SlideShare uma empresa Scribd logo
1 de 34
Prof. Ilydio Pereira de Sá – UERJ - USS
RAZÃO DE OURO OU NÚMERO DE OURO
INTRODUÇÃOINTRODUÇÃO
 Durante muito tempo os artistas devem se terDurante muito tempo os artistas devem se ter
perguntado qual era a mais perfeita e harmoniosaperguntado qual era a mais perfeita e harmoniosa
maneira de se dividir um objeto em duas partes iguais.maneira de se dividir um objeto em duas partes iguais.
 Também devem se ter perguntado qual é a relaçãoTambém devem se ter perguntado qual é a relação
entre as partes que constituem um objeto para que eleentre as partes que constituem um objeto para que ele
seja considerado belo.seja considerado belo.
 Um objeto pode ser dividido ao meio ou de forma queUm objeto pode ser dividido ao meio ou de forma que
uma parte seja o dobro da outra ou mesmo que umauma parte seja o dobro da outra ou mesmo que uma
parte seja igual a ¾ da outra...podemos até dizer queparte seja igual a ¾ da outra...podemos até dizer que
podemos fazer qualquer partição ou divisão de umpodemos fazer qualquer partição ou divisão de um
objeto.objeto.
 Na antiguidade clássica, o grego PlatãoNa antiguidade clássica, o grego Platão
observou uma forma de dividir umobservou uma forma de dividir um
segmento de uma forma harmônica esegmento de uma forma harmônica e
agradável à vista. Ele a chamou de “Aagradável à vista. Ele a chamou de “A
Seção”.Seção”.
 Cerca de 300 anos antes de Cristo, outroCerca de 300 anos antes de Cristo, outro
grego, Euclides, encontrou geometricamente agrego, Euclides, encontrou geometricamente a
forma de se fazer essa divisão harmônica eforma de se fazer essa divisão harmônica e
agradável à vista. Ele a chamou de “Seçãoagradável à vista. Ele a chamou de “Seção
Áurea”.Áurea”.
Euclides
 Euclides escreveu em seus “Elementos”Euclides escreveu em seus “Elementos”::
““Para que um segmento seja dividido emPara que um segmento seja dividido em
seção áurea, a razão entre o segmento e aseção áurea, a razão entre o segmento e a
parte maior deve ser igual à razão entre aparte maior deve ser igual à razão entre a
parte maior e a parte menor.”parte maior e a parte menor.”
Vamos agora ver como foi que EuclidesVamos agora ver como foi que Euclides
definiu tal divisão:definiu tal divisão:
Temos um segmento AB que foi dividido, pelo ponto C, em
duas partes iguais: AC e CB. Vamos supor que AC > CB.
Euclides descobriu que essa divisão mais harmoniosa à vista
ocorre quando a razão entre o segmento todo e a parte maior é
a mesma que existe entre a parte maior e a parte menor.
CB
AC
AC
AB
=
 Essa forma de particionarmos umEssa forma de particionarmos um
segmento constituiu-se na base para asegmento constituiu-se na base para a
arte e a arquitetura grega.arte e a arquitetura grega.
O Partenón, templo dos Deuses Gregos
Vamos agora determinar o valorVamos agora determinar o valor
dessa razão áurea, conhecidadessa razão áurea, conhecida
como número de ouro.como número de ouro.
 Para essa determinação vamos usar aPara essa determinação vamos usar a
definição de Euclides, associada à umadefinição de Euclides, associada à uma
equação do segundo grau.equação do segundo grau.
 Vamos representar o segmento AB e as partes da divisão da seguinteVamos representar o segmento AB e as partes da divisão da seguinte
forma: AC = a, CB = b, AB = a + b.forma: AC = a, CB = b, AB = a + b.
 CB = b é o segmento menor dessa divisão.CB = b é o segmento menor dessa divisão.
 Pela definição de Euclides, teremos:Pela definição de Euclides, teremos:
b
a
a
ba
=
+
a b
Pelo teorema fundamental das proporções, teremos:Pelo teorema fundamental das proporções, teremos:
b
a
a
ba
=
+
aabba ⋅=⋅+ )(
22
abba =+⋅
Ou ainda:Ou ainda:
Vamos resolver essa equação naVamos resolver essa equação na incógnita bincógnita b..
22
abba =+⋅
022
=−⋅+ abab
Arrumando seus termos, teremos:
Aplicando a fórmula de Báskara, teremos:Aplicando a fórmula de Báskara, teremos:
2
)(14 22
aaa
b
−⋅⋅−±−
=
2
)41(2
+±−
=
aa
b
operando,operando,
2
52
aa
b
±−
=
Colocando o termoColocando o termo aa em evidência, teremos:em evidência, teremos:
ou ainda:ou ainda:
2
)51( ±−
=
a
b
2
)51( ±−
=
a
b
Ou dividindo amos os membros da igualdade por a:Ou dividindo amos os membros da igualdade por a:
Ou ainda, invertendo a razão obtida:
)51(
2
±−
=
b
a
Temos duas soluções:Temos duas soluções:
)51(
2
+−
=
b
a
ou
)51(
2
−−
=
b
a
)51(
2
±−
=
b
a
Como sabemos que , é um número irracional e maior que 15
Teremos:
É um número POSITIVO
É um número NEGATIVO
)51(
2
+−
=
b
a
)51(
2
−−
=
b
a
Como estamos lidando com medidas de segmentos de reta,
a solução negativa não nos interessa.
5O número vale, aproximadamente 2,236067… logo:
...1,618033..
)51(
2
≈
+−
=
b
a
Este valor, que se chama razão ou número de outro, ficou
representado pela letra grega φ (phi).
(se pronuncia Fi)
Essa escolha foi uma homenagem ao escultor e arquiteto grego
Fídeas, que construiu o Partenon usando a razão de ouro.
ONDE ENCONTRAMOS AONDE ENCONTRAMOS A
RAZÃO DE OURO?RAZÃO DE OURO?
O Homem Vitruviano
-Leonardo Da Vinci-
A razão entre a distância do umbigo aos
pés e a distância da cabeça ao umbigo
é o número de ouro φ. Da mesma forma,
a razão entre a altura do homem e a
distância do umbigo aos pés é também
esse mesmo número.
Vejamos alguns exemplos em pessoas famosas:Vejamos alguns exemplos em pessoas famosas:
φ≈≈= 6908,1
4,96
163
pésaosumbigodist.
altura φ1,6666
12
20
queixoaoolhosdosdist.
rostodocompr.
≈≈=
φ1,625
4
6,5
queixoaodist.boca
queixoaonarizdist.
≈≈=
 Já conhecemos o valor da razão áurea;Já conhecemos o valor da razão áurea;
 Já sabemos dividir um segmento na razãoJá sabemos dividir um segmento na razão
de ouro;de ouro;
 Podemos também construir qualquerPodemos também construir qualquer
figura geométrica onde exista tambémfigura geométrica onde exista também
essa razão;essa razão;
 Usando alguns conhecimentos deUsando alguns conhecimentos de
geometria podemos construir a maisgeometria podemos construir a mais
famosa dessas formas que é ofamosa dessas formas que é o
RETÂNGULO DE OURO.RETÂNGULO DE OURO.
CONSTRUÇÃO DO RETÂNGULOCONSTRUÇÃO DO RETÂNGULO
DE OURODE OURO
 Um retângulo de ouro é simplesmente umUm retângulo de ouro é simplesmente um
retângulo cuja razão entre o lado maior e o ladoretângulo cuja razão entre o lado maior e o lado
menor é o número de ouromenor é o número de ouro φφ
a
b
φ=
b
a
COMO PODEMOS CONSTRUÍ-LO?COMO PODEMOS CONSTRUÍ-LO?
Quer ver a justificativa matemática?
Onde podemos encontrar oOnde podemos encontrar o
número de ouro?número de ouro?
Na vida cotidiana:
Também são bem próximas do
retângulo de ouro algumas telas das
modernas TVs de LCD.
Geralmente os retângulos usados na
fabricação dos cartões de crédito são
retângulos de ouro, ou seja, a razão entre
o lado maior e o menor é igual a φ.
Mona Lisa
-Leonardo Da Vinci-
Seção Áurea
- Mondrian-
A RAZÃO DE OURO NA ARTE
Duas composições com retângulos de
ouro de Piet Mondrian
Em muitas obras de artistas do Renascimento eles usaram a razão de ouro.
Sir Theodore Cook (séc. XIX)
descobriu uma escala simples de
divisões áureas aplicável à figura
humana, que se encaixa
surpreendentemente bem nas obras de
alguns pintores, como Boticelli.
O nascimento de Venus
-Boticelli-
Há muitos outros exemplos do
uso do retângulo de ouro nas
artes. Ele era mesmo usado
para a divisão espacial da área
onde a obra era pintada.
Temos um belo exemplo
dessa divisão espacial em “O
martírio de São Bartolomeu”, do
espanhol Ribera.
O PartenónO Partenón
Os gregos usaram a razão áurea como base arquitetônica deOs gregos usaram a razão áurea como base arquitetônica de
monumentos e prédios em honra de seus Deuses.monumentos e prédios em honra de seus Deuses.
O Partenón, templo dos Deuses gregos
Na fachada do Pártenon temos um
retângulo de ouro.
Em Monumentos e arquitetura
4) Na natureza4) Na natureza
 A espiral maravilhosa – Existe, por exemplo, na conchaA espiral maravilhosa – Existe, por exemplo, na concha
do caracol Nautilus. Fica formada a partir de arcos dedo caracol Nautilus. Fica formada a partir de arcos de
circunferência concordantes, construídos a partir decircunferência concordantes, construídos a partir de
sucessivos retângulos de ouro.sucessivos retângulos de ouro.
Na natureza:
Na concha do cefalópode marinho Nautilus
11 aureo
11 aureo

Mais conteúdo relacionado

Mais procurados

Números Incomensuráveis
Números IncomensuráveisNúmeros Incomensuráveis
Números IncomensuráveisVanyse Andrade
 
Números Incomensuráveis
Números IncomensuráveisNúmeros Incomensuráveis
Números IncomensuráveisVanyse Andrade
 
Razão de Ouro ou Número de Ouro
Razão de Ouro ou Número de OuroRazão de Ouro ou Número de Ouro
Razão de Ouro ou Número de Ourobrunaofox
 
Razoes trigonometricas-triang-retangulo-2012
Razoes trigonometricas-triang-retangulo-2012Razoes trigonometricas-triang-retangulo-2012
Razoes trigonometricas-triang-retangulo-2012Erenilson Marinho
 
Slides ProporçãO áUrea
Slides ProporçãO áUreaSlides ProporçãO áUrea
Slides ProporçãO áUrearednhut
 
Leonardo da Vinci & Proporção Áurea
Leonardo da Vinci & Proporção ÁureaLeonardo da Vinci & Proporção Áurea
Leonardo da Vinci & Proporção Áureapedrotecmid
 
Homem vitruviano2
Homem vitruviano2Homem vitruviano2
Homem vitruviano2janloterio
 
Geometria Dos SóLidos PlatôNicos
Geometria Dos SóLidos PlatôNicosGeometria Dos SóLidos PlatôNicos
Geometria Dos SóLidos PlatôNicosbinholex
 
Curiosidade matematica
Curiosidade matematicaCuriosidade matematica
Curiosidade matematicaJose Rosa
 
Geometria Espacial - Elizabeth Justo
Geometria Espacial - Elizabeth JustoGeometria Espacial - Elizabeth Justo
Geometria Espacial - Elizabeth JustoElizabeth Justo
 
Euclides Elementos De Geometria[2]
Euclides   Elementos De Geometria[2]Euclides   Elementos De Geometria[2]
Euclides Elementos De Geometria[2]rildo nascimento
 
2972489 mathematics-dictionary-dicionario-etimologico-matematica
2972489 mathematics-dictionary-dicionario-etimologico-matematica2972489 mathematics-dictionary-dicionario-etimologico-matematica
2972489 mathematics-dictionary-dicionario-etimologico-matematicaHeitor Santos Reis
 

Mais procurados (18)

Proporcao aurea faal
Proporcao aurea faalProporcao aurea faal
Proporcao aurea faal
 
Números Incomensuráveis
Números IncomensuráveisNúmeros Incomensuráveis
Números Incomensuráveis
 
Números Incomensuráveis
Números IncomensuráveisNúmeros Incomensuráveis
Números Incomensuráveis
 
Proporção Áurea
Proporção ÁureaProporção Áurea
Proporção Áurea
 
Razão de Ouro ou Número de Ouro
Razão de Ouro ou Número de OuroRazão de Ouro ou Número de Ouro
Razão de Ouro ou Número de Ouro
 
Razoes trigonometricas-triang-retangulo-2012
Razoes trigonometricas-triang-retangulo-2012Razoes trigonometricas-triang-retangulo-2012
Razoes trigonometricas-triang-retangulo-2012
 
Slides ProporçãO áUrea
Slides ProporçãO áUreaSlides ProporçãO áUrea
Slides ProporçãO áUrea
 
Leonardo da Vinci & Proporção Áurea
Leonardo da Vinci & Proporção ÁureaLeonardo da Vinci & Proporção Áurea
Leonardo da Vinci & Proporção Áurea
 
Simetria - Carina
Simetria - CarinaSimetria - Carina
Simetria - Carina
 
Proporção
ProporçãoProporção
Proporção
 
Número De Ouro
Número De OuroNúmero De Ouro
Número De Ouro
 
Homem vitruviano2
Homem vitruviano2Homem vitruviano2
Homem vitruviano2
 
Geometria Dos SóLidos PlatôNicos
Geometria Dos SóLidos PlatôNicosGeometria Dos SóLidos PlatôNicos
Geometria Dos SóLidos PlatôNicos
 
Homem vitruviano 20130802
Homem vitruviano   20130802Homem vitruviano   20130802
Homem vitruviano 20130802
 
Curiosidade matematica
Curiosidade matematicaCuriosidade matematica
Curiosidade matematica
 
Geometria Espacial - Elizabeth Justo
Geometria Espacial - Elizabeth JustoGeometria Espacial - Elizabeth Justo
Geometria Espacial - Elizabeth Justo
 
Euclides Elementos De Geometria[2]
Euclides   Elementos De Geometria[2]Euclides   Elementos De Geometria[2]
Euclides Elementos De Geometria[2]
 
2972489 mathematics-dictionary-dicionario-etimologico-matematica
2972489 mathematics-dictionary-dicionario-etimologico-matematica2972489 mathematics-dictionary-dicionario-etimologico-matematica
2972489 mathematics-dictionary-dicionario-etimologico-matematica
 

Semelhante a 11 aureo

Quem foi ptlomeu e quais suas contribuições à trigonometria
Quem foi ptlomeu e quais suas contribuições à trigonometria  Quem foi ptlomeu e quais suas contribuições à trigonometria
Quem foi ptlomeu e quais suas contribuições à trigonometria isabelrorig
 
Razão de Ouro
Razão de OuroRazão de Ouro
Razão de Ourobrunaofox
 
O nº pi quadratura do círculo
O nº pi quadratura do círculoO nº pi quadratura do círculo
O nº pi quadratura do círculoProfLuizAmaro
 
Poliedros com hipertexto
Poliedros com hipertextoPoliedros com hipertexto
Poliedros com hipertextoPatricia Campos
 
Curso: Equações
Curso: EquaçõesCurso: Equações
Curso: Equaçõesinechidias
 
Equações: História , Contextualização e Aplicação
Equações: História , Contextualização e AplicaçãoEquações: História , Contextualização e Aplicação
Equações: História , Contextualização e Aplicaçãoinechidias
 
MúSica E Beleza
MúSica E BelezaMúSica E Beleza
MúSica E BelezaHOME
 
Segmentos proporcionais 1
Segmentos proporcionais 1Segmentos proporcionais 1
Segmentos proporcionais 1luciaoliv
 
Artigo de Divulgação Cientifica
Artigo de Divulgação Cientifica Artigo de Divulgação Cientifica
Artigo de Divulgação Cientifica marcelo andrade
 
História da Geometria
História da GeometriaHistória da Geometria
História da GeometriaMaria Campos
 
Princípio de Cavalieri
Princípio de CavalieriPrincípio de Cavalieri
Princípio de Cavalieriwellsonfs
 
Bruno P. de Souza.
Bruno P. de Souza.Bruno P. de Souza.
Bruno P. de Souza.Bruno Souza
 
Trabalho de matematica
Trabalho de matematicaTrabalho de matematica
Trabalho de matematicaEmanoel
 
Optica aula 1
Optica aula 1Optica aula 1
Optica aula 1tiowans
 
Trabalho De Matematica(2)
Trabalho De Matematica(2)Trabalho De Matematica(2)
Trabalho De Matematica(2)Emanoel
 

Semelhante a 11 aureo (20)

Quem foi ptlomeu e quais suas contribuições à trigonometria
Quem foi ptlomeu e quais suas contribuições à trigonometria  Quem foi ptlomeu e quais suas contribuições à trigonometria
Quem foi ptlomeu e quais suas contribuições à trigonometria
 
Razão de Ouro
Razão de OuroRazão de Ouro
Razão de Ouro
 
O nº pi quadratura do círculo
O nº pi quadratura do círculoO nº pi quadratura do círculo
O nº pi quadratura do círculo
 
Poliedros com hipertexto
Poliedros com hipertextoPoliedros com hipertexto
Poliedros com hipertexto
 
Curso: Equações
Curso: EquaçõesCurso: Equações
Curso: Equações
 
Equações: História , Contextualização e Aplicação
Equações: História , Contextualização e AplicaçãoEquações: História , Contextualização e Aplicação
Equações: História , Contextualização e Aplicação
 
MúSica E Beleza
MúSica E BelezaMúSica E Beleza
MúSica E Beleza
 
AQUINO_RURAL2
AQUINO_RURAL2AQUINO_RURAL2
AQUINO_RURAL2
 
Segmentos proporcionais 1
Segmentos proporcionais 1Segmentos proporcionais 1
Segmentos proporcionais 1
 
Artigo de Divulgação Cientifica
Artigo de Divulgação Cientifica Artigo de Divulgação Cientifica
Artigo de Divulgação Cientifica
 
A geometria sagrada
A geometria sagradaA geometria sagrada
A geometria sagrada
 
História da Geometria
História da GeometriaHistória da Geometria
História da Geometria
 
Princípio de Cavalieri
Princípio de CavalieriPrincípio de Cavalieri
Princípio de Cavalieri
 
Bruno P. de Souza.
Bruno P. de Souza.Bruno P. de Souza.
Bruno P. de Souza.
 
Trabalho de matematica
Trabalho de matematicaTrabalho de matematica
Trabalho de matematica
 
Optica aula 1
Optica aula 1Optica aula 1
Optica aula 1
 
Baricentro
BaricentroBaricentro
Baricentro
 
Trabalho De Matematica(2)
Trabalho De Matematica(2)Trabalho De Matematica(2)
Trabalho De Matematica(2)
 
Razão áurea
Razão áureaRazão áurea
Razão áurea
 
Fogão Solar
Fogão SolarFogão Solar
Fogão Solar
 

Mais de jwfb

2 razões trigonométricas
2 razões trigonométricas2 razões trigonométricas
2 razões trigonométricasjwfb
 
Prova ps 2011_2
Prova ps 2011_2Prova ps 2011_2
Prova ps 2011_2jwfb
 
Prova ps 2011_1
Prova ps 2011_1Prova ps 2011_1
Prova ps 2011_1jwfb
 
Energia cinética
Energia cinéticaEnergia cinética
Energia cinéticajwfb
 
Curso de chadrez
Curso de chadrezCurso de chadrez
Curso de chadrezjwfb
 
Curso de chadrez
Curso de chadrezCurso de chadrez
Curso de chadrezjwfb
 
Arquivo 77
Arquivo 77Arquivo 77
Arquivo 77jwfb
 
Sol 1afase2010 n1
Sol 1afase2010 n1Sol 1afase2010 n1
Sol 1afase2010 n1jwfb
 
Obmep2010n1 final
Obmep2010n1 finalObmep2010n1 final
Obmep2010n1 finaljwfb
 
Enem2009 matematica
Enem2009 matematicaEnem2009 matematica
Enem2009 matematicajwfb
 
Enem2009 matematica
Enem2009 matematicaEnem2009 matematica
Enem2009 matematicajwfb
 
Programa%20de%20 matematica%20pss 2009[1]
Programa%20de%20 matematica%20pss 2009[1]Programa%20de%20 matematica%20pss 2009[1]
Programa%20de%20 matematica%20pss 2009[1]jwfb
 
Funçoes2
Funçoes2Funçoes2
Funçoes2jwfb
 
Arquivo 60
Arquivo 60Arquivo 60
Arquivo 60jwfb
 
Arquivo 60
Arquivo 60Arquivo 60
Arquivo 60jwfb
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2jwfb
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2jwfb
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2jwfb
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2jwfb
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2jwfb
 

Mais de jwfb (20)

2 razões trigonométricas
2 razões trigonométricas2 razões trigonométricas
2 razões trigonométricas
 
Prova ps 2011_2
Prova ps 2011_2Prova ps 2011_2
Prova ps 2011_2
 
Prova ps 2011_1
Prova ps 2011_1Prova ps 2011_1
Prova ps 2011_1
 
Energia cinética
Energia cinéticaEnergia cinética
Energia cinética
 
Curso de chadrez
Curso de chadrezCurso de chadrez
Curso de chadrez
 
Curso de chadrez
Curso de chadrezCurso de chadrez
Curso de chadrez
 
Arquivo 77
Arquivo 77Arquivo 77
Arquivo 77
 
Sol 1afase2010 n1
Sol 1afase2010 n1Sol 1afase2010 n1
Sol 1afase2010 n1
 
Obmep2010n1 final
Obmep2010n1 finalObmep2010n1 final
Obmep2010n1 final
 
Enem2009 matematica
Enem2009 matematicaEnem2009 matematica
Enem2009 matematica
 
Enem2009 matematica
Enem2009 matematicaEnem2009 matematica
Enem2009 matematica
 
Programa%20de%20 matematica%20pss 2009[1]
Programa%20de%20 matematica%20pss 2009[1]Programa%20de%20 matematica%20pss 2009[1]
Programa%20de%20 matematica%20pss 2009[1]
 
Funçoes2
Funçoes2Funçoes2
Funçoes2
 
Arquivo 60
Arquivo 60Arquivo 60
Arquivo 60
 
Arquivo 60
Arquivo 60Arquivo 60
Arquivo 60
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2
 
Análise combinatória 2
Análise combinatória 2Análise combinatória 2
Análise combinatória 2
 

Último

MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHASMARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHASyan1305goncalves
 
o-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdfo-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdfCarolineNunes80
 
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdfHistoria-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdfandreaLisboa7
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfcarloseduardogonalve36
 
Sistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfSistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfAntonio Barros
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é precisoMary Alvarenga
 
Power Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilPower Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilMariaHelena293800
 
Insegurança nunca mais tem afeta pessoas
Insegurança nunca mais tem afeta pessoasInsegurança nunca mais tem afeta pessoas
Insegurança nunca mais tem afeta pessoasdiegosouzalira10
 
MODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolarMODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolarDouglasVasconcelosMa
 
Formação T.2 do Modulo I da Formação HTML & CSS
Formação T.2 do Modulo I da Formação HTML & CSSFormação T.2 do Modulo I da Formação HTML & CSS
Formação T.2 do Modulo I da Formação HTML & CSSPedroMatos469278
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoVALMIRARIBEIRO1
 
"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"Ilda Bicacro
 
Apresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosApresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosFernanda Ledesma
 
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.FLAVIA LEZAN
 
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptxEB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptxIlda Bicacro
 
Testes de avaliação português 6º ano .pdf
Testes de avaliação português 6º ano .pdfTestes de avaliação português 6º ano .pdf
Testes de avaliação português 6º ano .pdfCsarBaltazar1
 
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxSlides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxLuizHenriquedeAlmeid6
 
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisNós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisIlda Bicacro
 
O que é, de facto, a Educação de Infância
O que é, de facto, a Educação de InfânciaO que é, de facto, a Educação de Infância
O que é, de facto, a Educação de InfânciaHenrique Santos
 

Último (20)

MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHASMARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
 
o-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdfo-homem-que-calculava-malba-tahan-1_123516.pdf
o-homem-que-calculava-malba-tahan-1_123516.pdf
 
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdfHistoria-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
 
Sistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfSistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdf
 
662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 
Power Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilPower Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantil
 
Insegurança nunca mais tem afeta pessoas
Insegurança nunca mais tem afeta pessoasInsegurança nunca mais tem afeta pessoas
Insegurança nunca mais tem afeta pessoas
 
MODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolarMODELO Resumo esquemático de Relatório escolar
MODELO Resumo esquemático de Relatório escolar
 
Formação T.2 do Modulo I da Formação HTML & CSS
Formação T.2 do Modulo I da Formação HTML & CSSFormação T.2 do Modulo I da Formação HTML & CSS
Formação T.2 do Modulo I da Formação HTML & CSS
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
 
"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"
 
Apresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosApresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativos
 
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
TAMPINHAS Sílabas. Para fazer e trabalhar com as crianças.
 
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptxEB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
 
Testes de avaliação português 6º ano .pdf
Testes de avaliação português 6º ano .pdfTestes de avaliação português 6º ano .pdf
Testes de avaliação português 6º ano .pdf
 
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxSlides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
 
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisNós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
 
O que é, de facto, a Educação de Infância
O que é, de facto, a Educação de InfânciaO que é, de facto, a Educação de Infância
O que é, de facto, a Educação de Infância
 

11 aureo

  • 1. Prof. Ilydio Pereira de Sá – UERJ - USS RAZÃO DE OURO OU NÚMERO DE OURO
  • 2. INTRODUÇÃOINTRODUÇÃO  Durante muito tempo os artistas devem se terDurante muito tempo os artistas devem se ter perguntado qual era a mais perfeita e harmoniosaperguntado qual era a mais perfeita e harmoniosa maneira de se dividir um objeto em duas partes iguais.maneira de se dividir um objeto em duas partes iguais.  Também devem se ter perguntado qual é a relaçãoTambém devem se ter perguntado qual é a relação entre as partes que constituem um objeto para que eleentre as partes que constituem um objeto para que ele seja considerado belo.seja considerado belo.  Um objeto pode ser dividido ao meio ou de forma queUm objeto pode ser dividido ao meio ou de forma que uma parte seja o dobro da outra ou mesmo que umauma parte seja o dobro da outra ou mesmo que uma parte seja igual a ¾ da outra...podemos até dizer queparte seja igual a ¾ da outra...podemos até dizer que podemos fazer qualquer partição ou divisão de umpodemos fazer qualquer partição ou divisão de um objeto.objeto.
  • 3.  Na antiguidade clássica, o grego PlatãoNa antiguidade clássica, o grego Platão observou uma forma de dividir umobservou uma forma de dividir um segmento de uma forma harmônica esegmento de uma forma harmônica e agradável à vista. Ele a chamou de “Aagradável à vista. Ele a chamou de “A Seção”.Seção”.
  • 4.  Cerca de 300 anos antes de Cristo, outroCerca de 300 anos antes de Cristo, outro grego, Euclides, encontrou geometricamente agrego, Euclides, encontrou geometricamente a forma de se fazer essa divisão harmônica eforma de se fazer essa divisão harmônica e agradável à vista. Ele a chamou de “Seçãoagradável à vista. Ele a chamou de “Seção Áurea”.Áurea”. Euclides
  • 5.  Euclides escreveu em seus “Elementos”Euclides escreveu em seus “Elementos”:: ““Para que um segmento seja dividido emPara que um segmento seja dividido em seção áurea, a razão entre o segmento e aseção áurea, a razão entre o segmento e a parte maior deve ser igual à razão entre aparte maior deve ser igual à razão entre a parte maior e a parte menor.”parte maior e a parte menor.”
  • 6. Vamos agora ver como foi que EuclidesVamos agora ver como foi que Euclides definiu tal divisão:definiu tal divisão: Temos um segmento AB que foi dividido, pelo ponto C, em duas partes iguais: AC e CB. Vamos supor que AC > CB. Euclides descobriu que essa divisão mais harmoniosa à vista ocorre quando a razão entre o segmento todo e a parte maior é a mesma que existe entre a parte maior e a parte menor. CB AC AC AB =
  • 7.  Essa forma de particionarmos umEssa forma de particionarmos um segmento constituiu-se na base para asegmento constituiu-se na base para a arte e a arquitetura grega.arte e a arquitetura grega. O Partenón, templo dos Deuses Gregos
  • 8. Vamos agora determinar o valorVamos agora determinar o valor dessa razão áurea, conhecidadessa razão áurea, conhecida como número de ouro.como número de ouro.  Para essa determinação vamos usar aPara essa determinação vamos usar a definição de Euclides, associada à umadefinição de Euclides, associada à uma equação do segundo grau.equação do segundo grau.
  • 9.  Vamos representar o segmento AB e as partes da divisão da seguinteVamos representar o segmento AB e as partes da divisão da seguinte forma: AC = a, CB = b, AB = a + b.forma: AC = a, CB = b, AB = a + b.  CB = b é o segmento menor dessa divisão.CB = b é o segmento menor dessa divisão.  Pela definição de Euclides, teremos:Pela definição de Euclides, teremos: b a a ba = + a b
  • 10. Pelo teorema fundamental das proporções, teremos:Pelo teorema fundamental das proporções, teremos: b a a ba = + aabba ⋅=⋅+ )( 22 abba =+⋅ Ou ainda:Ou ainda:
  • 11. Vamos resolver essa equação naVamos resolver essa equação na incógnita bincógnita b.. 22 abba =+⋅ 022 =−⋅+ abab Arrumando seus termos, teremos:
  • 12. Aplicando a fórmula de Báskara, teremos:Aplicando a fórmula de Báskara, teremos: 2 )(14 22 aaa b −⋅⋅−±− = 2 )41(2 +±− = aa b operando,operando,
  • 13. 2 52 aa b ±− = Colocando o termoColocando o termo aa em evidência, teremos:em evidência, teremos: ou ainda:ou ainda: 2 )51( ±− = a b 2 )51( ±− = a b Ou dividindo amos os membros da igualdade por a:Ou dividindo amos os membros da igualdade por a:
  • 14. Ou ainda, invertendo a razão obtida: )51( 2 ±− = b a
  • 15. Temos duas soluções:Temos duas soluções: )51( 2 +− = b a ou )51( 2 −− = b a )51( 2 ±− = b a
  • 16. Como sabemos que , é um número irracional e maior que 15 Teremos: É um número POSITIVO É um número NEGATIVO )51( 2 +− = b a )51( 2 −− = b a Como estamos lidando com medidas de segmentos de reta, a solução negativa não nos interessa.
  • 17. 5O número vale, aproximadamente 2,236067… logo: ...1,618033.. )51( 2 ≈ +− = b a Este valor, que se chama razão ou número de outro, ficou representado pela letra grega φ (phi). (se pronuncia Fi) Essa escolha foi uma homenagem ao escultor e arquiteto grego Fídeas, que construiu o Partenon usando a razão de ouro.
  • 18. ONDE ENCONTRAMOS AONDE ENCONTRAMOS A RAZÃO DE OURO?RAZÃO DE OURO? O Homem Vitruviano -Leonardo Da Vinci- A razão entre a distância do umbigo aos pés e a distância da cabeça ao umbigo é o número de ouro φ. Da mesma forma, a razão entre a altura do homem e a distância do umbigo aos pés é também esse mesmo número.
  • 19. Vejamos alguns exemplos em pessoas famosas:Vejamos alguns exemplos em pessoas famosas: φ≈≈= 6908,1 4,96 163 pésaosumbigodist. altura φ1,6666 12 20 queixoaoolhosdosdist. rostodocompr. ≈≈= φ1,625 4 6,5 queixoaodist.boca queixoaonarizdist. ≈≈=
  • 20.  Já conhecemos o valor da razão áurea;Já conhecemos o valor da razão áurea;  Já sabemos dividir um segmento na razãoJá sabemos dividir um segmento na razão de ouro;de ouro;  Podemos também construir qualquerPodemos também construir qualquer figura geométrica onde exista tambémfigura geométrica onde exista também essa razão;essa razão;  Usando alguns conhecimentos deUsando alguns conhecimentos de geometria podemos construir a maisgeometria podemos construir a mais famosa dessas formas que é ofamosa dessas formas que é o RETÂNGULO DE OURO.RETÂNGULO DE OURO.
  • 21. CONSTRUÇÃO DO RETÂNGULOCONSTRUÇÃO DO RETÂNGULO DE OURODE OURO  Um retângulo de ouro é simplesmente umUm retângulo de ouro é simplesmente um retângulo cuja razão entre o lado maior e o ladoretângulo cuja razão entre o lado maior e o lado menor é o número de ouromenor é o número de ouro φφ a b φ= b a
  • 22. COMO PODEMOS CONSTRUÍ-LO?COMO PODEMOS CONSTRUÍ-LO?
  • 23. Quer ver a justificativa matemática?
  • 24.
  • 25. Onde podemos encontrar oOnde podemos encontrar o número de ouro?número de ouro? Na vida cotidiana: Também são bem próximas do retângulo de ouro algumas telas das modernas TVs de LCD. Geralmente os retângulos usados na fabricação dos cartões de crédito são retângulos de ouro, ou seja, a razão entre o lado maior e o menor é igual a φ.
  • 26. Mona Lisa -Leonardo Da Vinci- Seção Áurea - Mondrian- A RAZÃO DE OURO NA ARTE
  • 27. Duas composições com retângulos de ouro de Piet Mondrian
  • 28. Em muitas obras de artistas do Renascimento eles usaram a razão de ouro. Sir Theodore Cook (séc. XIX) descobriu uma escala simples de divisões áureas aplicável à figura humana, que se encaixa surpreendentemente bem nas obras de alguns pintores, como Boticelli. O nascimento de Venus -Boticelli-
  • 29. Há muitos outros exemplos do uso do retângulo de ouro nas artes. Ele era mesmo usado para a divisão espacial da área onde a obra era pintada. Temos um belo exemplo dessa divisão espacial em “O martírio de São Bartolomeu”, do espanhol Ribera.
  • 30. O PartenónO Partenón Os gregos usaram a razão áurea como base arquitetônica deOs gregos usaram a razão áurea como base arquitetônica de monumentos e prédios em honra de seus Deuses.monumentos e prédios em honra de seus Deuses. O Partenón, templo dos Deuses gregos Na fachada do Pártenon temos um retângulo de ouro. Em Monumentos e arquitetura
  • 31. 4) Na natureza4) Na natureza  A espiral maravilhosa – Existe, por exemplo, na conchaA espiral maravilhosa – Existe, por exemplo, na concha do caracol Nautilus. Fica formada a partir de arcos dedo caracol Nautilus. Fica formada a partir de arcos de circunferência concordantes, construídos a partir decircunferência concordantes, construídos a partir de sucessivos retângulos de ouro.sucessivos retângulos de ouro.
  • 32. Na natureza: Na concha do cefalópode marinho Nautilus