Mecânica dos FluídosMecânica dos Fluídos
Escoamento CompressívelEscoamento Compressível
Professor: JayannProfessor: Jayann
Graduandos:Graduandos:
Danyelle CristinaDanyelle Cristina
Ingrid HonórioIngrid Honório
Karina AlvesKarina Alves
Isabelle BarretoIsabelle Barreto
Rose OliveiraRose Oliveira
• Introdução – Hipóteses – Conceitos FundamentaisIntrodução – Hipóteses – Conceitos Fundamentais
Tópicos do Capítulo 12 – Escoamento CompressívelTópicos do Capítulo 12 – Escoamento Compressível
• Grandezas Termodinâmicas: Energia Interna –Grandezas Termodinâmicas: Energia Interna –
Entalpia - EntropiaEntalpia - Entropia
• Gás PerfeitoGás Perfeito
• Problema Geral e Equações BásicasProblema Geral e Equações Básicas
• Velocidade do SomVelocidade do Som
• Número de MachNúmero de Mach (M)(M)
Conceitos FundamentaisConceitos Fundamentais
• Fluído Compressível:
É aquele cuja massa específica varia de um ponto a outro.
Nenhum fluído é perfeitamente incompressível, mas quando a
variação da massa específica (ρ) é relativamente pequena,
pode-se desconsiderar sem que comprometa as análises.
Entretanto, ao equacionar fluídos como incompressíveis quando a
massa específica (ρ) varia sensivelmente, chega-se a
conclusões quantitativas e qualitativas que não condizem com
as observações práticas, sendo assim, impossível prever
acontecimentos como a onda de choques e bloqueios dos
condutos.
Conceitos FundamentaisConceitos Fundamentais
A massa específica (ρ) é uma função da pressão e da temperatura,
a complexidade causada por efeitos térmicos no estudo do
escoamento, pode ser atenuada admitindo-se algumas hipóteses:
1.O escoamento é unidimensional ou uniforme nas seções;
2.O regime é permanente;
3.O fluído que escoa é um gás perfeito;
As hipóteses descritas, serão sempre válidas para o estudo do
escoamento compressível, podendo-se ressaltar que ele irá se
referir ao escoamento unidimensional, em regime permanente de
um gás perfeito.
DefiniçõesDefinições
Sendo assim:
Energia Cinética Específica =
Energia Potencial Específica = gz
Energia de Pressão Específica =
A unidade será =
DefiniçõesDefinições
Grandezas Termodinâmicas:Grandezas Termodinâmicas:
Energia Interna (I)
Embora um significado mais amplo dessa grandeza possa ser
obtido dos livros de termodinâmica, para as finalidades deste
estudo, será confundida com energia térmica e será função
apenas da temperatura, representando o estado térmico do
sistema.
A energia interna específica será:
DefiniçõesDefinições
Grandezas Termodinâmicas:Grandezas Termodinâmicas:
Entalpia (H)
Definida por:
Por unidade de massa será:
Lembrando que:
DefiniçõesDefinições
Entropia (S)
A variação de entropia é definida por:
Onde:
Q҃҃ = Calor trocado pelo sistema (o símbolo é utilizado para que não
haja confusão com o símbolo de vazão em volume)
T = Temperatura absoluta
O índice rev significa que o processo é reversível.*
* Um processo é reversível quando pode ser invertido e ao voltar
ao seu estado inicial não haverá vestígios de sua realização.
Todos os processos práticos são irreversíveis e algumas causas da
irreversibilidade são:
Atrito, troca de calor entre as diferenças finitas de temperaturas,
expansões e compressões bruscas, reações químicas e, de uma
forma geral, rapidez dos processos.
Por unidade de massa:
DefiniçõesDefinições
Se o processo for irreversível, verifica-se que:
DefiniçõesDefinições
Gás PerfeitoGás Perfeito
No estudo a ser realizado neste capítulo, gás perfeito será o
modelo matemático utilizado e caracterizado pelas
propriedades a seguir:
a) Equação de estado:
onde:
P= pressão na escala absoluta
ρ = massa específica
R = constante do gás
b) A energia interna e a entalpia são funções somente da
temperatura, isto é: u = f (T) e h = f (T)
c) Os calores específicos a volumes constantes (Cv) e a
pressão constante (Cp) são constantes do gás.
DefiniçõesDefinições
A partir dos calores específicos podem ser obtidas as seguintes
expressões úteis:
Problema Geral e Equações BásicasProblema Geral e Equações Básicas
A seguir serão apresentadas as cinco equações básicas, para a
solução de problemas, relacionados a escoamento compressível,
não esquecer que, pelas hipóteses fundamentais, o escoamento é
unidimensional em regime permanentes de um gás perfeito.
•Equação da Continuidade:
Problema Geral e Equações BásicasProblema Geral e Equações Básicas
•Equação da Energia:
•Equação da quantidade de movimento:
Problema Geral e Equações BásicasProblema Geral e Equações Básicas
•Equação de Estado
•Equação da variação da Entropia
Problema Geral e Equações BásicasProblema Geral e Equações Básicas
Velocidade do Som.
É a velocidade de propagação de uma perturbação da pressão
causada num fluído.
Para melhor compreender esse fenômeno consideremos um fluído
incompressível, nas figura s abaixo:
Problema Geral e Equações BásicasProblema Geral e Equações Básicas
Considerando:
Como , e substituindo em :
Temos:
Número de Mach (Número de Mach (MM ))
É a relação entre a velocidade do fluído numa seção e a velocidade
do som na mesma seção.
O número de Mach permite classificar os escoamentos nos
seguintes tipos.
Exemplos PráticosExemplos Práticos
Um avião com número de Mach abaixo de 1, é possível
ouvir mesmo antes do avião chegar.
Exemplos PráticosExemplos Práticos
Motor – FogueteMotor – Foguete

Escoamento compreensivel

  • 1.
    Mecânica dos FluídosMecânicados Fluídos Escoamento CompressívelEscoamento Compressível Professor: JayannProfessor: Jayann Graduandos:Graduandos: Danyelle CristinaDanyelle Cristina Ingrid HonórioIngrid Honório Karina AlvesKarina Alves Isabelle BarretoIsabelle Barreto Rose OliveiraRose Oliveira
  • 2.
    • Introdução –Hipóteses – Conceitos FundamentaisIntrodução – Hipóteses – Conceitos Fundamentais Tópicos do Capítulo 12 – Escoamento CompressívelTópicos do Capítulo 12 – Escoamento Compressível • Grandezas Termodinâmicas: Energia Interna –Grandezas Termodinâmicas: Energia Interna – Entalpia - EntropiaEntalpia - Entropia • Gás PerfeitoGás Perfeito • Problema Geral e Equações BásicasProblema Geral e Equações Básicas • Velocidade do SomVelocidade do Som • Número de MachNúmero de Mach (M)(M)
  • 3.
    Conceitos FundamentaisConceitos Fundamentais •Fluído Compressível: É aquele cuja massa específica varia de um ponto a outro. Nenhum fluído é perfeitamente incompressível, mas quando a variação da massa específica (ρ) é relativamente pequena, pode-se desconsiderar sem que comprometa as análises. Entretanto, ao equacionar fluídos como incompressíveis quando a massa específica (ρ) varia sensivelmente, chega-se a conclusões quantitativas e qualitativas que não condizem com as observações práticas, sendo assim, impossível prever acontecimentos como a onda de choques e bloqueios dos condutos.
  • 4.
    Conceitos FundamentaisConceitos Fundamentais Amassa específica (ρ) é uma função da pressão e da temperatura, a complexidade causada por efeitos térmicos no estudo do escoamento, pode ser atenuada admitindo-se algumas hipóteses: 1.O escoamento é unidimensional ou uniforme nas seções; 2.O regime é permanente; 3.O fluído que escoa é um gás perfeito; As hipóteses descritas, serão sempre válidas para o estudo do escoamento compressível, podendo-se ressaltar que ele irá se referir ao escoamento unidimensional, em regime permanente de um gás perfeito.
  • 5.
    DefiniçõesDefinições Sendo assim: Energia CinéticaEspecífica = Energia Potencial Específica = gz Energia de Pressão Específica = A unidade será =
  • 6.
    DefiniçõesDefinições Grandezas Termodinâmicas:Grandezas Termodinâmicas: EnergiaInterna (I) Embora um significado mais amplo dessa grandeza possa ser obtido dos livros de termodinâmica, para as finalidades deste estudo, será confundida com energia térmica e será função apenas da temperatura, representando o estado térmico do sistema. A energia interna específica será:
  • 7.
    DefiniçõesDefinições Grandezas Termodinâmicas:Grandezas Termodinâmicas: Entalpia(H) Definida por: Por unidade de massa será: Lembrando que:
  • 8.
    DefiniçõesDefinições Entropia (S) A variaçãode entropia é definida por: Onde: Q҃҃ = Calor trocado pelo sistema (o símbolo é utilizado para que não haja confusão com o símbolo de vazão em volume) T = Temperatura absoluta O índice rev significa que o processo é reversível.* * Um processo é reversível quando pode ser invertido e ao voltar ao seu estado inicial não haverá vestígios de sua realização.
  • 9.
    Todos os processospráticos são irreversíveis e algumas causas da irreversibilidade são: Atrito, troca de calor entre as diferenças finitas de temperaturas, expansões e compressões bruscas, reações químicas e, de uma forma geral, rapidez dos processos. Por unidade de massa: DefiniçõesDefinições Se o processo for irreversível, verifica-se que:
  • 10.
    DefiniçõesDefinições Gás PerfeitoGás Perfeito Noestudo a ser realizado neste capítulo, gás perfeito será o modelo matemático utilizado e caracterizado pelas propriedades a seguir: a) Equação de estado: onde: P= pressão na escala absoluta ρ = massa específica R = constante do gás b) A energia interna e a entalpia são funções somente da temperatura, isto é: u = f (T) e h = f (T) c) Os calores específicos a volumes constantes (Cv) e a pressão constante (Cp) são constantes do gás.
  • 11.
    DefiniçõesDefinições A partir doscalores específicos podem ser obtidas as seguintes expressões úteis:
  • 12.
    Problema Geral eEquações BásicasProblema Geral e Equações Básicas A seguir serão apresentadas as cinco equações básicas, para a solução de problemas, relacionados a escoamento compressível, não esquecer que, pelas hipóteses fundamentais, o escoamento é unidimensional em regime permanentes de um gás perfeito. •Equação da Continuidade:
  • 13.
    Problema Geral eEquações BásicasProblema Geral e Equações Básicas •Equação da Energia: •Equação da quantidade de movimento:
  • 14.
    Problema Geral eEquações BásicasProblema Geral e Equações Básicas •Equação de Estado •Equação da variação da Entropia
  • 15.
    Problema Geral eEquações BásicasProblema Geral e Equações Básicas Velocidade do Som. É a velocidade de propagação de uma perturbação da pressão causada num fluído. Para melhor compreender esse fenômeno consideremos um fluído incompressível, nas figura s abaixo:
  • 16.
    Problema Geral eEquações BásicasProblema Geral e Equações Básicas Considerando: Como , e substituindo em : Temos:
  • 17.
    Número de Mach(Número de Mach (MM )) É a relação entre a velocidade do fluído numa seção e a velocidade do som na mesma seção. O número de Mach permite classificar os escoamentos nos seguintes tipos.
  • 18.
    Exemplos PráticosExemplos Práticos Umavião com número de Mach abaixo de 1, é possível ouvir mesmo antes do avião chegar.
  • 19.
    Exemplos PráticosExemplos Práticos Motor– FogueteMotor – Foguete

Notas do Editor

  • #5 Escoamento unidimensional, é aquele onde as propriedades são constantes em cada seção. Escoamento permanente, é aquele em que mesmo o fluido estando em movimento, as suas propriedades permanecem a mesma em qualquer instante. Gás perfeito, é um gás idealizado onde as variáveis de cada propriedade não mudam, de tal forma que não compromete as análises quantitativas e qualitativas de um fluído.
  • #6 V = velocidade, g = gravidade, z= altura, P = pressão, ɣ = ?, ρ = massa específica, J = joules, N= newton, S= segundos, m = metro e kg = quilograma.
  • #7 U = Energia Interna Específica I = Energia Interna m = massa
  • #8 Definição de Entalpia (H) = É a quantidade de Energia em uma determinada reação. I = Energia interna, p = pressão, V= volume, m = massa, ρ = massa específica.
  • #9 Professor dúvida: quem é o “d” das equações? Definição de Entropia (S) = Grandeza termodinâmica que mensura o grau de irreversibilidade de um sistema, pode ser considerado como o grau de desorganização de um sistema.
  • #10 Professor dúvida: quem é o “q”? m = massa, T = temperatura absoluta (o que é temperatura absoluta = É uma grandeza física que mensura a energia cinética média de cada grau de liberdade de cada uma das partículas de um sistema em equilíbrio térmico)
  • #11 Gás perfeito = É um modelo idealizado para um comportamento de um gás, que obedece a lei dos gases ideais.
  • #13 ρ = massa específica, v = velocidade, Qm = vazão mássica
  • #14 α = densidade específica, p= pressão, ρ = massa específica, v= velocidade, u= energia interna, g= gravidade, z= altura , para equação da Energia Para equação do movimento, v = volume. Sobre a equação da Energia, ler a página 332 e 333, para entendimento.
  • #16 PÁGINA 335, 336 E 337, LER PARA ENTENDER E EXPLICAR DOS SLIDES 22 A 26. A partir de uma situação de equilibrio, consideremos primeiramente o líquido sendo incompressível, aplica-se ao pistão uma força provocando um aumento de pressão, que se transmitirá para a seção seguinte e assim subssequentemente de forma que a camada mais afastada será submetida à pressão e o fluído será derramado, ou seja, a mensagem que ele foi “pertubado” na seção, transmite-se instantaneamente para todas as seções. Quando um fluido é compressível, ao deslocar o pistão, cria-se uma compressão na camada adjacente à sua face, que fica com uma pressão maior que a seguinte, expandindo-se contra ela, esta então ficará mais comprimida que a próxima e assim por diante. Nota-se que esse processo, leva-se a um tempo finito e uma “velocidade finita que será denominada velocidade de propagação da perturbação da pressão”, sendo esse fenomeno semelhante ao fenomeno acustico de propagação do som, será denominada de velocidade do som e representada pela letra “c”, no slide seguinte.
  • #17 Nesse slide, explica-se como chegar à equação da velocidade do som “c”. K = constante R= gás perfeito T = temperatura
  • #19 A espiral provocada por um avião ao decolar, visível pelo impacto com o ar Os escoamentos podem ser classificados quanto à compressibilidade e quanto ao grau de mistura macroscópica. Um escoamento em que a densidade do fluido varia significativamente é um escoamento compressível. Se a densidade não variar significativamente então o escoamento é incompressível