SlideShare uma empresa Scribd logo
Previsibilidadedeum
sistema de rating aplicado
aempresasbrasileiras
Os desafios para gestão de investimentos impostos pelas
recentes mudanças no mercado financeiro do Brasil demandam
soluções ousadas e inovadoras por parte dos gestores
POR ALEXANDRE DE OLIVEIRA *
Opinião
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
OpiniãoIAlexandredeOliveira
Há muito tempo há consenso sobre a
necessidade de redução nas taxas de juros
praticadas no mercado. Argumenta-se que
juros como os historicamente praticados em
nosso mercado constitui em um entrave ao
crescimento da atividade econômica. Por um
lado, para o setor produtivo, que vê vários
projetos inviabilizados sob uma avaliação
risco-retorno nesse contexto e, por outro,
para as famílias que terminam por postergar
decisões de consumo à espera de crédito
com custos mais compatíveis com sua renda.
Essa tendência de redução nos juros, com
vários desdobramentos positivos para a
economia, vem ocorrendo há algum tempo.
Porém, recentemente temos observado que
esse processo se acentuou.
É relativamente fácil imaginar os
benefícios para a economia em função desse
movimento. Assim como os dois lados de
uma moeda, este processo também possui
efeitos colaterais por alterar o modus
operandi, em prática há gerações, de vários
segmentos do mercado financeiro em um
curto período de tempo. Um exemplo foi a
mudança que se fez necessária na
remuneração dos depósitos da Caderneta de
Poupança. Para permitir uma redução maior
nos juros, foi alterada sua remuneração
permitindo que, pela primeira vez desde a
sua criação, os depósitos passassem a ser
remunerados de forma variável em função do
patamar da taxa básica de juros (Selic) e não
mais de forma fixa com 6% ao ano
independente dos juros de mercado.
Uma mudança desse porte, em um
produto financeiro tradicional como esse,
denota o empenho do governo em romper
com o paradigma de juros elevados
historicamente praticados no Brasil.
Consequentemente, reflexos dessa mudança
serão observados em todas as frentes. Não
apenas na ponta da elevação da atividade
econômica, mas também na ponta dos
investimentos destinados ao acúmulo de
riqueza além da Caderneta de Poupança.
Não é por outro motivo que segmentos como
fundos de investimentos e fundos de pensão
vêm sofrendo ao longo dos últimos anos para
manter o nível de retorno de outros tempos.
Não que seja completamente impossível
alcançar esse objetivo em termos de
rentabilidade absoluta, mas em termos de
retorno ajustado ao risco certamente ocorrerá
uma mudança profunda fazendo com que os
gestores tenham que assumir mais risco para
alcançar os patamares de retorno até hoje
observados. Mais especificamente, aloca-
ções em títulos públicos deverão ser vistas
cada vez mais como estratégias de proteção
de patrimônio, enquanto que, alocações em
títulos privados e renda variável ganharão
cada vez mais força na busca pelo retorno
esperado pelo investidor.
Consequentemente, a gestão de riscos
ganha cada vez mais força. Não que ela
deva ser vista como uma proteção suficiente
contra perdas, mas como uma prática
necessária a ser adotada para que se possa
navegar por águas cada vez mais perigosas,
por assim dizer. Portanto, a existência de um
sistema de sinalização preventivo torna-se
fundamental.
Nesse sentido, apresentamos nesse artigo
alguns aspectos fundamentais para a gestão
do risco de crédito. Inicialmente, trataremos
da abordagem tradicional essencialmente
sob os aspectos da análise fundamentalista.
Na sequência, colocaremos em perspectiva a
abordagem quantitativa considerando sua
evolução e alternativas metodológicas mais
comumente utilizadas e, também, ilustrare-
mos sua aplicação de forma sucinta ao caso
prático para empresas do mercado brasileiro.
Por fim, concluiremos com algumas conside-
rações sobre as virtudes e limitações de cada
abordagem.
Abordagem Tradicional
Tradicionalmente, créditos de relevância
para a carteira são avaliados de forma
detalhada no caso a caso. Tipicamente, essa
é a situação para créditos concedidos às em-
presas através do mercado de capitais via
emissão de dívida. Nessa situação, normal-
mente os potenciais investidores avaliam os
chamados fundamentos da empresa¹ avali-
ando aspectos como:
*Risco do país: essencialmente avalia-
se o ambiente operacional no qual as empre-
sas trabalham. Aspectos como marco regu-
latório, tarifas, política fiscal, estrutura tribu-
tária, controle de fluxos de capitais, risco
político, sistema bancário e fatores macroe-
conômicos, dentre outros.
*Riscos da indústria: ciclo econômico
do setor, obsolescência de produtos, mudan-
ça nas preferências de consumo, mudanças
na tecnologia, redução a barreiras de entra-
da, elevação da concorrência, crescimento
de vendas e poder para estabelecer preços
são alguns exemplos.
Opinião
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
*Riscos específicos: posição competiti-
va em seu setor de atuação, posição de seus
competidores, participação de mercado,
diversidade de produtos e base de clientes,
volatilidade de receitas, etc.
*Fator de gestão: nível de governança,
planos estratégicos e operacionais, controla-
dores, dentre outros.
*Análise financeira: estrutura de endivi-
damento. rentabilidade, volatilidade de vem-
das, liquidez, margens, fontes de recursos,
obrigações contingenciais, análise comparati-
va setorial, projeções de fluxo de caixa, etc.
Através de uma avaliação detalhada de
questões como as comentadas acima, um
analista de crédito experiente deve ser capaz
de avaliar a capacidade de pagamento de
uma empresa. Assim, fica evidente a relevân-
cia desse tipo de análise para o processo de
gestão de crédito.
Por último, vale a pena ressaltar que,
independentemente do método preferido
para se realizar tal análise, partindo-se das
questões mais gerais e indo para as mais
específicas (abordagem top-down) ou
percorrendo esse caminho no sentido inverso
(bottom-up), podemos destacar duas carac-
terísticas nesse tipo de abordagem:
1. Forte presença de fatores qualitativos
que conferem à abordagem um destacado
componente de subjetividade. Isso se faz
necessário para se considerar na avaliação
vários dos pontos destacados nos riscos
acima os quais, de outra forma, seriam de
difícil utilização prática a despeito da informa-
ção relevante que eventualmente contenham.
2. Variáveis financeiras são tipicamente
consideradas de forma univariada ou caso a
caso. Por exemplo, ao se avaliar a liquidez
consideram-se seus aspectos de forma isola-
da de outros fatores como endividamento ou
margem.
Quanto à primeira das características
acima, vemos que se trata de uma análise de
relevância para capturar os aspectos quali-
tativos relevantes, a despeito de limitações
intrínsecas que comentaremos mais adiante.
Em relação à segunda dessas caracterís-
ticas, veremos na sequência que suas limita-
ções são conhecidas há muito tempo poden-
do, inclusive, levar a interpretações incor-
retas sobre a qualidade do crédito de um
tomador.
Por exemplo, uma empresa com endivida-
mento elevado pode ser considerada com
grande potencial para gerar problemas de
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
OpiniãoIAlexandredeOliveira
crédito. Por outro lado, caso possua elevada
liquidez a situação pode ser julgada de forma
diametralmente oposta. Assim, esta potencial
ambiguidade relativa ao desempenho de
várias empresas fica claramente evidente.
Abordagem Quantitativa
Uma das principais contribuições de mode-
los quantitativos está em estender as
análises univariadas ao caso multivariado
onde a combinação simultânea de vários
fundamentos determina a capacidade de
pagamento do tomador. Assim, a utilização
de variáveis potencialmente explicativas,
como indicadores financeiros extraídos dos
balanços, ganha maior ênfase.
De fato, a aplicação de modelos estatísti-
cos com esse propósito vem sendo realizada
há várias décadas. Motivado pelo trabalho
seminal em métodos estatísticos de
classificação de Fisher², temos os primeiros
relatos de modelos de escoragem aplicados
a cartões de crédito e financiamento de
veículos no mercado americano a partir da
década de 1940.
Contudo, até o trabalho de Edward Altman
em 1968³, a aplicação de tais modelos ao
caso de empresas era inédita. Em parte, por
conta do entendimento de que não seria pos-
sível prever a qualidade de crédito de em-
presas através de modelos quantitativos e,
em parte, por conta de se necessitar de um
histórico de dados minimamente adequado
para a aplicação de modelos desse tipo.
Em seu trabalho, Altman derruba aquela
visão construindo um modelo com base no
histórico de 20 anos de demonstrações para
66 empresas do setor de manufatura ame-
ricano. Seu modelo, contendo 5 indicadores
financeiros, conseguia classificar corretamen-
te 95% dos casos de bons e maus pagadores
com um ano de antecedência do evento de
crédito, o chamado default. Assim, o compor-
tamento conjunto dos indicadores financeiros
contidos no modelo, estimado com base em
padrões históricos de ocorrência de default,
determina um único número - denominado de
escore — que representa a capacidade de
pagamento do tomador com antecedência de
1 ano da ocorrência do evento. Note que,com
isso, as potenciais ambiguidades das análi-
ses univariadas são deixadas de lado.
Ao longo das décadas seguintes, aborda-
gens quantitativas em crédito evoluíram
drasticamente. Outros modelos de discrimi-
nação estatística de bons e maus pagadores
Opinião
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
começaram a ser utilizados como logit e
probit, dentre outros. Mais recentemente
ainda temos a aplicação de algoritmos de
redes neurais. de aprendizagem supervisio-
nada e não supervisionada.
Além de modelos estatísticos, surge a
classe de modelos ditos estruturais. Baseado
na teoria de opções4 sua abordagem
específica para aplicação no caso de
empresas procura estimar o risco de uma
empresa a partir de variáveis econômicas
como a estrutura de capital e o valor a
mercado de seus ativos.
Assim, podemos ter uma noção a respeito
da evolução metodológica no assunto ao lon-
go do tempo. Do ponto de vista da avaliação
de crédito para empresas, entendemos que
modelos estatísticos simples como Análise
Discriminante Multivariada (MDA), logit e pro-
bit podem desempenhar bem o papel de mo-
delos quantitativos sem tirar do analista a
possibilidade de avaliar as variáveis que es-
tão levando o modelo a gerar determinada
avaliação, algo que não é possível com mo-
delos de redes neurais. Modelos estruturais,
por outro lado, embora atraentes em suas
considerações, são dependentes de merca-
dos acionários suficientemente líquidos, o
que dificulta sua aplicação em mercados
como o brasileiro em que algumas poucas
empresas determinam grande parte do seu
movimento.
Caso Corporate
Para ilustrar a aplicação de modelos quan-
titativos na gestão de crédito, construímos
um sistema de classificações (sistema de
rating) a partir de um histórico de demons-
trações financeiras de empresas com ações
negociadas na bolsa. Com base nesse
sistema, poderemos avaliar a evolução de
sua classificação, identificando tendências de
qualquer empresa da base, e poderemos
compará-la com outras empresas, bem como
analisar as variáveis que melhor explicam o
comportamento observado.
Este histórico compreende dados trimes-
trais de cerca de 350 empresas de 1994 a
2011 a partir das quais uma coleção de 45
indicadores financeiros são calculados com o
objetivo de servir como potenciais variáveis
explicativas para o modelo. Um exemplo
dessas variáveis explicativas pode ser a
relação entre endividamento de curto e longo
prazo com patrimônio. Ainda para esses 17
anos de dados coletados, identificamos
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
OpiniãoIAlexandredeOliveira
y, a mesma contagem é feita para o grupo
dos maus pagadores.
No modelo perfeito, por exemplo, teríamos
primeiramente observado a totalidade dos
maus pagadores para somente depois come-
çar a observar bons pagadores. Nessa situa-
ção, a curva ROC percorreria o eixo y com-
pletamente e depois o x. Consequentemente,
a área pintada seria o retângulo completo.
Como os modelos podem não acertar a tota-
lidade das classificações, a curva ROC apre-
senta um desvio em relação ao caso ideal.
Um critério comumente utilizado para ava-
liar esta informação é a área sob a curva
mais de 80 eventos de default.
Após avaliar o poder explicativo de cada
variável, ficamos com 20 candidatas a serem
testadas em conjunto nos modelos MDA
(Fisher), logit e probit e, com o auxílio de pro-
cedimentos estatísticos de seleção de
variáveis do tipo stepwise, obtemos modelos
com 7 variáveis. Testes estatísticos para
avaliar a qualidade das estimações reali-
zadas e largamente reportados em trabalhos
deste tipo, como Kolmogorov-Smirnov, Auroc,
Wald, dentre outros, são aplicados. O índice
de acerto geral das classificações dos bons e
maus pagadores chega a 90% indicando que
o modelo possui boa qualidade.
Outro indicador muito utilizado e que pode
ser visto na figura ao lado é a chamada curva
Receiver Operating Characteristic (ROC)
para cada modelo ajustado. Basicamente, os
escores gerados por cada modelo e tomador
são ordenados de forma crescente. Quanto
maior o poder de discriminação de bons e
maus pagadores do modelo, mais separados
os tomadores devem estar. Percorrendo-se
os tomadores ordenados, contabilizamos no
eixo x o percentual de bons pagadores
encontrados nas observações ordenadas em
relação ao total de bons pagadores. No eixo
Opinião
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
ROC (AU- ROC) em relação ao modelo ideal.
É fácil ver que quanto mais o modelo real se
aproxima do ideal, mais seu AUROC se apro-
xima da unidade. Dos três modelos estima-
dos, o logit se aproximou mais chegando a
94,72%.
No entanto, muito mais importante do que
criar um modelo de dois estados — separan-
do os bons dos maus pagadores — é utilizar
sua saída para criar um sistema de classifica-
ções de vários estados, ou seja, uma escala
de rating. Há várias considerações técnicas
que devem ser observadas para a obtenção
dessa escala como granularidade, estabilida-
de de classificações e poder de discrimina-
ção, dentre outros. De qualquer forma, esta
tarefa pode ser feita de várias maneiras. Utili-
zamos aqui um método de aglomeração não
supervisionado controlando o número de
classes desejadas obtendo uma escala com
nove graus os quais denominamos de AAA
AA, A, BBB, BB, B, CCC, CC e C.
O gráfico a seguir exemplifica como as
observações dos tomadores da base ficaram
classificadas neste sistema para um conjunto
de empresas de um dado setor. Pode-se ver
que a maioria das classificações fica nos
graus intermediários apresentando poucas
observações nos extremos da escala. Quali-
tativamente falando, este fato parece razoá-
vel, uma vez que, para uma escala ter poder
de diferenciação é de se esperar que seja
difícil encontrar muitos indivíduos classifica-
dos nos melhores graus. Por outro lado, a
mortalidade de indivíduos nos piores graus
também deve ser elevada. Apenas para infor-
mação, o AUROC desta escala ficou em
82%. De acordo com alguns trabalhos repor-
tados na Europa e Estados Unidos, em ter-
mos gerais, deve-se esperar AUROCs entre
70% e 90%.
Como consequência desse sistema de
classificações, pode-se facilmente observar a
evolução histórica para qualquer tomador da
base e que pode ser visto através do gráfico
a seguir, ilustrativo para um caso. Pode-se
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
OpiniãoIAlexandredeOliveira
ver, claramente, que sua classificação degra-
dou-se paulatinamente ao longo do tempo.
Em particular nesse caso, o tomador em
questão gerou uma ocorrência de default no
final de 2003.
Este fato deveria chamar a atenção de um
analista com bastante antecedência à ocor-
rência do evento, ou seja, 7 ou 8 anos antes
já apresentava sinais de degradação na qua-
lidade do crédito. Certamente, um ponto de
partida seria analisar o comportamento da
classificação gerada em função das variáveis
explicativas originalmente utilizadas no
modelo.
Assim em caso de avaliação para
concessão, a análise pra uma eventual reco-
mendação positiva deveria ser mais
profundamente embasada. Em caso de
revisão de um crédito já em carteira, sua
revisão deveria ser mais frequente e
detalhada sinalizando de forma clara para os
órgãos internos responsáveis a necessidade
de uma ação adequada. Vale ressaltar que
para os demais casos de default da base, o
tempo médio de sinalização anterior à
ocorrência do evento ficou em torno de 3
anos podendo chegar em vários casos em 4
anos mostrando o poder de sinalização do
modelo.
Comparação entre Abordagens
A abordagem tradicional é bastante flexível e
permite facilmente incorporar novos fatores
para compor uma análise. Principalmente,
questões qualitativas sobre a gestão da
empresa, características dos mercados em
que opera ou aspectos concorrenciais, dentre
outros. No entanto, essa flexibilidade impõe
um grau elevado de subjetividade ao
processo de avaliação. Dois analistas
distintos podem avaliar os mesmos aspectos
qualitativos sob ângulos diferentes alcan-
çando conclusões não totalmente concor-
dantes sobre um caso específico.
Opinião
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
Assim surgem questões como impar-
cialidade e consistência das avaliações. Com
relação à imparcialidade, em alguns casos,
as percepções sobre determinado nome de
um tomador podem falar mais alto do que os
fatos concretos refletidos no desempenho do
mesmo. Em relação à consistência, a
situação comentada para os dois analistas
pode acontecer tanto em situações de
análise distintas no tempo quanto para
avaliações simultâneas, uma vez que o peso
dado por cada um para cada informação
depende, em grande parte, de sua
experiência em casos passados. Isso impõe
um desafio para que as instituições consigam
preservar sua referência de análise quando
da troca de algum analista.
Por outro lado, a qualidade das avaliações
de uma analista está diretamente ligada ao
conhecimento adquirido com os casos
anteriores. Não que um analista com poucos
anos de experiência não possa fazer análises
corretas e de qualidade, mas é consenso que
o aprendizado adquirido ao longo do tempo é
bastante relevante para emissão de seus
pareceres. Logo, a análise de crédito sob a
abordagem tradicional tende a ser bem mais
cara além de ser mais artesanal.
Com relação à abordagem quantitativa,
esta demanda conhecimentos de modelos
matemáticos e estatísticos mais profundos, o
que normalmente não faz parte do perfil de
um departamento de análise de crédito. No
entanto, nada impede que esta abordagem
possa ser estruturada através de ferramentas
computacionais adequadas livrando o analis-
ta da carga de detalhes indesejáveis e se
aproveitando das virtudes que esses méto-
dos possibilitam aos seus usuários.
Diferentemente da abordagem anterior,
esta se caracteriza primordialmente pela im-
parcialidade e consistência. Para os mode-
los, pouco importa o nome em questão o que
importa são os padrões objetivamente identi-
ficados com base na história.
A consistência é plena, pois, a não ser que
o modelo seja alterado as avaliações sempre
serão baseadas nos mesmos padrões utiliza-
dos para sua estimação.
Uma vez definido um modelo, novos toma-
dores não contemplados na base original
podem ser classificados considerando-se que
pertençam ao mesmo grupo relevante de
tomadores. Adicionalmente, uma vez que um
analista faça projeções sobre os números de
um tomador com base em cenários futuros, é
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
OpiniãoIAlexandredeOliveira
trivial a verificação da eventual classificação
do mesmo condicionado a cada cenário.
Some-se a isto, seu poder preditivo destaca-
do. Além do mais. considerando-se a exis-
tência de dados, esta abordagem pode ser
estendida facilmente para outros segmentos
que não apenas de grandes empresas.
Outro aspecto interessante refere-se à
incorporação simples de novas informações
com o passar do tempo. Por exemplo, no
caso ilustrado, novas informações podem ser
obtidas a cada trimestre. Portanto. é rápida e
barata a avaliação de toda a base pelo
incremento de novas informações. Com isso,
o processo de revisão é otimizado permitindo
que sejam identificados casos problemáticos
com maior antecedência. Assim, revisões
podem ser priorizadas colocando a frente
casos mais relevantes para a instituição, bem
como determinando o nível de aprofunda-
mento da análise.
Além do sistema de rating permitir uma
gestão de risco mais dinâmica e preditiva
para cada tomador da carteira, ainda possibi-
lita a estimação de parâmetros como proba-
bilidade de default, relevante para avaliar a
chance de ocorrência de um evento de
crédito para cada rating, bem como a matriz
de transição que informa a possibilidade de
mudança de rating para cada tomador. Tais
parâmetros podem ser cruciais para a
utilização de modelos de risco em carteira.
Por último, ainda vale notar que um
modelo desse tipo possibilita a comparação
muito simples entre tomadores ao longo do
tempo, bem como permite à instituição
mapear eventuais oportunidades em
segmentos ou tomadores com quem ainda
não possui relacionamento identificando
possibilidades de novos negócios.
¹ Maiores detalhes nesse assunto podem ser vistos em
Ganguin, B. e Bilardello, J. Fundamentals of Corporate
Credit Analysis, McGraw-Hill , 2005.
² Fisher, R. A. The Use of Multiple Measurements in
Taxonomic Problems, Annals of Eugenics, Sep 1936. Nº.
7, pp. 179-188.
³ Altman, E. I. Financial Ratios, Discriminant Analysis
and the Prediction of Corporate Bankruptcy, The Journal
of Finance. Sep 1968. Vol XXIII. pp. 589-609.
4 Merton, R. On the Pricing of Corporate Debt: The Risk
Structure of lnterest Rates, The Journal of Finance. 1974.
Vol XXIX, pp. 449-470.
Opinião
FUNDOS DE PENSÃO – JULHO/AGOSTO 2012

Mais conteúdo relacionado

Mais procurados

Analises Financeira e de Investimentos
Analises Financeira e de InvestimentosAnalises Financeira e de Investimentos
Analises Financeira e de Investimentos
Roosevelt F. Abrantes
 
Analise De DemonstraçõEs Financeiras
Analise De DemonstraçõEs FinanceirasAnalise De DemonstraçõEs Financeiras
Analise De DemonstraçõEs Financeiras
admfape
 
Indices de liquidez analise
Indices de liquidez analiseIndices de liquidez analise
Indices de liquidez analise
Gleidbraga
 
Racios financeiros e economicos
Racios financeiros e economicosRacios financeiros e economicos
Racios financeiros e economicos
Universidade Pedagogica
 
Portifólio administração e finanças
Portifólio administração e finançasPortifólio administração e finanças
Portifólio administração e finanças
Andréia Cruz
 
Cálculo de risco
Cálculo de riscoCálculo de risco
Rácios
RáciosRácios
Rácios
Martinho Doce
 
Benchmarks de Renda Fixa - Modulo 1
Benchmarks de Renda Fixa - Modulo 1Benchmarks de Renda Fixa - Modulo 1
Benchmarks de Renda Fixa - Modulo 1
Leandro de Lima Strasser-CFP
 
1 aula i_introducao_a_administracao_fina
1 aula i_introducao_a_administracao_fina1 aula i_introducao_a_administracao_fina
1 aula i_introducao_a_administracao_fina
Claudia Matos
 
Analise das Demonstrações Financeiras
Analise das Demonstrações FinanceirasAnalise das Demonstrações Financeiras
Analise das Demonstrações Financeiras
Isabel Castilho
 
Unidade 1 1 empresas_decisoes_economicas
Unidade 1 1 empresas_decisoes_economicasUnidade 1 1 empresas_decisoes_economicas
Unidade 1 1 empresas_decisoes_economicas
Arnoldo Schmidt Neto
 
Www.ead.fea.usp.br
Www.ead.fea.usp.brWww.ead.fea.usp.br
Www.ead.fea.usp.br
Iaísa Magalhaes
 
Gestão Financeira
Gestão FinanceiraGestão Financeira
Gestão Financeira
Grupo Suprema
 
RáCios Financeiros
RáCios FinanceirosRáCios Financeiros
RáCios Financeiros
GabrielBatista
 
Administração Financeira
Administração FinanceiraAdministração Financeira
Administração Financeira
elliando dias
 
Gp contabilidade slides de aula unidade iv
Gp contabilidade slides de aula   unidade ivGp contabilidade slides de aula   unidade iv
Gp contabilidade slides de aula unidade iv
Claudia Patricia
 
Gestão Financeira
Gestão FinanceiraGestão Financeira
Gestão Financeira
Cadernos PPT
 
Risco de credito
Risco de creditoRisco de credito
Risco de credito
cARLOS CAMPOS
 
Gestão financeira
Gestão financeiraGestão financeira
Gestão financeira
jjjdiscovery
 
Aula 05 (4)
Aula 05 (4)Aula 05 (4)
Aula 05 (4)
Dieni Keli
 

Mais procurados (20)

Analises Financeira e de Investimentos
Analises Financeira e de InvestimentosAnalises Financeira e de Investimentos
Analises Financeira e de Investimentos
 
Analise De DemonstraçõEs Financeiras
Analise De DemonstraçõEs FinanceirasAnalise De DemonstraçõEs Financeiras
Analise De DemonstraçõEs Financeiras
 
Indices de liquidez analise
Indices de liquidez analiseIndices de liquidez analise
Indices de liquidez analise
 
Racios financeiros e economicos
Racios financeiros e economicosRacios financeiros e economicos
Racios financeiros e economicos
 
Portifólio administração e finanças
Portifólio administração e finançasPortifólio administração e finanças
Portifólio administração e finanças
 
Cálculo de risco
Cálculo de riscoCálculo de risco
Cálculo de risco
 
Rácios
RáciosRácios
Rácios
 
Benchmarks de Renda Fixa - Modulo 1
Benchmarks de Renda Fixa - Modulo 1Benchmarks de Renda Fixa - Modulo 1
Benchmarks de Renda Fixa - Modulo 1
 
1 aula i_introducao_a_administracao_fina
1 aula i_introducao_a_administracao_fina1 aula i_introducao_a_administracao_fina
1 aula i_introducao_a_administracao_fina
 
Analise das Demonstrações Financeiras
Analise das Demonstrações FinanceirasAnalise das Demonstrações Financeiras
Analise das Demonstrações Financeiras
 
Unidade 1 1 empresas_decisoes_economicas
Unidade 1 1 empresas_decisoes_economicasUnidade 1 1 empresas_decisoes_economicas
Unidade 1 1 empresas_decisoes_economicas
 
Www.ead.fea.usp.br
Www.ead.fea.usp.brWww.ead.fea.usp.br
Www.ead.fea.usp.br
 
Gestão Financeira
Gestão FinanceiraGestão Financeira
Gestão Financeira
 
RáCios Financeiros
RáCios FinanceirosRáCios Financeiros
RáCios Financeiros
 
Administração Financeira
Administração FinanceiraAdministração Financeira
Administração Financeira
 
Gp contabilidade slides de aula unidade iv
Gp contabilidade slides de aula   unidade ivGp contabilidade slides de aula   unidade iv
Gp contabilidade slides de aula unidade iv
 
Gestão Financeira
Gestão FinanceiraGestão Financeira
Gestão Financeira
 
Risco de credito
Risco de creditoRisco de credito
Risco de credito
 
Gestão financeira
Gestão financeiraGestão financeira
Gestão financeira
 
Aula 05 (4)
Aula 05 (4)Aula 05 (4)
Aula 05 (4)
 

Destaque

educacao financeira2 relacionamento de bancos
educacao financeira2 relacionamento de bancoseducacao financeira2 relacionamento de bancos
educacao financeira2 relacionamento de bancos
guest6505dd
 
RATING PME
RATING PMERATING PME
Relatório LF rating - julho 2011
Relatório LF rating - julho 2011Relatório LF rating - julho 2011
Relatório LF rating - julho 2011
Paraná Banco
 
MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...
MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...
MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...
Carlos Estevam
 
MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...
MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...
MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...
MVAR Solucoes e Servicos
 
Manual Resolução 3.721 - Risco de Crédito
Manual Resolução 3.721 - Risco de CréditoManual Resolução 3.721 - Risco de Crédito
Manual Resolução 3.721 - Risco de Crédito
Carolina Gladyer Rabelo
 
Turnaround Management & Consulting
Turnaround Management & ConsultingTurnaround Management & Consulting
Turnaround Management & Consulting
Francisco Martins Simões
 
Risco de Crédito 1
Risco de Crédito 1Risco de Crédito 1
Risco de Crédito 1
Renato Vicente
 
Manual Prisma 2015 Chevrolet
Manual Prisma 2015 ChevroletManual Prisma 2015 Chevrolet
Manual Prisma 2015 Chevrolet
Sérgio Amaral
 

Destaque (9)

educacao financeira2 relacionamento de bancos
educacao financeira2 relacionamento de bancoseducacao financeira2 relacionamento de bancos
educacao financeira2 relacionamento de bancos
 
RATING PME
RATING PMERATING PME
RATING PME
 
Relatório LF rating - julho 2011
Relatório LF rating - julho 2011Relatório LF rating - julho 2011
Relatório LF rating - julho 2011
 
MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...
MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...
MVAR - Modelos de Risco de Crédito em Carteira - Painel Alexandre de Oliveira...
 
MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...
MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...
MVAR - Modelos de Risco de Crédito em Carteiras: Uma comparação aplicada ao c...
 
Manual Resolução 3.721 - Risco de Crédito
Manual Resolução 3.721 - Risco de CréditoManual Resolução 3.721 - Risco de Crédito
Manual Resolução 3.721 - Risco de Crédito
 
Turnaround Management & Consulting
Turnaround Management & ConsultingTurnaround Management & Consulting
Turnaround Management & Consulting
 
Risco de Crédito 1
Risco de Crédito 1Risco de Crédito 1
Risco de Crédito 1
 
Manual Prisma 2015 Chevrolet
Manual Prisma 2015 ChevroletManual Prisma 2015 Chevrolet
Manual Prisma 2015 Chevrolet
 

Semelhante a MVAR- Previsibilidade de um sistema de rating aplicado a empresas brasileiras - ABRAPP

Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...
Carlos Estevam
 
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
Carlos Estevam
 
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
MVAR Solucoes e Servicos
 
Apostila pqo cap_08_v2
Apostila pqo cap_08_v2Apostila pqo cap_08_v2
Apostila pqo cap_08_v2
porratudojafoiusado
 
Inadimplência - O risco da concessão de crédito
Inadimplência - O risco da concessão de créditoInadimplência - O risco da concessão de crédito
Inadimplência - O risco da concessão de crédito
Tatiana Barros Prestes Gomes
 
Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1
Rozangela Silva
 
Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1
Rozangela Silva
 
Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1
Rozangela Silva
 
Apostila 05 creditos
Apostila 05   creditosApostila 05   creditos
Apostila 05 creditos
zeramento contabil
 
Curso análise de crédito (Slide)
Curso análise de crédito (Slide)Curso análise de crédito (Slide)
Curso análise de crédito (Slide)
bcconsultoria
 
Gestão e análise de risco de crédito iv
Gestão e análise de risco de crédito ivGestão e análise de risco de crédito iv
Gestão e análise de risco de crédito iv
professoredmilson
 
CEJES_Formação Gestão de Riscos 4ª Sessão2024.pdf
CEJES_Formação Gestão de Riscos 4ª Sessão2024.pdfCEJES_Formação Gestão de Riscos 4ª Sessão2024.pdf
CEJES_Formação Gestão de Riscos 4ª Sessão2024.pdf
LetciaMelo61
 
Politica de cobranca
Politica de cobrancaPolitica de cobranca
Politica de cobranca
Robson Barbosa
 
Os Cs do credito
Os Cs do creditoOs Cs do credito
Os Cs do credito
Rodolfo Salvi
 
A importância da contabilidade nacional
A importância da contabilidade nacionalA importância da contabilidade nacional
A importância da contabilidade nacional
Universidade Pedagogica
 
A polêmica da chamada trava bancária ecio perin júnior - sustentare escola ...
A polêmica da chamada trava bancária   ecio perin júnior - sustentare escola ...A polêmica da chamada trava bancária   ecio perin júnior - sustentare escola ...
A polêmica da chamada trava bancária ecio perin júnior - sustentare escola ...
Sustentare Escola de Negócios
 
Atps analise de investimento
Atps analise de investimentoAtps analise de investimento
Atps analise de investimento
Mai Reginato
 
Atps analise de credito em risco de investimento
Atps analise de credito em risco de investimentoAtps analise de credito em risco de investimento
Atps analise de credito em risco de investimento
Rosangela Santos
 
Ebook Guia de Aplicação em Fundos de Investimento
Ebook Guia de Aplicação em Fundos de InvestimentoEbook Guia de Aplicação em Fundos de Investimento
Ebook Guia de Aplicação em Fundos de Investimento
Magnetis Investimentos
 

Semelhante a MVAR- Previsibilidade de um sistema de rating aplicado a empresas brasileiras - ABRAPP (20)

Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras - uma comparacao aplicada ao caso br...
 
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
 
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...Modelos de risco de credito em carteiras   uma comparacao aplicada ao caso br...
Modelos de risco de credito em carteiras uma comparacao aplicada ao caso br...
 
Apostila pqo cap_08_v2
Apostila pqo cap_08_v2Apostila pqo cap_08_v2
Apostila pqo cap_08_v2
 
Inadimplência - O risco da concessão de crédito
Inadimplência - O risco da concessão de créditoInadimplência - O risco da concessão de crédito
Inadimplência - O risco da concessão de crédito
 
Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1
 
Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1
 
Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1Créditos consignados e os correspondentes bancários 1
Créditos consignados e os correspondentes bancários 1
 
Apostila 05 creditos
Apostila 05   creditosApostila 05   creditos
Apostila 05 creditos
 
Curso análise de crédito (Slide)
Curso análise de crédito (Slide)Curso análise de crédito (Slide)
Curso análise de crédito (Slide)
 
Gestão e análise de risco de crédito iv
Gestão e análise de risco de crédito ivGestão e análise de risco de crédito iv
Gestão e análise de risco de crédito iv
 
CEJES_Formação Gestão de Riscos 4ª Sessão2024.pdf
CEJES_Formação Gestão de Riscos 4ª Sessão2024.pdfCEJES_Formação Gestão de Riscos 4ª Sessão2024.pdf
CEJES_Formação Gestão de Riscos 4ª Sessão2024.pdf
 
Politica de cobranca
Politica de cobrancaPolitica de cobranca
Politica de cobranca
 
Spread bancário
Spread bancárioSpread bancário
Spread bancário
 
Os Cs do credito
Os Cs do creditoOs Cs do credito
Os Cs do credito
 
A importância da contabilidade nacional
A importância da contabilidade nacionalA importância da contabilidade nacional
A importância da contabilidade nacional
 
A polêmica da chamada trava bancária ecio perin júnior - sustentare escola ...
A polêmica da chamada trava bancária   ecio perin júnior - sustentare escola ...A polêmica da chamada trava bancária   ecio perin júnior - sustentare escola ...
A polêmica da chamada trava bancária ecio perin júnior - sustentare escola ...
 
Atps analise de investimento
Atps analise de investimentoAtps analise de investimento
Atps analise de investimento
 
Atps analise de credito em risco de investimento
Atps analise de credito em risco de investimentoAtps analise de credito em risco de investimento
Atps analise de credito em risco de investimento
 
Ebook Guia de Aplicação em Fundos de Investimento
Ebook Guia de Aplicação em Fundos de InvestimentoEbook Guia de Aplicação em Fundos de Investimento
Ebook Guia de Aplicação em Fundos de Investimento
 

Mais de MVAR Solucoes e Servicos

MATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEF
MATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEFMATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEF
MATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEF
MVAR Solucoes e Servicos
 
MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...
MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...
MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...
MVAR Solucoes e Servicos
 
MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA - Abril 2013
MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA  - Abril 2013MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA  - Abril 2013
MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA - Abril 2013
MVAR Solucoes e Servicos
 
MVAR- Modelo de Gestao de Risco Corporativo- FUNCEF
MVAR- Modelo de Gestao de Risco Corporativo- FUNCEFMVAR- Modelo de Gestao de Risco Corporativo- FUNCEF
MVAR- Modelo de Gestao de Risco Corporativo- FUNCEF
MVAR Solucoes e Servicos
 
MVAR- Registro de Perdas Operacionais
MVAR- Registro de Perdas OperacionaisMVAR- Registro de Perdas Operacionais
MVAR- Registro de Perdas Operacionais
MVAR Solucoes e Servicos
 
MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...
MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...
MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...
MVAR Solucoes e Servicos
 
MVAR- Risco de Credito de Operacoes Estruturadas -ABRAPP
MVAR- Risco de Credito de Operacoes Estruturadas -ABRAPPMVAR- Risco de Credito de Operacoes Estruturadas -ABRAPP
MVAR- Risco de Credito de Operacoes Estruturadas -ABRAPP
MVAR Solucoes e Servicos
 
MVAR- Risco de Credito de Operacoes Estruturadas- FEBRABAN
MVAR- Risco de Credito de Operacoes Estruturadas- FEBRABANMVAR- Risco de Credito de Operacoes Estruturadas- FEBRABAN
MVAR- Risco de Credito de Operacoes Estruturadas- FEBRABAN
MVAR Solucoes e Servicos
 

Mais de MVAR Solucoes e Servicos (8)

MATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEF
MATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEFMATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEF
MATERA MVAR - Gestão de Controles Internos e Riscos Operacionais - Modelo FUNCEF
 
MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...
MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...
MVAR- Tendencia para Sistemas Internos - Novo perfil para Gestao de Risco em ...
 
MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA - Abril 2013
MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA  - Abril 2013MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA  - Abril 2013
MVAR- Gestao de Riscos- Revista ValorEspecial GESTAO FINANCEIRA - Abril 2013
 
MVAR- Modelo de Gestao de Risco Corporativo- FUNCEF
MVAR- Modelo de Gestao de Risco Corporativo- FUNCEFMVAR- Modelo de Gestao de Risco Corporativo- FUNCEF
MVAR- Modelo de Gestao de Risco Corporativo- FUNCEF
 
MVAR- Registro de Perdas Operacionais
MVAR- Registro de Perdas OperacionaisMVAR- Registro de Perdas Operacionais
MVAR- Registro de Perdas Operacionais
 
MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...
MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...
MVAR- Criacao de Valor utilizando uma Gestao de Risco Operacional mais eficaz...
 
MVAR- Risco de Credito de Operacoes Estruturadas -ABRAPP
MVAR- Risco de Credito de Operacoes Estruturadas -ABRAPPMVAR- Risco de Credito de Operacoes Estruturadas -ABRAPP
MVAR- Risco de Credito de Operacoes Estruturadas -ABRAPP
 
MVAR- Risco de Credito de Operacoes Estruturadas- FEBRABAN
MVAR- Risco de Credito de Operacoes Estruturadas- FEBRABANMVAR- Risco de Credito de Operacoes Estruturadas- FEBRABAN
MVAR- Risco de Credito de Operacoes Estruturadas- FEBRABAN
 

Último

Veronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdf
Veronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdfVeronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdf
Veronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdf
Veronica Dantas
 
GUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdf
GUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdfGUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdf
GUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdf
AlfeuBuriti1
 
Revolução da inclusão financeira: Benefícios da criptomoeda
Revolução da inclusão financeira: Benefícios da criptomoedaRevolução da inclusão financeira: Benefícios da criptomoeda
Revolução da inclusão financeira: Benefícios da criptomoeda
Renan Batista Bitcoin
 
7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf
7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf
7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf
InsttLcioEvangelista
 
RESTAURANT MANORA HOTEL SINDBAD HAMMAMET
RESTAURANT MANORA HOTEL SINDBAD HAMMAMETRESTAURANT MANORA HOTEL SINDBAD HAMMAMET
RESTAURANT MANORA HOTEL SINDBAD HAMMAMET
rihabkorbi24
 
A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...
A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...
A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...
Paulo Emerson Pereira
 
Estudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCC
Estudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCCEstudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCC
Estudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCC
Paulo Emerson Pereira
 

Último (7)

Veronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdf
Veronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdfVeronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdf
Veronica Daniel Dantas Opportunity Recebe 5 Premios Ademi.pdf
 
GUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdf
GUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdfGUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdf
GUIA DE EMPRESA PEDAGOGICA PARA ALUNOS.pdf
 
Revolução da inclusão financeira: Benefícios da criptomoeda
Revolução da inclusão financeira: Benefícios da criptomoedaRevolução da inclusão financeira: Benefícios da criptomoeda
Revolução da inclusão financeira: Benefícios da criptomoeda
 
7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf
7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf
7 - Gerenciamento e Economia de Sistemas de Operações Logísticas.pdf
 
RESTAURANT MANORA HOTEL SINDBAD HAMMAMET
RESTAURANT MANORA HOTEL SINDBAD HAMMAMETRESTAURANT MANORA HOTEL SINDBAD HAMMAMET
RESTAURANT MANORA HOTEL SINDBAD HAMMAMET
 
A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...
A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...
A ADEQUAÇÃO À LGPD DA UNIVERSIDADE UNIVAZADA: UM ESTUDO DE CASO FICTÍCIO DE U...
 
Estudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCC
Estudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCCEstudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCC
Estudo de caso apresenta ao Projeto Integrado Multidisciplinar - TCC
 

MVAR- Previsibilidade de um sistema de rating aplicado a empresas brasileiras - ABRAPP

  • 1. Previsibilidadedeum sistema de rating aplicado aempresasbrasileiras Os desafios para gestão de investimentos impostos pelas recentes mudanças no mercado financeiro do Brasil demandam soluções ousadas e inovadoras por parte dos gestores POR ALEXANDRE DE OLIVEIRA * Opinião FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
  • 2. FUNDOS DE PENSÃO – JULHO/AGOSTO 2012 OpiniãoIAlexandredeOliveira Há muito tempo há consenso sobre a necessidade de redução nas taxas de juros praticadas no mercado. Argumenta-se que juros como os historicamente praticados em nosso mercado constitui em um entrave ao crescimento da atividade econômica. Por um lado, para o setor produtivo, que vê vários projetos inviabilizados sob uma avaliação risco-retorno nesse contexto e, por outro, para as famílias que terminam por postergar decisões de consumo à espera de crédito com custos mais compatíveis com sua renda. Essa tendência de redução nos juros, com vários desdobramentos positivos para a economia, vem ocorrendo há algum tempo. Porém, recentemente temos observado que esse processo se acentuou. É relativamente fácil imaginar os benefícios para a economia em função desse movimento. Assim como os dois lados de uma moeda, este processo também possui efeitos colaterais por alterar o modus operandi, em prática há gerações, de vários segmentos do mercado financeiro em um curto período de tempo. Um exemplo foi a mudança que se fez necessária na remuneração dos depósitos da Caderneta de Poupança. Para permitir uma redução maior nos juros, foi alterada sua remuneração permitindo que, pela primeira vez desde a sua criação, os depósitos passassem a ser remunerados de forma variável em função do patamar da taxa básica de juros (Selic) e não mais de forma fixa com 6% ao ano independente dos juros de mercado. Uma mudança desse porte, em um produto financeiro tradicional como esse, denota o empenho do governo em romper com o paradigma de juros elevados historicamente praticados no Brasil. Consequentemente, reflexos dessa mudança serão observados em todas as frentes. Não apenas na ponta da elevação da atividade econômica, mas também na ponta dos investimentos destinados ao acúmulo de riqueza além da Caderneta de Poupança. Não é por outro motivo que segmentos como fundos de investimentos e fundos de pensão vêm sofrendo ao longo dos últimos anos para manter o nível de retorno de outros tempos. Não que seja completamente impossível alcançar esse objetivo em termos de rentabilidade absoluta, mas em termos de retorno ajustado ao risco certamente ocorrerá uma mudança profunda fazendo com que os gestores tenham que assumir mais risco para
  • 3. alcançar os patamares de retorno até hoje observados. Mais especificamente, aloca- ções em títulos públicos deverão ser vistas cada vez mais como estratégias de proteção de patrimônio, enquanto que, alocações em títulos privados e renda variável ganharão cada vez mais força na busca pelo retorno esperado pelo investidor. Consequentemente, a gestão de riscos ganha cada vez mais força. Não que ela deva ser vista como uma proteção suficiente contra perdas, mas como uma prática necessária a ser adotada para que se possa navegar por águas cada vez mais perigosas, por assim dizer. Portanto, a existência de um sistema de sinalização preventivo torna-se fundamental. Nesse sentido, apresentamos nesse artigo alguns aspectos fundamentais para a gestão do risco de crédito. Inicialmente, trataremos da abordagem tradicional essencialmente sob os aspectos da análise fundamentalista. Na sequência, colocaremos em perspectiva a abordagem quantitativa considerando sua evolução e alternativas metodológicas mais comumente utilizadas e, também, ilustrare- mos sua aplicação de forma sucinta ao caso prático para empresas do mercado brasileiro. Por fim, concluiremos com algumas conside- rações sobre as virtudes e limitações de cada abordagem. Abordagem Tradicional Tradicionalmente, créditos de relevância para a carteira são avaliados de forma detalhada no caso a caso. Tipicamente, essa é a situação para créditos concedidos às em- presas através do mercado de capitais via emissão de dívida. Nessa situação, normal- mente os potenciais investidores avaliam os chamados fundamentos da empresa¹ avali- ando aspectos como: *Risco do país: essencialmente avalia- se o ambiente operacional no qual as empre- sas trabalham. Aspectos como marco regu- latório, tarifas, política fiscal, estrutura tribu- tária, controle de fluxos de capitais, risco político, sistema bancário e fatores macroe- conômicos, dentre outros. *Riscos da indústria: ciclo econômico do setor, obsolescência de produtos, mudan- ça nas preferências de consumo, mudanças na tecnologia, redução a barreiras de entra- da, elevação da concorrência, crescimento de vendas e poder para estabelecer preços são alguns exemplos. Opinião FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
  • 4. *Riscos específicos: posição competiti- va em seu setor de atuação, posição de seus competidores, participação de mercado, diversidade de produtos e base de clientes, volatilidade de receitas, etc. *Fator de gestão: nível de governança, planos estratégicos e operacionais, controla- dores, dentre outros. *Análise financeira: estrutura de endivi- damento. rentabilidade, volatilidade de vem- das, liquidez, margens, fontes de recursos, obrigações contingenciais, análise comparati- va setorial, projeções de fluxo de caixa, etc. Através de uma avaliação detalhada de questões como as comentadas acima, um analista de crédito experiente deve ser capaz de avaliar a capacidade de pagamento de uma empresa. Assim, fica evidente a relevân- cia desse tipo de análise para o processo de gestão de crédito. Por último, vale a pena ressaltar que, independentemente do método preferido para se realizar tal análise, partindo-se das questões mais gerais e indo para as mais específicas (abordagem top-down) ou percorrendo esse caminho no sentido inverso (bottom-up), podemos destacar duas carac- terísticas nesse tipo de abordagem: 1. Forte presença de fatores qualitativos que conferem à abordagem um destacado componente de subjetividade. Isso se faz necessário para se considerar na avaliação vários dos pontos destacados nos riscos acima os quais, de outra forma, seriam de difícil utilização prática a despeito da informa- ção relevante que eventualmente contenham. 2. Variáveis financeiras são tipicamente consideradas de forma univariada ou caso a caso. Por exemplo, ao se avaliar a liquidez consideram-se seus aspectos de forma isola- da de outros fatores como endividamento ou margem. Quanto à primeira das características acima, vemos que se trata de uma análise de relevância para capturar os aspectos quali- tativos relevantes, a despeito de limitações intrínsecas que comentaremos mais adiante. Em relação à segunda dessas caracterís- ticas, veremos na sequência que suas limita- ções são conhecidas há muito tempo poden- do, inclusive, levar a interpretações incor- retas sobre a qualidade do crédito de um tomador. Por exemplo, uma empresa com endivida- mento elevado pode ser considerada com grande potencial para gerar problemas de FUNDOS DE PENSÃO – JULHO/AGOSTO 2012 OpiniãoIAlexandredeOliveira
  • 5. crédito. Por outro lado, caso possua elevada liquidez a situação pode ser julgada de forma diametralmente oposta. Assim, esta potencial ambiguidade relativa ao desempenho de várias empresas fica claramente evidente. Abordagem Quantitativa Uma das principais contribuições de mode- los quantitativos está em estender as análises univariadas ao caso multivariado onde a combinação simultânea de vários fundamentos determina a capacidade de pagamento do tomador. Assim, a utilização de variáveis potencialmente explicativas, como indicadores financeiros extraídos dos balanços, ganha maior ênfase. De fato, a aplicação de modelos estatísti- cos com esse propósito vem sendo realizada há várias décadas. Motivado pelo trabalho seminal em métodos estatísticos de classificação de Fisher², temos os primeiros relatos de modelos de escoragem aplicados a cartões de crédito e financiamento de veículos no mercado americano a partir da década de 1940. Contudo, até o trabalho de Edward Altman em 1968³, a aplicação de tais modelos ao caso de empresas era inédita. Em parte, por conta do entendimento de que não seria pos- sível prever a qualidade de crédito de em- presas através de modelos quantitativos e, em parte, por conta de se necessitar de um histórico de dados minimamente adequado para a aplicação de modelos desse tipo. Em seu trabalho, Altman derruba aquela visão construindo um modelo com base no histórico de 20 anos de demonstrações para 66 empresas do setor de manufatura ame- ricano. Seu modelo, contendo 5 indicadores financeiros, conseguia classificar corretamen- te 95% dos casos de bons e maus pagadores com um ano de antecedência do evento de crédito, o chamado default. Assim, o compor- tamento conjunto dos indicadores financeiros contidos no modelo, estimado com base em padrões históricos de ocorrência de default, determina um único número - denominado de escore — que representa a capacidade de pagamento do tomador com antecedência de 1 ano da ocorrência do evento. Note que,com isso, as potenciais ambiguidades das análi- ses univariadas são deixadas de lado. Ao longo das décadas seguintes, aborda- gens quantitativas em crédito evoluíram drasticamente. Outros modelos de discrimi- nação estatística de bons e maus pagadores Opinião FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
  • 6. começaram a ser utilizados como logit e probit, dentre outros. Mais recentemente ainda temos a aplicação de algoritmos de redes neurais. de aprendizagem supervisio- nada e não supervisionada. Além de modelos estatísticos, surge a classe de modelos ditos estruturais. Baseado na teoria de opções4 sua abordagem específica para aplicação no caso de empresas procura estimar o risco de uma empresa a partir de variáveis econômicas como a estrutura de capital e o valor a mercado de seus ativos. Assim, podemos ter uma noção a respeito da evolução metodológica no assunto ao lon- go do tempo. Do ponto de vista da avaliação de crédito para empresas, entendemos que modelos estatísticos simples como Análise Discriminante Multivariada (MDA), logit e pro- bit podem desempenhar bem o papel de mo- delos quantitativos sem tirar do analista a possibilidade de avaliar as variáveis que es- tão levando o modelo a gerar determinada avaliação, algo que não é possível com mo- delos de redes neurais. Modelos estruturais, por outro lado, embora atraentes em suas considerações, são dependentes de merca- dos acionários suficientemente líquidos, o que dificulta sua aplicação em mercados como o brasileiro em que algumas poucas empresas determinam grande parte do seu movimento. Caso Corporate Para ilustrar a aplicação de modelos quan- titativos na gestão de crédito, construímos um sistema de classificações (sistema de rating) a partir de um histórico de demons- trações financeiras de empresas com ações negociadas na bolsa. Com base nesse sistema, poderemos avaliar a evolução de sua classificação, identificando tendências de qualquer empresa da base, e poderemos compará-la com outras empresas, bem como analisar as variáveis que melhor explicam o comportamento observado. Este histórico compreende dados trimes- trais de cerca de 350 empresas de 1994 a 2011 a partir das quais uma coleção de 45 indicadores financeiros são calculados com o objetivo de servir como potenciais variáveis explicativas para o modelo. Um exemplo dessas variáveis explicativas pode ser a relação entre endividamento de curto e longo prazo com patrimônio. Ainda para esses 17 anos de dados coletados, identificamos FUNDOS DE PENSÃO – JULHO/AGOSTO 2012 OpiniãoIAlexandredeOliveira
  • 7. y, a mesma contagem é feita para o grupo dos maus pagadores. No modelo perfeito, por exemplo, teríamos primeiramente observado a totalidade dos maus pagadores para somente depois come- çar a observar bons pagadores. Nessa situa- ção, a curva ROC percorreria o eixo y com- pletamente e depois o x. Consequentemente, a área pintada seria o retângulo completo. Como os modelos podem não acertar a tota- lidade das classificações, a curva ROC apre- senta um desvio em relação ao caso ideal. Um critério comumente utilizado para ava- liar esta informação é a área sob a curva mais de 80 eventos de default. Após avaliar o poder explicativo de cada variável, ficamos com 20 candidatas a serem testadas em conjunto nos modelos MDA (Fisher), logit e probit e, com o auxílio de pro- cedimentos estatísticos de seleção de variáveis do tipo stepwise, obtemos modelos com 7 variáveis. Testes estatísticos para avaliar a qualidade das estimações reali- zadas e largamente reportados em trabalhos deste tipo, como Kolmogorov-Smirnov, Auroc, Wald, dentre outros, são aplicados. O índice de acerto geral das classificações dos bons e maus pagadores chega a 90% indicando que o modelo possui boa qualidade. Outro indicador muito utilizado e que pode ser visto na figura ao lado é a chamada curva Receiver Operating Characteristic (ROC) para cada modelo ajustado. Basicamente, os escores gerados por cada modelo e tomador são ordenados de forma crescente. Quanto maior o poder de discriminação de bons e maus pagadores do modelo, mais separados os tomadores devem estar. Percorrendo-se os tomadores ordenados, contabilizamos no eixo x o percentual de bons pagadores encontrados nas observações ordenadas em relação ao total de bons pagadores. No eixo Opinião FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
  • 8. ROC (AU- ROC) em relação ao modelo ideal. É fácil ver que quanto mais o modelo real se aproxima do ideal, mais seu AUROC se apro- xima da unidade. Dos três modelos estima- dos, o logit se aproximou mais chegando a 94,72%. No entanto, muito mais importante do que criar um modelo de dois estados — separan- do os bons dos maus pagadores — é utilizar sua saída para criar um sistema de classifica- ções de vários estados, ou seja, uma escala de rating. Há várias considerações técnicas que devem ser observadas para a obtenção dessa escala como granularidade, estabilida- de de classificações e poder de discrimina- ção, dentre outros. De qualquer forma, esta tarefa pode ser feita de várias maneiras. Utili- zamos aqui um método de aglomeração não supervisionado controlando o número de classes desejadas obtendo uma escala com nove graus os quais denominamos de AAA AA, A, BBB, BB, B, CCC, CC e C. O gráfico a seguir exemplifica como as observações dos tomadores da base ficaram classificadas neste sistema para um conjunto de empresas de um dado setor. Pode-se ver que a maioria das classificações fica nos graus intermediários apresentando poucas observações nos extremos da escala. Quali- tativamente falando, este fato parece razoá- vel, uma vez que, para uma escala ter poder de diferenciação é de se esperar que seja difícil encontrar muitos indivíduos classifica- dos nos melhores graus. Por outro lado, a mortalidade de indivíduos nos piores graus também deve ser elevada. Apenas para infor- mação, o AUROC desta escala ficou em 82%. De acordo com alguns trabalhos repor- tados na Europa e Estados Unidos, em ter- mos gerais, deve-se esperar AUROCs entre 70% e 90%. Como consequência desse sistema de classificações, pode-se facilmente observar a evolução histórica para qualquer tomador da base e que pode ser visto através do gráfico a seguir, ilustrativo para um caso. Pode-se FUNDOS DE PENSÃO – JULHO/AGOSTO 2012 OpiniãoIAlexandredeOliveira
  • 9. ver, claramente, que sua classificação degra- dou-se paulatinamente ao longo do tempo. Em particular nesse caso, o tomador em questão gerou uma ocorrência de default no final de 2003. Este fato deveria chamar a atenção de um analista com bastante antecedência à ocor- rência do evento, ou seja, 7 ou 8 anos antes já apresentava sinais de degradação na qua- lidade do crédito. Certamente, um ponto de partida seria analisar o comportamento da classificação gerada em função das variáveis explicativas originalmente utilizadas no modelo. Assim em caso de avaliação para concessão, a análise pra uma eventual reco- mendação positiva deveria ser mais profundamente embasada. Em caso de revisão de um crédito já em carteira, sua revisão deveria ser mais frequente e detalhada sinalizando de forma clara para os órgãos internos responsáveis a necessidade de uma ação adequada. Vale ressaltar que para os demais casos de default da base, o tempo médio de sinalização anterior à ocorrência do evento ficou em torno de 3 anos podendo chegar em vários casos em 4 anos mostrando o poder de sinalização do modelo. Comparação entre Abordagens A abordagem tradicional é bastante flexível e permite facilmente incorporar novos fatores para compor uma análise. Principalmente, questões qualitativas sobre a gestão da empresa, características dos mercados em que opera ou aspectos concorrenciais, dentre outros. No entanto, essa flexibilidade impõe um grau elevado de subjetividade ao processo de avaliação. Dois analistas distintos podem avaliar os mesmos aspectos qualitativos sob ângulos diferentes alcan- çando conclusões não totalmente concor- dantes sobre um caso específico. Opinião FUNDOS DE PENSÃO – JULHO/AGOSTO 2012
  • 10. Assim surgem questões como impar- cialidade e consistência das avaliações. Com relação à imparcialidade, em alguns casos, as percepções sobre determinado nome de um tomador podem falar mais alto do que os fatos concretos refletidos no desempenho do mesmo. Em relação à consistência, a situação comentada para os dois analistas pode acontecer tanto em situações de análise distintas no tempo quanto para avaliações simultâneas, uma vez que o peso dado por cada um para cada informação depende, em grande parte, de sua experiência em casos passados. Isso impõe um desafio para que as instituições consigam preservar sua referência de análise quando da troca de algum analista. Por outro lado, a qualidade das avaliações de uma analista está diretamente ligada ao conhecimento adquirido com os casos anteriores. Não que um analista com poucos anos de experiência não possa fazer análises corretas e de qualidade, mas é consenso que o aprendizado adquirido ao longo do tempo é bastante relevante para emissão de seus pareceres. Logo, a análise de crédito sob a abordagem tradicional tende a ser bem mais cara além de ser mais artesanal. Com relação à abordagem quantitativa, esta demanda conhecimentos de modelos matemáticos e estatísticos mais profundos, o que normalmente não faz parte do perfil de um departamento de análise de crédito. No entanto, nada impede que esta abordagem possa ser estruturada através de ferramentas computacionais adequadas livrando o analis- ta da carga de detalhes indesejáveis e se aproveitando das virtudes que esses méto- dos possibilitam aos seus usuários. Diferentemente da abordagem anterior, esta se caracteriza primordialmente pela im- parcialidade e consistência. Para os mode- los, pouco importa o nome em questão o que importa são os padrões objetivamente identi- ficados com base na história. A consistência é plena, pois, a não ser que o modelo seja alterado as avaliações sempre serão baseadas nos mesmos padrões utiliza- dos para sua estimação. Uma vez definido um modelo, novos toma- dores não contemplados na base original podem ser classificados considerando-se que pertençam ao mesmo grupo relevante de tomadores. Adicionalmente, uma vez que um analista faça projeções sobre os números de um tomador com base em cenários futuros, é FUNDOS DE PENSÃO – JULHO/AGOSTO 2012 OpiniãoIAlexandredeOliveira
  • 11. trivial a verificação da eventual classificação do mesmo condicionado a cada cenário. Some-se a isto, seu poder preditivo destaca- do. Além do mais. considerando-se a exis- tência de dados, esta abordagem pode ser estendida facilmente para outros segmentos que não apenas de grandes empresas. Outro aspecto interessante refere-se à incorporação simples de novas informações com o passar do tempo. Por exemplo, no caso ilustrado, novas informações podem ser obtidas a cada trimestre. Portanto. é rápida e barata a avaliação de toda a base pelo incremento de novas informações. Com isso, o processo de revisão é otimizado permitindo que sejam identificados casos problemáticos com maior antecedência. Assim, revisões podem ser priorizadas colocando a frente casos mais relevantes para a instituição, bem como determinando o nível de aprofunda- mento da análise. Além do sistema de rating permitir uma gestão de risco mais dinâmica e preditiva para cada tomador da carteira, ainda possibi- lita a estimação de parâmetros como proba- bilidade de default, relevante para avaliar a chance de ocorrência de um evento de crédito para cada rating, bem como a matriz de transição que informa a possibilidade de mudança de rating para cada tomador. Tais parâmetros podem ser cruciais para a utilização de modelos de risco em carteira. Por último, ainda vale notar que um modelo desse tipo possibilita a comparação muito simples entre tomadores ao longo do tempo, bem como permite à instituição mapear eventuais oportunidades em segmentos ou tomadores com quem ainda não possui relacionamento identificando possibilidades de novos negócios. ¹ Maiores detalhes nesse assunto podem ser vistos em Ganguin, B. e Bilardello, J. Fundamentals of Corporate Credit Analysis, McGraw-Hill , 2005. ² Fisher, R. A. The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, Sep 1936. Nº. 7, pp. 179-188. ³ Altman, E. I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy, The Journal of Finance. Sep 1968. Vol XXIII. pp. 589-609. 4 Merton, R. On the Pricing of Corporate Debt: The Risk Structure of lnterest Rates, The Journal of Finance. 1974. Vol XXIX, pp. 449-470. Opinião FUNDOS DE PENSÃO – JULHO/AGOSTO 2012