SlideShare uma empresa Scribd logo
ÂNGULOS


  Ângulo é a reunião de duas semi-retas de mesma origem e não-colineares.


                                 Na figura




Indicação do ângulo: AÔB, ou BÔA ou simplismente Ô
PONTOS INTERNOS E PONTOS EXTERNOS A UM
ÂNGULO


Seja o ângulo AÔB




MEDIDA DE UM ÂNGULO


Um ângulo pode ser medido através de um instrumento chamado transferidor
e que tem o grau como unidade. O ângulo AÔB da figura mede 40 graus.
Indicação:
m (AÔB) = 40º


A unidade grau tem dois submúltiplos: minuto e segundo


1 grau tem 60 minutos (indicação: 1 = 60º)
1 minuto tem 60 segundos ( indicação 1´ = 60"


Simbolicamente:


== Um ângulo de 25 graus e 40 minutos é indicado por 25º 40´.
== Um ângulo de 12 graus, 20 minutos e 45 segundos é indicado por 12º 20´45"



EXERCICIOS



1) Dê a indicação, o vértice e os lados dos ângulos:
2) Em cada uma das figuras abaixo há três ângulos. Quais são esses ângulos?
3) 0bserve os pontos assinalados e responda:




a) Quais pontos estão no interior do ângulo?
b) Quais ponmtos estão no ixterior do ângulo?
c) Quais pontos pertencem aos lados do ângulo?



4) Escreva as medidas em graus dos ângulos indicados pelo transferidor.
a) m (AÔB)
b) m (AÔC)
c) m (AÔD)
d) m (AÔE)
e) m (AÔF)
f) m (AÔG)


5) Escreva simbolicamente:


a) 30 graus
b) 10 graus e 25 minutos
c) 42 graus e 54 minutos
d) 15 graus, 20 minutos e 40 segundos
e) 54 graus, 38 m inutos e 12 segundos


6) Responda:


a) Um grau é igual a quantos minutos?
b) Um minuto é igual a quantos segundos?
c) Um grau é igual a quantos segundos?


7) Tranforme :


a) 1º em minutos
b) 2º em minutos
c) 3º em minutos
d) 4º em minutos
e) 5º em minutos
f) 1´ em segundos
g) 2´ em segundos
h) 3´ em segundos
i) 4´ em segundos
j) 5´ em segundos



8) Transforme em minutos, observando o exemplo resolvido:


resolvido = 2º 17´ = 2 x 60´ + 17´ = 137´

a) 5º 7´ =
b) 3º 20´ =
c) 10º 35´ =
d) 12º 18´ =
e) 3º 45´ =
f) 5º 54´ =
g) 7º 12´ =
h) 9º 36´ =


9) Transforme:


120´= 120 : 60 = 2º ===== resolvidos ==== 120" = 120" : 60 = 2´


a) 180´em graus =
b) 240´em graus =
c) 300´ em graus =
d) 360´em graus =
e) 180" em minutos =
f) 240" em minutos =
g) 300" em minutos =
h) 360" em minutos =


10) Transforme em graus e minutos:
Resolvido: 75´= 1º 15´ (obs divida os minutos por 60 para obter os graus. O
resto , se existir, serão os minutos.)


a) 90´ =
b) 95´=
c) 130´ =
d) 150´ =
e) 385´ =
f) 512´=
g) 867´=
h) 1000´=


11) Transforme em minutos e seguntos:

a) 97" =
b) 130" =
c) 150" =
d) 162" =
e) 185" =
f) 254" =


12) Copie e complete:


a) 40° = 39°_______
b) 70° = 69 _______
c) 84° = 83° ______
d) 90° = 89° _______
e) 150° = 149° ________
f) 180° = 179° _______


13) Escreva as medidas na forma mais simples:


Resolvildo: 27° 60´ = 28°


a) 29º 60´= (R: 30°)
b) 34° 60´= (R: 35°)
c) 72° 60´= (R: 73°)
d) 99° 60´= (R: 100°)
e) 54° 60´ = (R: 55°)
f) 108° 60´= (R: 109°)


14) Escreva as medidas na forma mais simples:


Resolvido: 39° 75´ = 40° 15´


a) 30° 80´ = (R: 31° 20´)
b) 45° 90´= (R : 46° 30´)
c) 57° 100´= (R: 58° 40´)
d) 73° 110´= (R: 74° 50´)
e) 20° 120´= (R: 22°)
f) 25° 150´= (R: 27° 30´)
g) 42° 160´= (R: 44° 40´)
h) 78° 170´= (R: 80° 50´)



OPERAÇÕES COM MEDIDAS DE ÂNGULOS



ADIÇÃO


1) Exemplo


17° 15´ 10" + 30° 20´40"


17° 15´ 10"
30° 20´ 40"
-----------
47° 35´ 50"


2) Exemplo


13° 40´ + 30° 45´


13° 40´
                                  30° 45´
--------
43° 85´ (simplificando) 44° 25´



EXERCÍCIOS


1) Calcule as somas:


a) 49° + 65° = (R:
b) 12° 25´ + 40° 13´ = (R:
c) 28° 12´ + 5 2° 40´ = (R:
d) 58° + 17° 19´ = (R:
e) 41° 58´ + 16° = (R:
f) 25° 40´ + 16° 50´ = (R:
g) 23° 35´ + 12° 45´ = (R:
h) 21° 15´40" + 7° 12´5" = (R:
i) 35° 10´50" + 10° 25´20" = (R:
j) 31° 45´50" + 13° 20´40" = (R:
l) 3° 24´9" + 37° 11´33" = (R:
m) 35° 35´2" + 22° 24´58" = (R:




SUBTRAÇÃO


1) Exemplo


58° 40´ - 17° 10´ =


58° 40´
17° 10´
-------
41° 30´



2) Exemplo


                                  80° - 42° 30´ =
80°
42° 30´
-------
37° 30´


EXERCÍCIOS


1) Calcule as diferenças:


a) 42° - 17° = (R:
b) 172° - 93° = (R:
c) 48° 50´ - 27° 10´ = ( R:
d) 42° 35´ - 13° 15´ = (R:
e) 70° - 22° 30´ = (R:
f) 30° - 18° 10´= (R:
g) 90° - 54° 20´ (R:
h) 120° - 50°45´ =(R:
i) 52°30´ - 20°50´ = (R:
j) 39° 1´ - 10°15´ = (R:




MULTIPLICAÇÃO DE ÂNGULOS



1º) Exemplo


17°15´ x 2 =


17°15´
                              ___x2
--------
34°30´


2°) Exemplo
24° 20´ x 3 =


24°20´
____3
-------
72°60´ (simplificando) 73°



EXERCÍCIOS


1) Calcule os produtos:


a) 25°10´ x 3 = (R:
b) 44°20´ x 2 = ( R:
c) 35° 10´ x 4 = (R:
d) 16°20´ x 3 = (R:
e) 28°30´ x 2 = (R:
f) 12°40´ x 3 = (R:
g) 15°30´ x 3 = (R:
h) 14° 20´ x 5 =(R:




DIVISÃO DE UM ÂNGULO POR UM NÚMERO



                             1º Exemplo
2º Exemplo




EXERCÍCIOS
1) Calcule os quocientes:


a) 48° 20´ : 4 = (R:
b) 45° 30´ : 3 = (R:
c) 75° 50´ : 5 = (R:
d) 55° : 2 = (R:
e) 90° : 4 = (R:
f) 22° 40´ : 5 = (R:



2) Calcule:


a) 2/5 de 45° = (R;
b) 5/7 de 84° = (R:
c) 3/4 de 48° 20´ (R:
d) 3/2 de 15° 20´ (R:




                       ÂNGULOS CONGRUENTES


Dois ângulos são congruentes se as suas medidas são iguais.




Indicação AÔB = CÔD ( significa: AÔB é congruente a CÔD )
BISSETRIZ DE UM ÂNGULO


Bissetriz de um ângulo é a simi-reta com origem no vértice do ângulo e que o
divide em dois ângulos congruentes.




EXERCÍCIOS
Responda:


                     a) Quanto mede o ângulo MÔA?
R:
b) Quanto mede o ângulo NÔC?
R:
c) Quanto mede o ângulo BÔN?
R:
d) Quanto mede o ângulo MÔC?
R:
e) Quanto mede o ângulo AÔN?
R:
f) Quanto m,ede o ângulo MÔN?
R:
âNgulos
ÂNGULOS RETO, AGUDO E OBTUSO

Os ângulos recebem nomes especiais de acordo com suas medidas:


= Ângulo reto é aquele cuja medida é 90°.
= ângulo agudo é aquele cuja medida é menor de 90°
= ângulo obtuso é aquele cuja medida é maior que 90°




RETAS PERPENDICULARES

Quanto duas retas se interceptam formando ângulos retos, dizemos que elas
são perpendiculares.
EXERCÍCIOS


1) Classifique os ângulos apresentados nas figuras em agudos, obtusos ou reto:




2) Identifique na figura:
3) Responda:

   a) O menor ângulo formado pelos pnteiros de um relógio às 3 horas é um
                       ângulo agudo, reto ou obtuso?
b) O menor ângulo formado pelos ponteiros de um relógio às 2 horas é um
ângulo agudo,reto ou obtuso?
c) O menor ângulo formado pelos ponteiros de um relógio às 5 horas é um
ângulo é um ângulo agudo, reto ou obtuso?


4) Observe a figura e responda:




Qual o número de elementos do conjunto { a,b,c,x,y,z}?
ÂNGULOS COMPLEMENTARES




Dois angulos são complementares quando am soma de suas medidas é 90°


m(AÔB) + m((BÔC) = m(AÔC)


Exemplos:


= 65° e 25° são ângulos complementares , porque 65° + 25° = 90°
= 40° e 50° são ângulos complementares, porque 40° + 50° = 90°



EXERCÍCIOS


1) Responda:


             a) Um ângulo de 20° e um de 70° são complementares?
             b) Um ângulo de 35° e um de 65° são complementares?
             c) Um ângulo de 73° e um de 27° são complementares?
             d) Um ângulo de 58° e um de 32° são complementares?
2) Calcule o complemento dos seguintes ângulos:


                                  a) 34°
                                  b) 72°
                                  c) 84°
                                d) 18° 25´
                                e) 40° 30´
                                f) 51° 20´


3) Resolva as equações abaixo, onde a inc´gnita x é um ângulo (medido em
                                  graus)


                                  a) 2x = 90°
                               b) x + 17° = 90°
                              c) 4x + 10° = 90°
                                d) x + 8x = 90°
                            e) 5x - 20° = 1° = 2x
                               f) x = 2( 90° - x)
                             g) 4( x + 3° 0 = 20°
                        h) ( 3x - 20° ) + 50° = 90°
                         I) 3( x + 1°) = 2( x + 7°)
                   J) 2x + 2 (x + 1° ) = 4° + 3 ( x + 2°)


      4) Determine x, sabendo que os ângulos são complementares:
5) Dado um ângulo de medida x, indicar:


a) o seu complemento.
b) o dobro do seu complemento
c) o triplo do seu complemento.
d) a metade do seu complemento
e) a terça parte do seu complemento
7) A medida de um ângulo é igual à medida de seu comprimento, quanto
mede esse ângulo?


8) A medida de um ângulo é a metade da medida do seu comprimento.
Calcule a medida desse ângulo.


9) Calcule a medida de um ângulo cuja medida é igual ao triplo de seu
complemento.


10) A diferença entreo o dobro da medida de um ângulo e o seu complemnto é
45° Calcule a medida desse ângulo.


11) A terça parte do complemento de um ângulo mede 20°. Qual a medida do
ângulo?


12) Dois ângulos complementares têm suas medidas expressas em graus por 3x
+ 25° e 4x - 5° . Quanto medem esses ângulos?




                   ÂNGULOS SUPLEMENTARES


Dois ângulos são suplementares quando a soma de suas medidas é 180°
m(AÔB) + m(BÔC) = 180°




Exemplos:


= 50° e 130° são angulos suplementares, porque 50° + 130° = 180°
= 125° e 55° são ângulos suplementares, porque 125° + 55º = 180°



EXERCÍCIOS


                                1) Responda:


             a) Um ângulo de 70° e um de 110° são suplementares?
                                     R: (


             b) Um ângulo de 155° e um de 25° são suplementares?


                2) Calcule o suplemento dos seguintes ângulos:
                                   a) 30° = (R:
                                  b) 85° = (R:
                                  c) 72° = (R:
                               d) 132° 30´ = (R:
                               e) 140° 20´ = (R:
                                f) 151° 40` =(R:
3) Determine x, sabendo que os ángulos são suplementares:




4) Determine x, sabendo que os ângulos são suplementares:
5) Calcule x:
6) Aquarta parte da medida de um ângulo mede 30°. Calcule a medida do seu
suplemento.
(R:
7) A medida de um ângulo é igual à medida de seu suplemento. Calcule esse
ângulo.
(R:
8) Calcule a medida de um ângulo que é igual ao triplo de seu suplemento.
(R:
9) O dobro da medida de um ângulo é igual à medida do suplemento desse
ângulo. Calcule a medida do ângulo.
(R:
10) O triplo da medida de um ângulo mais a medida do suplemento desse
ângulo é 250°. Calculo a medida do ângulo.
(R:
11) Calcule a medida de um ângulo cuja medida é igual a 2/3 do seu
suplemento.
(R:
12) A soma do complemento com o suplemento de um ângulo é 110° . Quanto
mede o ângulo?
(R:



ÂGULOS OPOSTOS PELO VÉRTICE
Duas retas concorrentes determinam quatro ângulos, dois a dois , opostos pelo
vértice




Na figura:


â e c são opostos pelo vértice.
m e n são opostos pelo vértice



TEOREMA


Dois ângulos opostos´pelo vértice são congruentes.


prova:


Sejam os ângulos a e b opostos pelo vértice.


1) m(â) + m(^c) = 180°


2) m(b) + m(c) = 180°


comparando : m(â) + m(c) = m(b) + m(c)


m(â) = m(b)
Se a e b têm a mesma medida, eles são congruentes.




EXECÍCIOS


1) Quais são os 3 pares de ângulos opostos pelo vértice?




2) Se x = 50° , determine y, m e n:
3) Calcule os ângulos x,y, z e w da figura:




4) Calcule os ângulos x, y e z das figuras:
5) Calcule x:




6) Calcule x:




7) Calcule x :
8) Calcule x:




9) As medidas de dois ângulos opostos pelo vértice são expressas em graus
por 15x - 14° e 3x + 10°. Quanto vale x?


10) As medidas de dois ângulos opostos pelo vértice são expressas em graus
por (2m - 50) e (m + 35). Quanto vale m?




ÂNGULOS FORMADFOS POR DUAS RETAS PARALELAS E UMA TRANSVERSAL
Duas retas r e s, interceptadas pela transversalo t, formam oito ângulos.




Os pares de ângulos com um vértice em A e o outro em B são assim
determinados:


= Correspondentes: 1 e 5, 4 e 8, 2 e 6, 3 e 7
= Colaterais Internos: 4 e 5, 3 e 6
= Colaterais externos: 1 e 8, 2 e 7
= Alternos internos: 4 e 6, 3 e 5
= Alternos externos: 1 e 7, 2 e 8



ILUSTRANDO:


              = ALTERNOS (um de cada "lado" da transversal).
= COLATERAIS (ambos do mesmo "lado" da transvwesal)
EXERCÍCIOS



           1) Dê o nome dos pares de ângulod de acordo com a figura:




a) a e g
b) a e e
c) d e h
d) c e g
e) c e e
f) a e f
g) b e h
h) b e f
i) d e f
j) c e e
l) c e h
m) b e e


PROPRIEDADES


Considere duas retas paralelas e uma transversal.




Medindo esses ângulos com o transferidor, você vai concluir que são validas as
seguintes propriedades:
                 = Os ângulos correspondentes são congruentes
                = Os ângulos alternos externos são congruentes
                = Os ângulos alternos internos são congruentes.
            = Os ângulos colaterais externos são suplememntares.
              = Os ângulos colaterais internos são suplementares


                                 EXERCÍCIOS


      1) Sabendo que r//s, determine a medida dos ângulos indicados:


                                      a)
b)




c)
d)




2) Sabendo que r // a , calcule x:

a)




b)
c)




d)




     posted by ATIVIDADES @ 5:37 AM 11 comments
11 Comments:
               At 9:51 AM,     ketty said...

     seu site é mtooooooooooooo bom vlw por me ajuda ;)


               At 4:37 PM,     Xeno said...

 Muito obrigado! Consegui revisar para a prova, muito obrigado
                            mesmo!


              At 5:10 AM,     andriel said...

 bhá eu tenho que estudar pra prova e eu acho q eu vou me dar
                             bem


              At 5:11 AM,     andriel said...

 bhá eu tenho que estudar pra prova e eu acho q eu vou me dar
                             bem


         At 6:06 AM,     catherine e samia said...

muito bom vei,me ajudou bastante,a revisar o conteudo da prova
                        de calculo...
                        PARABENS!!!


         At 6:07 AM,     catherine e samia said...

        This comment has been removed by the author.


        At 11:26 AM,     catherine e samia said...

                   esssas atvs são mto boas!


        At 11:28 AM,     catherine e samia said...

                   esssas atvs são mto boas!


         At 7:05 AM,     catherine e samia said...
gostei muito dessas atvs, mas estão mto difíceis... complemente
               e facilite um pouco, por favooor!


         At 7:06 AM,   catherine e samia said...

gostei muito dessas atvs, mas estão mto difíceis... complemente
               e facilite um pouco, por favooor!

Mais conteúdo relacionado

Mais procurados

Quadrilátero exercicios
Quadrilátero   exerciciosQuadrilátero   exercicios
Quadrilátero exercicios
Diomedes Manoel
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
Alessandra Dias
 
Atividades sobre grau - minutos - segundos
Atividades sobre   grau - minutos - segundosAtividades sobre   grau - minutos - segundos
Atividades sobre grau - minutos - segundos
Claudiana Watanabe Vargas
 
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
ProfCalazans
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
Everton Moraes
 
Lista de exercícios equação - 7 ano - 5ª etapa
Lista de exercícios   equação - 7 ano - 5ª etapaLista de exercícios   equação - 7 ano - 5ª etapa
Lista de exercícios equação - 7 ano - 5ª etapa
Luciana Ayres
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
Adriana Bonato
 
Mat exercicios fatoracao algebrica
Mat exercicios fatoracao algebricaMat exercicios fatoracao algebrica
Mat exercicios fatoracao algebrica
trigono_metria
 
AVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASAVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETAS
Vyeyra Santos
 
Lista de-exercicios-de-angulos-7-ano
Lista de-exercicios-de-angulos-7-anoLista de-exercicios-de-angulos-7-ano
Lista de-exercicios-de-angulos-7-ano
Suelen Santos
 
Lista de exercícios - conjuntos - 6º ano
Lista de exercícios  - conjuntos - 6º anoLista de exercícios  - conjuntos - 6º ano
Lista de exercícios - conjuntos - 6º ano
Anderson C. Rosa
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º ano
alunosderoberto
 
3 exercícios - potenciação de números naturais[1]
3   exercícios - potenciação de números naturais[1]3   exercícios - potenciação de números naturais[1]
3 exercícios - potenciação de números naturais[1]
Rejane Zancanaro
 
Lista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores PrimosLista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores Primos
Everton Moraes
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Secretaria de Estado de Educação do Pará
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
Everton Moraes
 
Prova 8º ano b e c
Prova 8º ano b e cProva 8º ano b e c
Prova 8º ano b e c
francisco de assis henrique
 
L ista de exercícios operacoes com monômios
L ista de exercícios   operacoes com monômiosL ista de exercícios   operacoes com monômios
L ista de exercícios operacoes com monômios
Cinthia Oliveira Brito da Silva
 
1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno
Ilton Bruno
 
Divisão e multiplicação
Divisão e multiplicaçãoDivisão e multiplicação
Divisão e multiplicação
Jacky Rocha
 

Mais procurados (20)

Quadrilátero exercicios
Quadrilátero   exerciciosQuadrilátero   exercicios
Quadrilátero exercicios
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
 
Atividades sobre grau - minutos - segundos
Atividades sobre   grau - minutos - segundosAtividades sobre   grau - minutos - segundos
Atividades sobre grau - minutos - segundos
 
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
 
Lista de exercícios equação - 7 ano - 5ª etapa
Lista de exercícios   equação - 7 ano - 5ª etapaLista de exercícios   equação - 7 ano - 5ª etapa
Lista de exercícios equação - 7 ano - 5ª etapa
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
 
Mat exercicios fatoracao algebrica
Mat exercicios fatoracao algebricaMat exercicios fatoracao algebrica
Mat exercicios fatoracao algebrica
 
AVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETASAVALIAÇÃO 6º ANO ANGULOS E RETAS
AVALIAÇÃO 6º ANO ANGULOS E RETAS
 
Lista de-exercicios-de-angulos-7-ano
Lista de-exercicios-de-angulos-7-anoLista de-exercicios-de-angulos-7-ano
Lista de-exercicios-de-angulos-7-ano
 
Lista de exercícios - conjuntos - 6º ano
Lista de exercícios  - conjuntos - 6º anoLista de exercícios  - conjuntos - 6º ano
Lista de exercícios - conjuntos - 6º ano
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º ano
 
3 exercícios - potenciação de números naturais[1]
3   exercícios - potenciação de números naturais[1]3   exercícios - potenciação de números naturais[1]
3 exercícios - potenciação de números naturais[1]
 
Lista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores PrimosLista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores Primos
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
 
Prova 8º ano b e c
Prova 8º ano b e cProva 8º ano b e c
Prova 8º ano b e c
 
L ista de exercícios operacoes com monômios
L ista de exercícios   operacoes com monômiosL ista de exercícios   operacoes com monômios
L ista de exercícios operacoes com monômios
 
1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno
 
Divisão e multiplicação
Divisão e multiplicaçãoDivisão e multiplicação
Divisão e multiplicação
 

Semelhante a âNgulos

Lista01
Lista01Lista01
Lista de exercícios para a prova sub-stitutiva - trigonometria e números com...
Lista de  exercícios para a prova sub-stitutiva - trigonometria e números com...Lista de  exercícios para a prova sub-stitutiva - trigonometria e números com...
Lista de exercícios para a prova sub-stitutiva - trigonometria e números com...
Jhow Almeida
 
CfSd 2016 matematica - 3
CfSd 2016   matematica - 3CfSd 2016   matematica - 3
CfSd 2016 matematica - 3
profNICODEMOS
 
Geometria Plana - Exercícios
Geometria Plana - ExercíciosGeometria Plana - Exercícios
Geometria Plana - Exercícios
Everton Moraes
 
Apostila mt maurion
Apostila mt maurionApostila mt maurion
Apostila mt maurion
Celso Berredo
 
2ª lista de geometria
2ª lista de geometria2ª lista de geometria
2ª lista de geometria
Professor Carlinhos
 
Geo jeca plana
Geo jeca planaGeo jeca plana
Geo jeca plana
Jaqueline Amaral
 
Estudo de geometria plana corrigida
Estudo de geometria plana   corrigidaEstudo de geometria plana   corrigida
Estudo de geometria plana corrigida
Oswaldo Stanziola
 
8º ano geometria
8º ano geometria8º ano geometria
8º ano geometria
Marisa Carnieto Santos
 
ÂNGULOS
ÂNGULOSÂNGULOS
ÂNGULOS
Antonio Filho
 
M (1)
M (1)M (1)
1ª lista de geometria
1ª lista de geometria1ª lista de geometria
1ª lista de geometria
Professor Carlinhos
 
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
alexandrevipper04
 
Mat bas16 medidas de angulos
Mat bas16   medidas de angulosMat bas16   medidas de angulos
Mat bas16 medidas de angulos
CarolGuti
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
P Valter De Almeida Gomes
 
Angulos
AngulosAngulos
Mat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilaterosMat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilateros
trigono_metria
 
Angulo
AnguloAngulo
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01
ProfCalazans
 
Cap 7-ângulos e triângulos
Cap 7-ângulos e triângulosCap 7-ângulos e triângulos
Cap 7-ângulos e triângulos
Felipe Ferreira
 

Semelhante a âNgulos (20)

Lista01
Lista01Lista01
Lista01
 
Lista de exercícios para a prova sub-stitutiva - trigonometria e números com...
Lista de  exercícios para a prova sub-stitutiva - trigonometria e números com...Lista de  exercícios para a prova sub-stitutiva - trigonometria e números com...
Lista de exercícios para a prova sub-stitutiva - trigonometria e números com...
 
CfSd 2016 matematica - 3
CfSd 2016   matematica - 3CfSd 2016   matematica - 3
CfSd 2016 matematica - 3
 
Geometria Plana - Exercícios
Geometria Plana - ExercíciosGeometria Plana - Exercícios
Geometria Plana - Exercícios
 
Apostila mt maurion
Apostila mt maurionApostila mt maurion
Apostila mt maurion
 
2ª lista de geometria
2ª lista de geometria2ª lista de geometria
2ª lista de geometria
 
Geo jeca plana
Geo jeca planaGeo jeca plana
Geo jeca plana
 
Estudo de geometria plana corrigida
Estudo de geometria plana   corrigidaEstudo de geometria plana   corrigida
Estudo de geometria plana corrigida
 
8º ano geometria
8º ano geometria8º ano geometria
8º ano geometria
 
ÂNGULOS
ÂNGULOSÂNGULOS
ÂNGULOS
 
M (1)
M (1)M (1)
M (1)
 
1ª lista de geometria
1ª lista de geometria1ª lista de geometria
1ª lista de geometria
 
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
156555940 Matemática-Arcos-e-Angulos-ppsx.pptx
 
Mat bas16 medidas de angulos
Mat bas16   medidas de angulosMat bas16   medidas de angulos
Mat bas16 medidas de angulos
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
 
Angulos
AngulosAngulos
Angulos
 
Mat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilaterosMat nocoes basicas de triangulos e quadrilateros
Mat nocoes basicas de triangulos e quadrilateros
 
Angulo
AnguloAngulo
Angulo
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01
 
Cap 7-ângulos e triângulos
Cap 7-ângulos e triângulosCap 7-ângulos e triângulos
Cap 7-ângulos e triângulos
 

âNgulos

  • 1. ÂNGULOS Ângulo é a reunião de duas semi-retas de mesma origem e não-colineares. Na figura Indicação do ângulo: AÔB, ou BÔA ou simplismente Ô
  • 2. PONTOS INTERNOS E PONTOS EXTERNOS A UM ÂNGULO Seja o ângulo AÔB MEDIDA DE UM ÂNGULO Um ângulo pode ser medido através de um instrumento chamado transferidor e que tem o grau como unidade. O ângulo AÔB da figura mede 40 graus.
  • 3. Indicação: m (AÔB) = 40º A unidade grau tem dois submúltiplos: minuto e segundo 1 grau tem 60 minutos (indicação: 1 = 60º) 1 minuto tem 60 segundos ( indicação 1´ = 60" Simbolicamente: == Um ângulo de 25 graus e 40 minutos é indicado por 25º 40´. == Um ângulo de 12 graus, 20 minutos e 45 segundos é indicado por 12º 20´45" EXERCICIOS 1) Dê a indicação, o vértice e os lados dos ângulos:
  • 4. 2) Em cada uma das figuras abaixo há três ângulos. Quais são esses ângulos?
  • 5. 3) 0bserve os pontos assinalados e responda: a) Quais pontos estão no interior do ângulo? b) Quais ponmtos estão no ixterior do ângulo? c) Quais pontos pertencem aos lados do ângulo? 4) Escreva as medidas em graus dos ângulos indicados pelo transferidor.
  • 6. a) m (AÔB) b) m (AÔC) c) m (AÔD) d) m (AÔE) e) m (AÔF) f) m (AÔG) 5) Escreva simbolicamente: a) 30 graus b) 10 graus e 25 minutos c) 42 graus e 54 minutos d) 15 graus, 20 minutos e 40 segundos e) 54 graus, 38 m inutos e 12 segundos 6) Responda: a) Um grau é igual a quantos minutos? b) Um minuto é igual a quantos segundos? c) Um grau é igual a quantos segundos? 7) Tranforme : a) 1º em minutos b) 2º em minutos
  • 7. c) 3º em minutos d) 4º em minutos e) 5º em minutos f) 1´ em segundos g) 2´ em segundos h) 3´ em segundos i) 4´ em segundos j) 5´ em segundos 8) Transforme em minutos, observando o exemplo resolvido: resolvido = 2º 17´ = 2 x 60´ + 17´ = 137´ a) 5º 7´ = b) 3º 20´ = c) 10º 35´ = d) 12º 18´ = e) 3º 45´ = f) 5º 54´ = g) 7º 12´ = h) 9º 36´ = 9) Transforme: 120´= 120 : 60 = 2º ===== resolvidos ==== 120" = 120" : 60 = 2´ a) 180´em graus = b) 240´em graus = c) 300´ em graus = d) 360´em graus = e) 180" em minutos = f) 240" em minutos = g) 300" em minutos = h) 360" em minutos = 10) Transforme em graus e minutos:
  • 8. Resolvido: 75´= 1º 15´ (obs divida os minutos por 60 para obter os graus. O resto , se existir, serão os minutos.) a) 90´ = b) 95´= c) 130´ = d) 150´ = e) 385´ = f) 512´= g) 867´= h) 1000´= 11) Transforme em minutos e seguntos: a) 97" = b) 130" = c) 150" = d) 162" = e) 185" = f) 254" = 12) Copie e complete: a) 40° = 39°_______ b) 70° = 69 _______ c) 84° = 83° ______ d) 90° = 89° _______ e) 150° = 149° ________ f) 180° = 179° _______ 13) Escreva as medidas na forma mais simples: Resolvildo: 27° 60´ = 28° a) 29º 60´= (R: 30°) b) 34° 60´= (R: 35°) c) 72° 60´= (R: 73°) d) 99° 60´= (R: 100°)
  • 9. e) 54° 60´ = (R: 55°) f) 108° 60´= (R: 109°) 14) Escreva as medidas na forma mais simples: Resolvido: 39° 75´ = 40° 15´ a) 30° 80´ = (R: 31° 20´) b) 45° 90´= (R : 46° 30´) c) 57° 100´= (R: 58° 40´) d) 73° 110´= (R: 74° 50´) e) 20° 120´= (R: 22°) f) 25° 150´= (R: 27° 30´) g) 42° 160´= (R: 44° 40´) h) 78° 170´= (R: 80° 50´) OPERAÇÕES COM MEDIDAS DE ÂNGULOS ADIÇÃO 1) Exemplo 17° 15´ 10" + 30° 20´40" 17° 15´ 10" 30° 20´ 40" ----------- 47° 35´ 50" 2) Exemplo 13° 40´ + 30° 45´ 13° 40´ 30° 45´
  • 10. -------- 43° 85´ (simplificando) 44° 25´ EXERCÍCIOS 1) Calcule as somas: a) 49° + 65° = (R: b) 12° 25´ + 40° 13´ = (R: c) 28° 12´ + 5 2° 40´ = (R: d) 58° + 17° 19´ = (R: e) 41° 58´ + 16° = (R: f) 25° 40´ + 16° 50´ = (R: g) 23° 35´ + 12° 45´ = (R: h) 21° 15´40" + 7° 12´5" = (R: i) 35° 10´50" + 10° 25´20" = (R: j) 31° 45´50" + 13° 20´40" = (R: l) 3° 24´9" + 37° 11´33" = (R: m) 35° 35´2" + 22° 24´58" = (R: SUBTRAÇÃO 1) Exemplo 58° 40´ - 17° 10´ = 58° 40´ 17° 10´ ------- 41° 30´ 2) Exemplo 80° - 42° 30´ =
  • 11. 80° 42° 30´ ------- 37° 30´ EXERCÍCIOS 1) Calcule as diferenças: a) 42° - 17° = (R: b) 172° - 93° = (R: c) 48° 50´ - 27° 10´ = ( R: d) 42° 35´ - 13° 15´ = (R: e) 70° - 22° 30´ = (R: f) 30° - 18° 10´= (R: g) 90° - 54° 20´ (R: h) 120° - 50°45´ =(R: i) 52°30´ - 20°50´ = (R: j) 39° 1´ - 10°15´ = (R: MULTIPLICAÇÃO DE ÂNGULOS 1º) Exemplo 17°15´ x 2 = 17°15´ ___x2 -------- 34°30´ 2°) Exemplo
  • 12. 24° 20´ x 3 = 24°20´ ____3 ------- 72°60´ (simplificando) 73° EXERCÍCIOS 1) Calcule os produtos: a) 25°10´ x 3 = (R: b) 44°20´ x 2 = ( R: c) 35° 10´ x 4 = (R: d) 16°20´ x 3 = (R: e) 28°30´ x 2 = (R: f) 12°40´ x 3 = (R: g) 15°30´ x 3 = (R: h) 14° 20´ x 5 =(R: DIVISÃO DE UM ÂNGULO POR UM NÚMERO 1º Exemplo
  • 14. 1) Calcule os quocientes: a) 48° 20´ : 4 = (R: b) 45° 30´ : 3 = (R: c) 75° 50´ : 5 = (R: d) 55° : 2 = (R: e) 90° : 4 = (R: f) 22° 40´ : 5 = (R: 2) Calcule: a) 2/5 de 45° = (R; b) 5/7 de 84° = (R: c) 3/4 de 48° 20´ (R: d) 3/2 de 15° 20´ (R: ÂNGULOS CONGRUENTES Dois ângulos são congruentes se as suas medidas são iguais. Indicação AÔB = CÔD ( significa: AÔB é congruente a CÔD )
  • 15. BISSETRIZ DE UM ÂNGULO Bissetriz de um ângulo é a simi-reta com origem no vértice do ângulo e que o divide em dois ângulos congruentes. EXERCÍCIOS
  • 16. Responda: a) Quanto mede o ângulo MÔA? R: b) Quanto mede o ângulo NÔC? R: c) Quanto mede o ângulo BÔN? R: d) Quanto mede o ângulo MÔC? R: e) Quanto mede o ângulo AÔN? R: f) Quanto m,ede o ângulo MÔN? R:
  • 18. ÂNGULOS RETO, AGUDO E OBTUSO Os ângulos recebem nomes especiais de acordo com suas medidas: = Ângulo reto é aquele cuja medida é 90°. = ângulo agudo é aquele cuja medida é menor de 90° = ângulo obtuso é aquele cuja medida é maior que 90° RETAS PERPENDICULARES Quanto duas retas se interceptam formando ângulos retos, dizemos que elas são perpendiculares.
  • 19. EXERCÍCIOS 1) Classifique os ângulos apresentados nas figuras em agudos, obtusos ou reto: 2) Identifique na figura:
  • 20. 3) Responda: a) O menor ângulo formado pelos pnteiros de um relógio às 3 horas é um ângulo agudo, reto ou obtuso? b) O menor ângulo formado pelos ponteiros de um relógio às 2 horas é um ângulo agudo,reto ou obtuso? c) O menor ângulo formado pelos ponteiros de um relógio às 5 horas é um ângulo é um ângulo agudo, reto ou obtuso? 4) Observe a figura e responda: Qual o número de elementos do conjunto { a,b,c,x,y,z}?
  • 21. ÂNGULOS COMPLEMENTARES Dois angulos são complementares quando am soma de suas medidas é 90° m(AÔB) + m((BÔC) = m(AÔC) Exemplos: = 65° e 25° são ângulos complementares , porque 65° + 25° = 90° = 40° e 50° são ângulos complementares, porque 40° + 50° = 90° EXERCÍCIOS 1) Responda: a) Um ângulo de 20° e um de 70° são complementares? b) Um ângulo de 35° e um de 65° são complementares? c) Um ângulo de 73° e um de 27° são complementares? d) Um ângulo de 58° e um de 32° são complementares?
  • 22. 2) Calcule o complemento dos seguintes ângulos: a) 34° b) 72° c) 84° d) 18° 25´ e) 40° 30´ f) 51° 20´ 3) Resolva as equações abaixo, onde a inc´gnita x é um ângulo (medido em graus) a) 2x = 90° b) x + 17° = 90° c) 4x + 10° = 90° d) x + 8x = 90° e) 5x - 20° = 1° = 2x f) x = 2( 90° - x) g) 4( x + 3° 0 = 20° h) ( 3x - 20° ) + 50° = 90° I) 3( x + 1°) = 2( x + 7°) J) 2x + 2 (x + 1° ) = 4° + 3 ( x + 2°) 4) Determine x, sabendo que os ângulos são complementares:
  • 23. 5) Dado um ângulo de medida x, indicar: a) o seu complemento. b) o dobro do seu complemento c) o triplo do seu complemento. d) a metade do seu complemento e) a terça parte do seu complemento
  • 24. 7) A medida de um ângulo é igual à medida de seu comprimento, quanto mede esse ângulo? 8) A medida de um ângulo é a metade da medida do seu comprimento. Calcule a medida desse ângulo. 9) Calcule a medida de um ângulo cuja medida é igual ao triplo de seu complemento. 10) A diferença entreo o dobro da medida de um ângulo e o seu complemnto é 45° Calcule a medida desse ângulo. 11) A terça parte do complemento de um ângulo mede 20°. Qual a medida do ângulo? 12) Dois ângulos complementares têm suas medidas expressas em graus por 3x + 25° e 4x - 5° . Quanto medem esses ângulos? ÂNGULOS SUPLEMENTARES Dois ângulos são suplementares quando a soma de suas medidas é 180°
  • 25. m(AÔB) + m(BÔC) = 180° Exemplos: = 50° e 130° são angulos suplementares, porque 50° + 130° = 180° = 125° e 55° são ângulos suplementares, porque 125° + 55º = 180° EXERCÍCIOS 1) Responda: a) Um ângulo de 70° e um de 110° são suplementares? R: ( b) Um ângulo de 155° e um de 25° são suplementares? 2) Calcule o suplemento dos seguintes ângulos: a) 30° = (R: b) 85° = (R: c) 72° = (R: d) 132° 30´ = (R: e) 140° 20´ = (R: f) 151° 40` =(R:
  • 26. 3) Determine x, sabendo que os ángulos são suplementares: 4) Determine x, sabendo que os ângulos são suplementares:
  • 28. 6) Aquarta parte da medida de um ângulo mede 30°. Calcule a medida do seu suplemento. (R: 7) A medida de um ângulo é igual à medida de seu suplemento. Calcule esse ângulo. (R: 8) Calcule a medida de um ângulo que é igual ao triplo de seu suplemento. (R: 9) O dobro da medida de um ângulo é igual à medida do suplemento desse ângulo. Calcule a medida do ângulo. (R: 10) O triplo da medida de um ângulo mais a medida do suplemento desse ângulo é 250°. Calculo a medida do ângulo. (R: 11) Calcule a medida de um ângulo cuja medida é igual a 2/3 do seu suplemento. (R: 12) A soma do complemento com o suplemento de um ângulo é 110° . Quanto mede o ângulo? (R: ÂGULOS OPOSTOS PELO VÉRTICE
  • 29. Duas retas concorrentes determinam quatro ângulos, dois a dois , opostos pelo vértice Na figura: â e c são opostos pelo vértice. m e n são opostos pelo vértice TEOREMA Dois ângulos opostos´pelo vértice são congruentes. prova: Sejam os ângulos a e b opostos pelo vértice. 1) m(â) + m(^c) = 180° 2) m(b) + m(c) = 180° comparando : m(â) + m(c) = m(b) + m(c) m(â) = m(b)
  • 30. Se a e b têm a mesma medida, eles são congruentes. EXECÍCIOS 1) Quais são os 3 pares de ângulos opostos pelo vértice? 2) Se x = 50° , determine y, m e n:
  • 31. 3) Calcule os ângulos x,y, z e w da figura: 4) Calcule os ângulos x, y e z das figuras:
  • 32. 5) Calcule x: 6) Calcule x: 7) Calcule x :
  • 33. 8) Calcule x: 9) As medidas de dois ângulos opostos pelo vértice são expressas em graus por 15x - 14° e 3x + 10°. Quanto vale x? 10) As medidas de dois ângulos opostos pelo vértice são expressas em graus por (2m - 50) e (m + 35). Quanto vale m? ÂNGULOS FORMADFOS POR DUAS RETAS PARALELAS E UMA TRANSVERSAL
  • 34. Duas retas r e s, interceptadas pela transversalo t, formam oito ângulos. Os pares de ângulos com um vértice em A e o outro em B são assim determinados: = Correspondentes: 1 e 5, 4 e 8, 2 e 6, 3 e 7 = Colaterais Internos: 4 e 5, 3 e 6 = Colaterais externos: 1 e 8, 2 e 7 = Alternos internos: 4 e 6, 3 e 5 = Alternos externos: 1 e 7, 2 e 8 ILUSTRANDO: = ALTERNOS (um de cada "lado" da transversal). = COLATERAIS (ambos do mesmo "lado" da transvwesal)
  • 35. EXERCÍCIOS 1) Dê o nome dos pares de ângulod de acordo com a figura: a) a e g b) a e e c) d e h d) c e g e) c e e f) a e f g) b e h h) b e f i) d e f
  • 36. j) c e e l) c e h m) b e e PROPRIEDADES Considere duas retas paralelas e uma transversal. Medindo esses ângulos com o transferidor, você vai concluir que são validas as seguintes propriedades: = Os ângulos correspondentes são congruentes = Os ângulos alternos externos são congruentes = Os ângulos alternos internos são congruentes. = Os ângulos colaterais externos são suplememntares. = Os ângulos colaterais internos são suplementares EXERCÍCIOS 1) Sabendo que r//s, determine a medida dos ângulos indicados: a)
  • 37. b) c)
  • 38. d) 2) Sabendo que r // a , calcule x: a) b)
  • 39. c) d) posted by ATIVIDADES @ 5:37 AM 11 comments
  • 40. 11 Comments: At 9:51 AM, ketty said... seu site é mtooooooooooooo bom vlw por me ajuda ;) At 4:37 PM, Xeno said... Muito obrigado! Consegui revisar para a prova, muito obrigado mesmo! At 5:10 AM, andriel said... bhá eu tenho que estudar pra prova e eu acho q eu vou me dar bem At 5:11 AM, andriel said... bhá eu tenho que estudar pra prova e eu acho q eu vou me dar bem At 6:06 AM, catherine e samia said... muito bom vei,me ajudou bastante,a revisar o conteudo da prova de calculo... PARABENS!!! At 6:07 AM, catherine e samia said... This comment has been removed by the author. At 11:26 AM, catherine e samia said... esssas atvs são mto boas! At 11:28 AM, catherine e samia said... esssas atvs são mto boas! At 7:05 AM, catherine e samia said...
  • 41. gostei muito dessas atvs, mas estão mto difíceis... complemente e facilite um pouco, por favooor! At 7:06 AM, catherine e samia said... gostei muito dessas atvs, mas estão mto difíceis... complemente e facilite um pouco, por favooor!