2prótonse2nêutrons. b)2prótonse3nêutrons. c)2prótonse5nêutrons. d)2prótonse3elétrons. e)4prótonse3elétrons. + 2 3 + 1 A = A = 5 – 1 A = 4 + 1 1 Z = Z = 2 E 2 2 prótons N = 4 – 2 = 2 nêutrons
  • 57.
    02)(Covest–2006)Oselementosquímicos,emsua maioria,foram,sintetizadosatravésdeprocessos nuclearesqueocorrememestrelas.Umexemplo estámostradonaseqüênciadereaçõesabaixo: He 4 + He 4 I ) Be 8 He 3 + Be 8 II ) C 12 g + Destas reações, podemos afirmar que: 1)Sãoreaçõesdefissãonuclear. 2)Nareação(II),deveriaestarescritoHeno lugardeHe. 3)HeeHesãoisótopos. Está(ão) correta(s): a)1,2e3 b)1apenas c)3apenas d)1e2apenas e)2e3apenas 4 4 3 8 3 As reações produzem núcleos maiores que os iniciais, então, é uma FUSÃO F + 3 = 12 + 0 se 4 V São átomos de mesmo elemento químico e diferentes números de massa, então são ISÓTOPOS V
  • 58.
    03)Nadeterminaçãodaidadedeobjetosque fizerampartedeorganismosvivos,utiliza-seo radioisótopoC,cujameia-vidaéemtornode 5700anos.Algunsfragmentosdeossos encontradosemumaescavaçãopossuíamC radioativoemquantidadede6,25%daquela dosanimaisvivos.Essesfragmentosdevemter idadeaproximadade: 14 14 a)5700anos. b)11400anos. c)17100anos. d)22800anos. e)28500anos. 100% 50% 25% 12,5% 6,25% 5700 a x 5700 5700 a 5700 a 5700 a t = 4 22800 anos t =
  • 59.
    04)OacidentedoreatornucleardeChernobyl,em1986, lançouparaaatmosferagrandequantidadedeSr radioativo,cujameia-vidaéde28anos.Supondoser esteisótopoaúnicacontaminaçãoradioativaeque olocalpoderáserconsideradoseguroquandoa quantidadeSrsereduzir,pordesintegraçãoa 1/16daquantidadeinicialmentepresente,olocal poderáserhabitadonovamenteapartirdoanode: 38 90 38 90 a)2014. b)2098. c)2266. d)2986. e)3000. mo 2 mo 28 anos x 28 28 anos 28 anos t = 4 112 anos t = mo 4 28 anos mo 8 mo 16 Será habitado em: 1986 + 112 = 2098