SlideShare uma empresa Scribd logo
1 de 44
Baixar para ler offline
13/08/2021 1
FMU - Termodinâmica V3.0 - Prof. A. Lozéa
Introdução a Sistemas Termodinâmicos
Departamento de Ciências Exatas – Engenharia
Termodinâmica – Aula Introdutória 02
Prof. MSc. PhD. Alberto Lozéa Feijó Soares
E-mail: alberto.soares@fmu.br
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 2
Exemplos de sistemas térmicos
Usina Termoelétrica Usina Termonuclear
Motor a Jato Chaminé Solar
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 3
Exemplos de sistemas térmicos
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 4
Uma usina nuclear
Esquema de geração de energia em uma usina nuclear
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 5
Uma usina nuclear
Usina de Angra dos Reis
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 6
Uma usina nuclear
Super centrífugas [3]
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 7
Uma usina nuclear
Urânio enriquecido é o urânio cujo teor de 235U
(urânio-235) foi aumentado, através de um
processo de separação de isótopos
(enriquecimento). O urânio encontrado na
natureza, sob a forma de dióxido de urânio (UO2),
contém 99,284% do isótopo 238U ; apenas 0,711%
do seu peso é representado pelo isótopo 235U.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 8
Reação em cadeia de um elemento físsil
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 9
Disciplinas das ciências térmicas
São três as disciplinas das ciências térmicas fundamentais para a Eng.: TERMODINÂMICA,
TRANSFERÊNCIA DE CALOR (FT II) e MECÂNICA DOS FLUIDOS (FT I e III).
Termodinâmica
Propriedades termométricas
Conservação de massa
Conservação de energia
2ª Lei da Termodinâmica
Mecânica dos Fluidos
Estática de fluidos
Conservação de vel. e massa
Equação de Bernouli
Modelagem e simulações
Eng., de sistemas
térmicos
Análise direcionada a..
Projeto
Operações/ Manutenção
Marketing/Vendas
Custo de produção
Transp. de calor
Condução
Convecção
Radiação
Modos múltiplos
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 10
Definição de Termodinâmica
Etimologia: A origem é o Grego THERMOS, “calor”, mais DYNAMIS, “poder” ou
“força”, de DYNASTHAI, “ser capaz, ter poder, ser forte o suficiente”.
A TERMODINÂMICA: é a ciência da energia no contexto mais amplo (surgiu junto
com a revolução industrial em decorrência do estudo sistemático sobre a
conversão de energia térmica em movimento e trabalho mecânico. Daí o nome
TERMO + DINÂMICA.
De fato, a analise de motores e geradores de vários tipos permanece sendo o foco
da termodinâmica para a Engenharia. Porem, como ciência, a TERMODINÂMICA
agora se estende a todas as formas de conversão de energia, incluindo as que
envolvem os organismos vivos.
A TERMODINÂMICA é o ramo da Física que estuda as relações entre o CALOR TROCADO
(𝑄), e o TRABALHO REALIZADO (𝑊), em um determinado sistema térmico e o meio
exterior. Através das variações de TEMPERATURA, PRESSÃO e VOLUME, a Física busca
compreender o comportamento das transformações de energia que ocorrem na natureza.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 11
Definição de sistema termodinâmico
Para a Engenharia: interesse em estudar sistemas e suas interações energéticas (calor e
trabalho) com a vizinhança.
SISTEMA em Física é tudo aquilo que desejamos estudar. Desde um corpo livre a uma
Usina Termo Nuclear. Um SISTEMA TERMODINÂNICO é um sistema físico limitado por uma
região (fronteira) preenchido por um gás ou líquido em que é permitido que haja fluxo de
CALOR ou TRABALHO.
𝑄 𝑊
Fronteira
Vizinhança
Sistema
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 12
Tipos básicos de sistemas
Os SISTEMAS TERMODINÂMICOS são de três tipos:
✓ SISTEMA ABERTO: através da fronteira pode-se trocar energia e matéria (massa) com o
meio externo.
✓ SISTEMA FECHADO: pode-se trocar energia, mas não pode-se trocar matéria .
✓ SISTEMA ISOLADO: a fronteira do sistema é totalmente impenetrável à energia e à
matéria. Sistemas isolados são idealizações físicas, portanto, na prática, eles não existem.
𝑬
𝒎
𝒎
𝑬 𝑬
𝒎
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 13
Tipos básicos de sistemas
Exemplos de SISTEMAS TERMODINÂNICOS:
Vizinhança
Fronteira
Aberto Fechado Isolado
Volume de
controle
Quando há fluxo de massa, devemos limitara uma região para o estudo das propriedades
do sistema. Esta região é chamada de VOLUME DE CONTROLE.
𝒎
𝒎
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 14
Tipos básicos de sistemas
SISTEMA FECHADO COM FRONTEIRAS MÓVEIS: é aquele em que o VOLUME do recipiente
(fronteiras) podem variar.
Fronteira
móvel
Fronteira fixa
Calor
Pistão móvel
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 15
Descrevendo sistemas e seus comportamentos
Os sistemas podem ser estudados de dois pontos de vista:
✓ MICROSCÓPICO: efeitos discretos e alta complexidade. É preciso estudar os
problemas por meios estatísticos (Termodinâmica Estatística). Por exemplo é
necessário resolver 6 × 1020 equações para solucionar a posição de átomos
num cubo de 25 mm de aresta. Ex.: moléculas de água sólida, líquida e gasosa.
✓ MACROSCÓPICO: os efeitos são globais ou médios. A complexidade é bem
menor e existe uma boa precisão para os cálculos e os meios de análise são
mais diretos (Termodinâmica Clássica).
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 16
Propriedades, Estado e Processo
✓ PROPRIEDADE: característica macroscópica de um sistema. Ex.: massa, volume, energia,
pressão, temperatura, densidade (massa específica), entalpia, entropia e etc.
(𝑝𝑖, 𝑉𝑖, 𝑇𝑖) (𝑝𝑓, 𝑉𝑓, 𝑇𝑓)
ESTADO
INICIAL
ESTADO
FINAL
PROCESSO
TERMODINÂMICO
✓ ESTADO: conjunto de propriedades (termodinâmicas) do sistema. Geralmente PRESSÃO
(𝑝), VOLUME (𝑉) e TEMPERATURA (𝑇).
✓ ESTADO ESTACIONÁRIO: nenhuma propriedade do sistema muda com o tempo.
✓ PROCESSO TERMODINÂMICO: quando o sistema passa de um ESTADO para outro
através da mudanças de uma ou mais PROPRIEDADES.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 17
Tipos de processo termodinâmicos
✓ PROCESSO POLITRÓPICO: é a transformação generalizada que obedece a relação,
✓ PROCESSO ISOBÁRICO: processo em que a pressão é constante, ou seja, 𝑛 = 0.
✓ PROCESSO ISOCÓRICO ou ISOMÉTRICO: o volume permanece constante com 𝑛 = ∞.
✓ PROCESSO ISOTÉRMICO: a temperatura permanece constante para 𝑛 = 1.
Os PROCESSOS TERMODINAMICOS usualmente fornecem relações entre as
PROPRIEDADES TERMODINÂMICAS (𝑝, 𝑉, 𝑇). De maneira generalizada, esses processos
são chamados de POLITRÓPICOS.
Onde 𝑛, é chamado de Índice Politrópico e pode ter qualquer valor real, −∞ < 𝑛 < ∞.
Para valores especiais de 𝑛, temos alguns casos particulares:
✓ PROCESSO ISENTRÓPICO e/ou ADIABÁTICO: processo em que não há troca de calor
com a vizinhança (𝑄 = 0) e a ENTROPIA é constante. É um processo reversível para um
GÁS IDEAL, cujo Índice Politrópico vale 𝑛 = 𝑐𝑝/𝑐𝑉, onde 𝑐𝑝 e 𝑐𝑉 são, respectivamente,
os CALORES ESPECÍFICOS à pressão e volume constantes da substância.
𝑝 ⋅ 𝑉𝑛 = Const.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 18
Ciclo reversível e irreversível
✓ CICLO TERMODINÂNICOS: quando um SISTEMA num
dado ESTADO INICIAL passa através de vários
PROCESSOS TERMODINÂMICOS e finalmente voltar ao
seu ESTADO INICIAL, o SISTEMA foi submetido a um
processo de ciclo ou cíclico.
Estado 1
Estado 2
Ciclo
✓ PROCESSO REVERSÍVEL: é definido como um PROCESSO
que, uma vez que tem chegado à algum ESTADO, pode
ser revertido. E ao fazê-lo, não deixa qualquer alteração
no SISTEMA ou FRONTEIRA. O ESTADO volta a ser o
mesmo. Ex.: uma pedra de gelo que volta a ser água
líquida.
✓ PROCESSO IRREVERSÍVEL: é um PROCESSO que não
pode retornar às suas condições originais. Ex.: um livro
que é arrastado em uma mesa. Quando paramos de
empurra-lo, ele para de se mover por ATRITO (CALOR)
e não há como recuperar a ENERGIA usada.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 19
Propriedade intensiva e extensiva
As PROPRIEDADES são as características mensuráveis de um SISTEMA que está em
equilíbrio . Estas PROPRIEDADES podem ser INTENSIVAS ou EXTENSIVAS:
✓ EXTENSIVA: seu valor para o SISTEMA como um todo é a soma dos valores das partes.
As PROPRIEDADES EXTENSIVAS dependem da dimensão ou extensão do SISTEMA. Ex.:
massa, volume, energia, entalpia e etc.
✓ INTENSIVAS: não são características aditivas. Seus valores são independentes da
dimensão ou extensão do SISTEMA e podem variar de um local para o outro. Ex.:
temperatura, pressão, massa específica (densidade), volume específico, entalpia
específica e etc.
PROPRIEDADES
EXTENSIVAS
PROPRIEDADES
INTENSIVAS
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 20
Fases de um sistema físico
O termo FASE, refere-se à quantidade de matéria que é homogênea tanto em composição
química quanto em estrutura física. Homogeneidade na estrutura física significa que a
matéria é totalmente SÓLIDA, totalmente LÍQUIDA ou totalmente GASOSA.
Deposição
Solidificação Condensação
Sublimação
Fusão Evaporação
Ganho de Energia (aquecimento) Perda de Energia (resfriamento)
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 21
Fases de um sistema físico
Um sistema pode conter uma ou mais fases. Por exemplo um SISTEMA de água LÍQUIDA e
vapor d’água contém duas fases. Quando mais de uma fase está presente, as FASES são
separadas por FRONTEIRAS DE FASE.
Água líquida Água líquida
Vapor d’água Vapor d’água
Fronteira de fase
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 22
Fervendo a água sem calor
Fonte: “Fervendo água na seringa”, https://youtu.be/AKfJoXtaAdY
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 23
Equilíbrio de um sistema termodinâmico
A ênfase da Termodinâmica situa-se principalmente nos estados de EQUILÍBRIO e nas
mudanças de um estado de equilíbrio para o outro. O conceito de EQUILÍBRIO é muito
amplo na Termodinâmica e abrange o equilíbrio mecânico (forças), térmico, de fase e
químico.
Para testar que um estado encontra-se em EQUILÍBRIO, basta isolar o SISTEMA de sua
VIZINHANÇA e observar se as PROPRIEDADES mudam com o tempo. Se isso não ocorrer, o
SISTEMA encontra-se em ESTADO DE EQUILÍBRIO.
PROCESSO
TERMODINÂMICO
Estado de
equilíbrio 1
Estado de
equilíbrio 2
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 24
Lei Zero da Termodinâmica
O que acontece quando colocamos muitos corpos em contato térmico? Imagine a situação
em que temos três corpos com temperaturas diferentes estão dentro de um recipiente
isolado termicamente:
Q’ Q’’
TS
TG
TA
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 25
Lei Zero da Termodinâmica
TS=TG
TS=TA
TS=TA
LEI ZERO DA TERMODINÂMICA: Se dois corpos A e B (Skol e Absolut),
estiverem em equilíbrio térmico com um terceiro corpo C (Gelo),
então, os corpos A e B também estarão em equilíbrio térmico entre si.
TS
TG
TA
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 26
Processo quase-estático
Entende-se por PROCESSO QUASE-ESTÁTICO ou em QUASE-EQUIÍBRIO o PROCESSO que
evolui lentamente e cujas PROPRIEDADES variam infinitesimalmente, ou seja, 𝑑𝑥 → 0.
PROCESSO QUASE-ESTÁTICO
Todos os estados pelos quais o sistema passa num processo em QUASE-EQUILÍBRIO
podem ser considerados como estados de EQUILÍBRIO. Como os efeitos do NÃO-
EQUILÍBRIO estão inevitavelmente presentes durante os PROCESSOS reais, para os
sistemas de interesse em Engenharia o processo em QUASE-EQUILÍBRIO pode ser uma boa
aproximação, mas nunca ocorre de fato. O conceito de QUASE-EQUILÍBRIO se restringe a
suas situações: (1) modelos termodinâmicos simples que fornecem informações
qualitativas de um sistema real equivalente. (2) O conceito do processo em QUASE-
EQUILÍBRIO é útil na dedução das relações existentes entres as propriedades do sistema, o
que simplifica a análise.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 27
Processo quase-estático
Para criarmos um PROCESSO QUASE-ESTÁTICO devemos passar lentamente de um ESTADO
DE EQUILÍBRIO para outro. Na Figura abaixo, vemos um pistão móvel confinando um gás
em um recipiente completamente fechado e mantido fixo por pequenas esferas de metal.
Se retirarmos uma esfera de cada vez, o resultado será um processo lento e sem
mudanças bruscas, ou seja, um PROCESSO QUASE-ESTÁTICO.
Esferas metálicas
retiradas lentamente
Fronteira
PROCESSO QUASE-
ESTÁTICO
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 28
Exemplo de PROCESSO QUASE-ESTÁTICO: abrir lentamente a tampa de um refrigerante
para que haja variação infinitesimal da PRESSÃO e as outras propriedades mudem
suavemente.
Processo quase-estático
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 29
Processo quase-estático (não muito/meme)
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 30
Unidade e dimensões
Quando cálculos de Engenharia são realizados, é necessário todo cuidado com as
UNIDADES das GRANDEZAS FÍSICAS envolvidas no problema. Por isso a ANÁLISE
DIMENSIONAL das equações é de suma importância para evitar erros. Deste
modo, as GRANDEZAS FÍSICAS possuem dimensões e podem ser separadas em:
✓ GRADEZA FUNDAMENTAL: surge pela comparação (medida) com um padrão
fundamental criado por nós. Ex.: massa (kg),
comprimento (m), tempo (s), temperatura (K),
libra-massa (lb), pé (ft), polegada (in) e etc.
✓ GRADEZA DERIVADA: são definidas em função das GRADEZAS
FUNDAMENTAIS através de leis físicas apropriadas
como por exemplo a 2ª Lei de Newton (𝐹 = 𝑚𝑎). Ex.:
força (N), velocidade (m/s), aceleração (m/s2), energia
(J), potência (W), libra-força (lbf) e etc.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 31
Sistema Internacional de Unidades (SI)
SI é a abreviação de Système International de d’Unités em francês (clique para
escutar a pronúncia), que é o sistema de unidades aceito por tratados
internacionais na maioria dos países. As UNIDADES BÁSICAS ou FUNDAMENTAIS
do SI são o quilograma (kg), metro (𝑚), o segundo (s) e o Kelvin (K),
respectivamente. E algumas das UNIDADES DERIVADAS são: força em newton
(N), energia em joule (J) e a potência em watt (W).
Grandeza Símbolo Nome
Massa kg quilograma
Comprimento m metro
Tempo s segundo
Temperatura K kelvin
Força N newton
Energia J joule
Potência W watt
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 32
Conjunto padrão de prefixos do SI
Frequentemente torna-se necessário trabalhar com valores extremamente elevados ou
extremamente pequenos. Nessas situações utiliza-se o conjunto padrão de PREFIXOS do SI
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 33
Sistema Inglês de Unidades
Embora o SI seja o padrão internacional, muitos segmentos da comunidade de Engenharia
nos países de língua inglesa utilizam outras UNIDADES. Também é comum vê-las em
ferramentas, máquinas industriais e Tabelas de Engenharia. Portanto é importante
conhecer o Sistema Inglês de Unidades.
Grandeza Símbolo Nome Conversões
Massa lb libra-massa 1 lb ≅ 0,454 kg
Comprimento ft pé 1 ft = 0,3048 m
Tempo s segundo −
Temperatura ℉ fahrenheit 1 K =
5
9
(℉ + 459,67)
Força lbf libra-força 1 𝑁 = 0,22481 𝑙𝑏𝑓
Energia lbf ⋅ ft libra-força ⋅ pé
1 𝐽 = 9,4787 × 10−4 𝐵𝑇𝑈
1 𝐵𝑇𝑈 = 778,17 lbf ⋅ ft
Potência
lbf ⋅ ft
𝑠
libra-força ⋅ pé ÷ segundo
1 𝑘𝑊 = 1,341 𝐻𝑃
1 𝐻𝑃 = 550
lbf ⋅ ft
𝑠
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 34
Análise dimensional
A 2ª Lei de Newton do movimento estabelece que a FORÇA líquida atuando sobre
um corpo é proporcional a ACELERAÇÃO. Multiplicando por uma constante de
proporcionalidade temos que:
𝐹 ∝ 𝑎 ⟹ 𝐹 = 𝑚 ⋅ 𝑎
Esta constante mede a quantidade de inércia que o corpo possui e é conhecida
como MASSA. Se fizermos a análise dimensional da Eq. (1), obtemos o seguinte
resultado:
𝐹 = 𝑚 ⋅ [𝑎] ⟹ 𝐹 = kg ⋅
m
s2
A GRANDEZA DERIVADA resultante kg ⋅ m/s2 é a unidade natural de FORÇA no SI
conhecida como Newton.
𝐹 = kg ⋅
m
s2
≡ N
(1)
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 35
Propriedades termodinâmicas importantes
VOLUME ESPECÍFICO (𝑣): é matéria distribuída uniformemente ao longo de uma região, ou
seja, o VOLUME por unidade de MASSA de uma substância.
𝑉
𝑉′
𝜌 = lim
𝑉→𝑉′
𝑚
𝑉
⟶ Densidade ou massa específica
⇒ 𝑚 = න
𝑉
𝜌𝑑𝑉 ⟶ Massa total do SISTEMA
⇒ 𝑣 =
1
𝜌
⇒ 𝑣 =
𝑉
𝑚
(2)
A Eq. (2) é conhecida como VOLUME ESPECÍFICO e suas unidades são:
𝑣 =
m3
kg
(SI)
𝑣 =
ft3
lb
(S. Inglês)
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 36
Propriedades termodinâmicas importantes
PRESSÃO (𝑝): é a FORÇA NORMAL por unidade de ÁREA.
𝑝 = lim
𝐴→𝐴′
𝐹𝑁
𝐴
⟶ Pressão no ponto com “área” 𝐴′
⇒ 𝑝 =
𝐹𝑁
𝐴
⟶ Pressão absoluta (3)
A Eq. (3) é conhecida como PRESSÃO ABSOLUTA do gás e suas unidades são:
𝑝 =
𝑁
m2
≡ 𝑃𝑎 (SI)
𝐹𝑁
𝐴′
𝐴
𝑝 =
lbf
ft2
ou (S. Inglês)
𝑝 =
lbf
in2
≡ psi
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 37
Unidades de pressão
A unidade de PRESSÃO no SI é o pascal. Entretanto, é conveniente trabalhar com múltiplos
do Pa: o kPa, o bar e o MPa.
1 kPa = 103
Pa
1 bar = 105 Pa
1 MPa = 106 Pa
Outras unidades comumente utilizadas para pressão são libra-força por pé quadrado,
lbf/ft2
e libra-força por polegada quadrada, lbf/in2
, também conhecida como psi (pound
per square inch). Embora a pressão atmosférica da Terra varie com o local, um valor padrão
de referência pode ser definido e utilizado para representar outras pressões:
1 atmosfera padrão atm = ൞
1,01325 × 105 Pa
14,696 lbf/in2
Lembrando que a PRESSÃO discutida na Termodinâmica é sempre a PRESSÃO ABSOLUTA e
portanto devemos sempre levarem conta a PRESSÃO ATMOSFÉRICA.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 38
Escalas termométricas
Como quantificar (medir) estados térmicos (temperatura)?
Para medir qualquer grandeza física, é necessário a comparação com um PADRÃO DE
MEDIDAS. Por exemplo, o padrão de comprimento no SI [1], é o metro [2].
Para construir um padrão, ou seja, um INSTRUMENTO DE MEDIDA, devemos escolher
PONTOS DE REFERÊNCIA para comparação. Para medidas de temperatura, este
instrumento é o TERMÔMETRO, constituído com uma substância com uma grandeza física
que varie com a temperatura. A substância geralmente é o mercúrio e os pontos de
referência para comparar estados térmicos são o PONTO DE FUSÃO E EBULIÇÃO da água.
Com esses dois pontos basta criar uma ESCALA para comparar estados térmicos.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 39
Existem muitas ESCALAS TERMOMÉTRICAS, as mais comuns são as escalas Celsius e
Fahrenheit, além da própria Temperatura Absoluta Kelvin. Para converter as temperaturas
entre essas escalas de temperatura, colocam-se esses três termômetros, graduados nas
escalas Celsius, Fahrenheit e Kelvin, em contato térmico com o mesmo corpo ou sistema
físico. Os valores medidos serão respectivamente 𝑇𝐶, 𝑇𝐹 e 𝑇.
Ponto de
fusão
Ponto de
ebulição
Sistema
físico
Escala Celsius Escala Fahrenheit Kelvin
100 °C
0 °C
𝑇𝐶 𝑇𝐹 𝑇
212 °F
32 °F
373 K
273 K


Escalas termométricas
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 40
Para converter entre as escalas, basta encontrar as razões entre os segmetos  e ,
respectivamente para 𝑇𝐶, 𝑇𝐹 e 𝑇.
Com esta igualdade, podemos obter relações entre as temperaturas 𝑇𝐶, 𝑇𝐹 e 𝑇:
Escalas termométricas
(4)
(5)
𝜶
𝜷
=
𝑇𝐶 − 0
100 − 0
=
𝑇𝐹 − 32
212 − 32
=
𝑇 − 273
373 − 273
𝑇𝐶 ↔ 𝑇𝐹 ⇒
𝑇𝐶
100
=
𝑇𝐹 − 32
180
⟹
𝑇𝐶
5
=
𝑇𝐹 − 32
9
𝑇𝐶 ↔ 𝑇 ⇒
𝑇𝐶
100
=
𝑇𝐹 − 273
100
⟹ 𝑇 = 𝑇𝐶 + 273
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 41
As duas ESCALAS DE TEMPERATURA mais comuns nos países de língua inglesa são as
escalas Fahrenheit e Rankine. Por definição , a ESCALA RANKINE, cuja unidade é o grau
rankine (°R), é proporcional à temperatura Kelvin de acordo com a Equação:
Escala Rankine
𝑇𝑅 = 1,8 𝑇 (6)
A ESCALA RANKINE também é uma escala termodinâmica absoluta de temperatura com
um ZERO ABSOLUTO que coincide como ZERO ABSOLUTO da temperatura absoluta Kelvin.
Nas relações termodinâmicas (equações), a temperatura é sempre em função das
TEMPERATURAS ABSOLUTAS Kelvin ou Rankine, a menos que se especifique o contrário.
Um grau da mesma magnitude de o da TEMPERATURA ABSOLUTA Rankine é utilizado da
ESCALA Fahrenheit, mas o ponto zero é deslocado conforme a relação de transformação
abaixo:
𝑇𝐹 = 𝑇𝑅 − 459,67 (7)
Normalmente o número 459,67 é arredondado para 460 assim como acontece com o
243,15 na TEMPERATURA ABSOLUTA Kelvin.
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 42
Vídeo-aulas recomendadas
[1] “#1 Conceitos Básicos de Termodinâmica: Introdução”, Canal Engenharia & Cia, último
acesso em 31/08/2020 às 13:23, https://youtu.be/W9qnNdhHxtA
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 43
Vídeo-aulas recomendadas
[2] “#2 Título e Volume Específico | Propriedades Termodinâmica”, Canal Engenharia & Cia,
último acesso em 31/08/2020 às 13:31, https://youtu.be/NntVDncyLqQ
13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 44
Referências Bibliográficas
[1] Sistema Internacional de Unidades (SI), último acesso em 11/07/2014 às 15:00,
http://escola.britannica.com.br/article/483009/Sistema-Internacional-de-Unidades-SI
[2] Wikipedia, Metro, último acesso em 11/07/2014 às 15:00,
http://pt.wikipedia.org/wiki/Metro
[3] “ENRIQUECIMENTO DE URÂNIO NO BRASIL”. Desenvolvimento da tecnologia por
ultracentrifugação, último acesso em 11/07/2014 às 15:00,
http://ecen.com/eee54/eee54p/enriquec_uranio_brasil.htm

Mais conteúdo relacionado

Mais procurados

4 análise dos dados cinéticos
4 análise dos dados cinéticos4 análise dos dados cinéticos
4 análise dos dados cinéticosDenis Lima
 
Apostila cálculo de reatores i
Apostila cálculo de reatores iApostila cálculo de reatores i
Apostila cálculo de reatores iOnildo Lima
 
Aula 06 tecnologia da engenharia química - reações industriais - 11.03.11
Aula 06   tecnologia da engenharia química - reações industriais - 11.03.11Aula 06   tecnologia da engenharia química - reações industriais - 11.03.11
Aula 06 tecnologia da engenharia química - reações industriais - 11.03.11Nelson Virgilio Carvalho Filho
 
trocadores de calor
trocadores de calor trocadores de calor
trocadores de calor Janayna Adr
 
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11Nelson Virgilio Carvalho Filho
 
Processos petroquímicos I
Processos petroquímicos IProcessos petroquímicos I
Processos petroquímicos IHoracimar Cotrim
 
Aula 05 carga termica de ar condicionado
Aula 05 carga termica de ar condicionadoAula 05 carga termica de ar condicionado
Aula 05 carga termica de ar condicionadoRafael Sampaio
 
Trabalho reatores leito fixo e fluidizado
Trabalho   reatores leito fixo e fluidizadoTrabalho   reatores leito fixo e fluidizado
Trabalho reatores leito fixo e fluidizadoWenderson Samuel
 
Aula 01 Química Geral
Aula 01 Química GeralAula 01 Química Geral
Aula 01 Química GeralTiago da Silva
 
Introducao balancos massa_e_energia
Introducao balancos massa_e_energiaIntroducao balancos massa_e_energia
Introducao balancos massa_e_energiaEane Carolina
 
Relatorio sobre calorimetria (3)
Relatorio sobre calorimetria (3)Relatorio sobre calorimetria (3)
Relatorio sobre calorimetria (3)Tuane Paixão
 
Capitulo 2 balanço de massa
Capitulo 2   balanço de massaCapitulo 2   balanço de massa
Capitulo 2 balanço de massaPk Keller
 

Mais procurados (20)

Absorcao versus emissao
Absorcao versus emissaoAbsorcao versus emissao
Absorcao versus emissao
 
Apostila operações i
Apostila operações iApostila operações i
Apostila operações i
 
4 análise dos dados cinéticos
4 análise dos dados cinéticos4 análise dos dados cinéticos
4 análise dos dados cinéticos
 
Apostila cálculo de reatores i
Apostila cálculo de reatores iApostila cálculo de reatores i
Apostila cálculo de reatores i
 
Aula 06 tecnologia da engenharia química - reações industriais - 11.03.11
Aula 06   tecnologia da engenharia química - reações industriais - 11.03.11Aula 06   tecnologia da engenharia química - reações industriais - 11.03.11
Aula 06 tecnologia da engenharia química - reações industriais - 11.03.11
 
Apostila de operações unitárias
Apostila de operações unitáriasApostila de operações unitárias
Apostila de operações unitárias
 
trocadores de calor
trocadores de calor trocadores de calor
trocadores de calor
 
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11
 
Processos petroquímicos I
Processos petroquímicos IProcessos petroquímicos I
Processos petroquímicos I
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
QUIMICA GERAL Aula 01
QUIMICA GERAL Aula 01QUIMICA GERAL Aula 01
QUIMICA GERAL Aula 01
 
Aula 05 carga termica de ar condicionado
Aula 05 carga termica de ar condicionadoAula 05 carga termica de ar condicionado
Aula 05 carga termica de ar condicionado
 
Aula 2 equilíbrio químico
Aula 2  equilíbrio químicoAula 2  equilíbrio químico
Aula 2 equilíbrio químico
 
Trabalho reatores leito fixo e fluidizado
Trabalho   reatores leito fixo e fluidizadoTrabalho   reatores leito fixo e fluidizado
Trabalho reatores leito fixo e fluidizado
 
Diagrama de fases
Diagrama de fasesDiagrama de fases
Diagrama de fases
 
Aula 01 Química Geral
Aula 01 Química GeralAula 01 Química Geral
Aula 01 Química Geral
 
Introducao balancos massa_e_energia
Introducao balancos massa_e_energiaIntroducao balancos massa_e_energia
Introducao balancos massa_e_energia
 
Relatorio sobre calorimetria (3)
Relatorio sobre calorimetria (3)Relatorio sobre calorimetria (3)
Relatorio sobre calorimetria (3)
 
Capitulo 2 balanço de massa
Capitulo 2   balanço de massaCapitulo 2   balanço de massa
Capitulo 2 balanço de massa
 
#1 introdução a termodinâmica conceitos básicos
#1 introdução a termodinâmica   conceitos básicos#1 introdução a termodinâmica   conceitos básicos
#1 introdução a termodinâmica conceitos básicos
 

Semelhante a Termodinamica v-3.0-aula-introdutoria-02

Apostila ibutg
Apostila ibutgApostila ibutg
Apostila ibutgElba2015
 
Termodinamica fundamentos
Termodinamica   fundamentosTermodinamica   fundamentos
Termodinamica fundamentosWagner Branco
 
Apostila de termodinamica
Apostila de termodinamicaApostila de termodinamica
Apostila de termodinamicaWeslei Mazza
 
Apostila.curso.vapor cogeraç¦o
Apostila.curso.vapor cogeraç¦oApostila.curso.vapor cogeraç¦o
Apostila.curso.vapor cogeraç¦oconfidencial
 
Introdução às leis da termodinâmica
Introdução às leis da termodinâmicaIntrodução às leis da termodinâmica
Introdução às leis da termodinâmicaHelder Guerreiro
 
Aula 02 - Fundamentos da Termodinâmicas.pdf
Aula 02 - Fundamentos da Termodinâmicas.pdfAula 02 - Fundamentos da Termodinâmicas.pdf
Aula 02 - Fundamentos da Termodinâmicas.pdfcasemods
 
Aulas 1 11-condução
Aulas 1 11-conduçãoAulas 1 11-condução
Aulas 1 11-conduçãoAlex Tavares
 
Termodinamica v-3.0-aula-introdutoria-01
Termodinamica v-3.0-aula-introdutoria-01Termodinamica v-3.0-aula-introdutoria-01
Termodinamica v-3.0-aula-introdutoria-01AcerAspire18
 
Termodinamica v-3.0-aula-05-entalpia-balanco-de-energia
Termodinamica v-3.0-aula-05-entalpia-balanco-de-energiaTermodinamica v-3.0-aula-05-entalpia-balanco-de-energia
Termodinamica v-3.0-aula-05-entalpia-balanco-de-energiaAcerAspire18
 
Aula 08 - FENÔMENOS DE TRANSPORTES.pptx
Aula 08 - FENÔMENOS DE TRANSPORTES.pptxAula 08 - FENÔMENOS DE TRANSPORTES.pptx
Aula 08 - FENÔMENOS DE TRANSPORTES.pptxCamilaCamposGomezFam
 

Semelhante a Termodinamica v-3.0-aula-introdutoria-02 (20)

01 termodinamica (conceitos_fundamentais)
01 termodinamica (conceitos_fundamentais)01 termodinamica (conceitos_fundamentais)
01 termodinamica (conceitos_fundamentais)
 
1+ciência..
1+ciência..1+ciência..
1+ciência..
 
Apostila ibutg
Apostila ibutgApostila ibutg
Apostila ibutg
 
Termodinâmica
TermodinâmicaTermodinâmica
Termodinâmica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Ensaio - Termodinâmica Ambiental
Ensaio - Termodinâmica Ambiental Ensaio - Termodinâmica Ambiental
Ensaio - Termodinâmica Ambiental
 
Ensaio-termodinamica ambiental
Ensaio-termodinamica ambiental Ensaio-termodinamica ambiental
Ensaio-termodinamica ambiental
 
Termodinamica fundamentos
Termodinamica   fundamentosTermodinamica   fundamentos
Termodinamica fundamentos
 
Apostila de termodinamica
Apostila de termodinamicaApostila de termodinamica
Apostila de termodinamica
 
Apostila.curso.vapor cogeraç¦o
Apostila.curso.vapor cogeraç¦oApostila.curso.vapor cogeraç¦o
Apostila.curso.vapor cogeraç¦o
 
Introdução às leis da termodinâmica
Introdução às leis da termodinâmicaIntrodução às leis da termodinâmica
Introdução às leis da termodinâmica
 
Aula 02 - Fundamentos da Termodinâmicas.pdf
Aula 02 - Fundamentos da Termodinâmicas.pdfAula 02 - Fundamentos da Termodinâmicas.pdf
Aula 02 - Fundamentos da Termodinâmicas.pdf
 
Trabalho de termodinamica
Trabalho de termodinamicaTrabalho de termodinamica
Trabalho de termodinamica
 
Aulas 1 11-condução
Aulas 1 11-conduçãoAulas 1 11-condução
Aulas 1 11-condução
 
Termodinamica v-3.0-aula-introdutoria-01
Termodinamica v-3.0-aula-introdutoria-01Termodinamica v-3.0-aula-introdutoria-01
Termodinamica v-3.0-aula-introdutoria-01
 
Termodinamica v-3.0-aula-05-entalpia-balanco-de-energia
Termodinamica v-3.0-aula-05-entalpia-balanco-de-energiaTermodinamica v-3.0-aula-05-entalpia-balanco-de-energia
Termodinamica v-3.0-aula-05-entalpia-balanco-de-energia
 
Aula 08 - FENÔMENOS DE TRANSPORTES.pptx
Aula 08 - FENÔMENOS DE TRANSPORTES.pptxAula 08 - FENÔMENOS DE TRANSPORTES.pptx
Aula 08 - FENÔMENOS DE TRANSPORTES.pptx
 
Apostila.pdftrans de calor
Apostila.pdftrans de calorApostila.pdftrans de calor
Apostila.pdftrans de calor
 
Apostila
ApostilaApostila
Apostila
 
PQI5821-aula-01.pdf
PQI5821-aula-01.pdfPQI5821-aula-01.pdf
PQI5821-aula-01.pdf
 

Último

Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?
Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?
Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?E-Commerce Brasil
 
Conferência SC 24 | Estratégias de precificação para múltiplos canais de venda
Conferência SC 24 | Estratégias de precificação para múltiplos canais de vendaConferência SC 24 | Estratégias de precificação para múltiplos canais de venda
Conferência SC 24 | Estratégias de precificação para múltiplos canais de vendaE-Commerce Brasil
 
Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...
Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...
Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...E-Commerce Brasil
 
representações cartograficas - 1 ano.pptx
representações cartograficas - 1 ano.pptxrepresentações cartograficas - 1 ano.pptx
representações cartograficas - 1 ano.pptxCarladeOliveira25
 
Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?
Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?
Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?E-Commerce Brasil
 
Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)
Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)
Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)E-Commerce Brasil
 
Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024
Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024
Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024E-Commerce Brasil
 
Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...
Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...
Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...Welldonelily Skype
 
Conferência SC 24 | Inteligência artificial no checkout: como a automatização...
Conferência SC 24 | Inteligência artificial no checkout: como a automatização...Conferência SC 24 | Inteligência artificial no checkout: como a automatização...
Conferência SC 24 | Inteligência artificial no checkout: como a automatização...E-Commerce Brasil
 
Ética NO AMBIENTE DE TRABALHO, fundamentosdas relações.pdf
Ética NO AMBIENTE DE TRABALHO,  fundamentosdas relações.pdfÉtica NO AMBIENTE DE TRABALHO,  fundamentosdas relações.pdf
Ética NO AMBIENTE DE TRABALHO, fundamentosdas relações.pdfInsttLcioEvangelista
 
Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...
Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...
Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...E-Commerce Brasil
 
Conferência SC 2024 | De vilão a herói: como o frete vai salvar as suas vendas
Conferência SC 2024 |  De vilão a herói: como o frete vai salvar as suas vendasConferência SC 2024 |  De vilão a herói: como o frete vai salvar as suas vendas
Conferência SC 2024 | De vilão a herói: como o frete vai salvar as suas vendasE-Commerce Brasil
 
Conferência SC 24 | Estratégias de precificação: loja própria e marketplace
Conferência SC 24 | Estratégias de precificação: loja própria e marketplaceConferência SC 24 | Estratégias de precificação: loja própria e marketplace
Conferência SC 24 | Estratégias de precificação: loja própria e marketplaceE-Commerce Brasil
 
Conferência SC 24 | Gestão logística para redução de custos e fidelização
Conferência SC 24 | Gestão logística para redução de custos e fidelizaçãoConferência SC 24 | Gestão logística para redução de custos e fidelização
Conferência SC 24 | Gestão logística para redução de custos e fidelizaçãoE-Commerce Brasil
 
66ssssssssssssssssssssssssssssss4434.pptx
66ssssssssssssssssssssssssssssss4434.pptx66ssssssssssssssssssssssssssssss4434.pptx
66ssssssssssssssssssssssssssssss4434.pptxLEANDROSPANHOL1
 
Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...
Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...
Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...E-Commerce Brasil
 
Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...
Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...
Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...E-Commerce Brasil
 
Conferência SC 24 | O custo real de uma operação
Conferência SC 24 | O custo real de uma operaçãoConferência SC 24 | O custo real de uma operação
Conferência SC 24 | O custo real de uma operaçãoE-Commerce Brasil
 
EP GRUPO - Mídia Kit 2024 - conexão de marcas e personagens
EP GRUPO - Mídia Kit 2024 - conexão de marcas e personagensEP GRUPO - Mídia Kit 2024 - conexão de marcas e personagens
EP GRUPO - Mídia Kit 2024 - conexão de marcas e personagensLuizPauloFerreira11
 

Último (19)

Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?
Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?
Conferência SC 24 | Omnichannel: uma cultura ou apenas um recurso comercial?
 
Conferência SC 24 | Estratégias de precificação para múltiplos canais de venda
Conferência SC 24 | Estratégias de precificação para múltiplos canais de vendaConferência SC 24 | Estratégias de precificação para múltiplos canais de venda
Conferência SC 24 | Estratégias de precificação para múltiplos canais de venda
 
Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...
Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...
Conferência SC 24 | Estratégias de diversificação de investimento em mídias d...
 
representações cartograficas - 1 ano.pptx
representações cartograficas - 1 ano.pptxrepresentações cartograficas - 1 ano.pptx
representações cartograficas - 1 ano.pptx
 
Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?
Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?
Conferência SC 24 | Data Analytics e IA: o futuro do e-commerce?
 
Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)
Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)
Conferência SC 24 | Otimize sua logística reversa com opções OOH (out of home)
 
Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024
Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024
Conferência SC 2024 | Tendências e oportunidades de vender mais em 2024
 
Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...
Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...
Products Catalogue-01-Electronics thin wall heat shrink tubing wire and cable...
 
Conferência SC 24 | Inteligência artificial no checkout: como a automatização...
Conferência SC 24 | Inteligência artificial no checkout: como a automatização...Conferência SC 24 | Inteligência artificial no checkout: como a automatização...
Conferência SC 24 | Inteligência artificial no checkout: como a automatização...
 
Ética NO AMBIENTE DE TRABALHO, fundamentosdas relações.pdf
Ética NO AMBIENTE DE TRABALHO,  fundamentosdas relações.pdfÉtica NO AMBIENTE DE TRABALHO,  fundamentosdas relações.pdf
Ética NO AMBIENTE DE TRABALHO, fundamentosdas relações.pdf
 
Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...
Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...
Conferência SC 24 | A força da geolocalização impulsionada em ADS e Fullcomme...
 
Conferência SC 2024 | De vilão a herói: como o frete vai salvar as suas vendas
Conferência SC 2024 |  De vilão a herói: como o frete vai salvar as suas vendasConferência SC 2024 |  De vilão a herói: como o frete vai salvar as suas vendas
Conferência SC 2024 | De vilão a herói: como o frete vai salvar as suas vendas
 
Conferência SC 24 | Estratégias de precificação: loja própria e marketplace
Conferência SC 24 | Estratégias de precificação: loja própria e marketplaceConferência SC 24 | Estratégias de precificação: loja própria e marketplace
Conferência SC 24 | Estratégias de precificação: loja própria e marketplace
 
Conferência SC 24 | Gestão logística para redução de custos e fidelização
Conferência SC 24 | Gestão logística para redução de custos e fidelizaçãoConferência SC 24 | Gestão logística para redução de custos e fidelização
Conferência SC 24 | Gestão logística para redução de custos e fidelização
 
66ssssssssssssssssssssssssssssss4434.pptx
66ssssssssssssssssssssssssssssss4434.pptx66ssssssssssssssssssssssssssssss4434.pptx
66ssssssssssssssssssssssssssssss4434.pptx
 
Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...
Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...
Conferência SC 24 | Social commerce e recursos interativos: como aplicar no s...
 
Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...
Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...
Conferência SC 24 | Estratégias omnicanal: transformando a logística em exper...
 
Conferência SC 24 | O custo real de uma operação
Conferência SC 24 | O custo real de uma operaçãoConferência SC 24 | O custo real de uma operação
Conferência SC 24 | O custo real de uma operação
 
EP GRUPO - Mídia Kit 2024 - conexão de marcas e personagens
EP GRUPO - Mídia Kit 2024 - conexão de marcas e personagensEP GRUPO - Mídia Kit 2024 - conexão de marcas e personagens
EP GRUPO - Mídia Kit 2024 - conexão de marcas e personagens
 

Termodinamica v-3.0-aula-introdutoria-02

  • 1. 13/08/2021 1 FMU - Termodinâmica V3.0 - Prof. A. Lozéa Introdução a Sistemas Termodinâmicos Departamento de Ciências Exatas – Engenharia Termodinâmica – Aula Introdutória 02 Prof. MSc. PhD. Alberto Lozéa Feijó Soares E-mail: alberto.soares@fmu.br
  • 2. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 2 Exemplos de sistemas térmicos Usina Termoelétrica Usina Termonuclear Motor a Jato Chaminé Solar
  • 3. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 3 Exemplos de sistemas térmicos
  • 4. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 4 Uma usina nuclear Esquema de geração de energia em uma usina nuclear
  • 5. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 5 Uma usina nuclear Usina de Angra dos Reis
  • 6. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 6 Uma usina nuclear Super centrífugas [3]
  • 7. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 7 Uma usina nuclear Urânio enriquecido é o urânio cujo teor de 235U (urânio-235) foi aumentado, através de um processo de separação de isótopos (enriquecimento). O urânio encontrado na natureza, sob a forma de dióxido de urânio (UO2), contém 99,284% do isótopo 238U ; apenas 0,711% do seu peso é representado pelo isótopo 235U.
  • 8. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 8 Reação em cadeia de um elemento físsil
  • 9. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 9 Disciplinas das ciências térmicas São três as disciplinas das ciências térmicas fundamentais para a Eng.: TERMODINÂMICA, TRANSFERÊNCIA DE CALOR (FT II) e MECÂNICA DOS FLUIDOS (FT I e III). Termodinâmica Propriedades termométricas Conservação de massa Conservação de energia 2ª Lei da Termodinâmica Mecânica dos Fluidos Estática de fluidos Conservação de vel. e massa Equação de Bernouli Modelagem e simulações Eng., de sistemas térmicos Análise direcionada a.. Projeto Operações/ Manutenção Marketing/Vendas Custo de produção Transp. de calor Condução Convecção Radiação Modos múltiplos
  • 10. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 10 Definição de Termodinâmica Etimologia: A origem é o Grego THERMOS, “calor”, mais DYNAMIS, “poder” ou “força”, de DYNASTHAI, “ser capaz, ter poder, ser forte o suficiente”. A TERMODINÂMICA: é a ciência da energia no contexto mais amplo (surgiu junto com a revolução industrial em decorrência do estudo sistemático sobre a conversão de energia térmica em movimento e trabalho mecânico. Daí o nome TERMO + DINÂMICA. De fato, a analise de motores e geradores de vários tipos permanece sendo o foco da termodinâmica para a Engenharia. Porem, como ciência, a TERMODINÂMICA agora se estende a todas as formas de conversão de energia, incluindo as que envolvem os organismos vivos. A TERMODINÂMICA é o ramo da Física que estuda as relações entre o CALOR TROCADO (𝑄), e o TRABALHO REALIZADO (𝑊), em um determinado sistema térmico e o meio exterior. Através das variações de TEMPERATURA, PRESSÃO e VOLUME, a Física busca compreender o comportamento das transformações de energia que ocorrem na natureza.
  • 11. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 11 Definição de sistema termodinâmico Para a Engenharia: interesse em estudar sistemas e suas interações energéticas (calor e trabalho) com a vizinhança. SISTEMA em Física é tudo aquilo que desejamos estudar. Desde um corpo livre a uma Usina Termo Nuclear. Um SISTEMA TERMODINÂNICO é um sistema físico limitado por uma região (fronteira) preenchido por um gás ou líquido em que é permitido que haja fluxo de CALOR ou TRABALHO. 𝑄 𝑊 Fronteira Vizinhança Sistema
  • 12. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 12 Tipos básicos de sistemas Os SISTEMAS TERMODINÂMICOS são de três tipos: ✓ SISTEMA ABERTO: através da fronteira pode-se trocar energia e matéria (massa) com o meio externo. ✓ SISTEMA FECHADO: pode-se trocar energia, mas não pode-se trocar matéria . ✓ SISTEMA ISOLADO: a fronteira do sistema é totalmente impenetrável à energia e à matéria. Sistemas isolados são idealizações físicas, portanto, na prática, eles não existem. 𝑬 𝒎 𝒎 𝑬 𝑬 𝒎
  • 13. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 13 Tipos básicos de sistemas Exemplos de SISTEMAS TERMODINÂNICOS: Vizinhança Fronteira Aberto Fechado Isolado Volume de controle Quando há fluxo de massa, devemos limitara uma região para o estudo das propriedades do sistema. Esta região é chamada de VOLUME DE CONTROLE. 𝒎 𝒎
  • 14. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 14 Tipos básicos de sistemas SISTEMA FECHADO COM FRONTEIRAS MÓVEIS: é aquele em que o VOLUME do recipiente (fronteiras) podem variar. Fronteira móvel Fronteira fixa Calor Pistão móvel
  • 15. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 15 Descrevendo sistemas e seus comportamentos Os sistemas podem ser estudados de dois pontos de vista: ✓ MICROSCÓPICO: efeitos discretos e alta complexidade. É preciso estudar os problemas por meios estatísticos (Termodinâmica Estatística). Por exemplo é necessário resolver 6 × 1020 equações para solucionar a posição de átomos num cubo de 25 mm de aresta. Ex.: moléculas de água sólida, líquida e gasosa. ✓ MACROSCÓPICO: os efeitos são globais ou médios. A complexidade é bem menor e existe uma boa precisão para os cálculos e os meios de análise são mais diretos (Termodinâmica Clássica).
  • 16. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 16 Propriedades, Estado e Processo ✓ PROPRIEDADE: característica macroscópica de um sistema. Ex.: massa, volume, energia, pressão, temperatura, densidade (massa específica), entalpia, entropia e etc. (𝑝𝑖, 𝑉𝑖, 𝑇𝑖) (𝑝𝑓, 𝑉𝑓, 𝑇𝑓) ESTADO INICIAL ESTADO FINAL PROCESSO TERMODINÂMICO ✓ ESTADO: conjunto de propriedades (termodinâmicas) do sistema. Geralmente PRESSÃO (𝑝), VOLUME (𝑉) e TEMPERATURA (𝑇). ✓ ESTADO ESTACIONÁRIO: nenhuma propriedade do sistema muda com o tempo. ✓ PROCESSO TERMODINÂMICO: quando o sistema passa de um ESTADO para outro através da mudanças de uma ou mais PROPRIEDADES.
  • 17. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 17 Tipos de processo termodinâmicos ✓ PROCESSO POLITRÓPICO: é a transformação generalizada que obedece a relação, ✓ PROCESSO ISOBÁRICO: processo em que a pressão é constante, ou seja, 𝑛 = 0. ✓ PROCESSO ISOCÓRICO ou ISOMÉTRICO: o volume permanece constante com 𝑛 = ∞. ✓ PROCESSO ISOTÉRMICO: a temperatura permanece constante para 𝑛 = 1. Os PROCESSOS TERMODINAMICOS usualmente fornecem relações entre as PROPRIEDADES TERMODINÂMICAS (𝑝, 𝑉, 𝑇). De maneira generalizada, esses processos são chamados de POLITRÓPICOS. Onde 𝑛, é chamado de Índice Politrópico e pode ter qualquer valor real, −∞ < 𝑛 < ∞. Para valores especiais de 𝑛, temos alguns casos particulares: ✓ PROCESSO ISENTRÓPICO e/ou ADIABÁTICO: processo em que não há troca de calor com a vizinhança (𝑄 = 0) e a ENTROPIA é constante. É um processo reversível para um GÁS IDEAL, cujo Índice Politrópico vale 𝑛 = 𝑐𝑝/𝑐𝑉, onde 𝑐𝑝 e 𝑐𝑉 são, respectivamente, os CALORES ESPECÍFICOS à pressão e volume constantes da substância. 𝑝 ⋅ 𝑉𝑛 = Const.
  • 18. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 18 Ciclo reversível e irreversível ✓ CICLO TERMODINÂNICOS: quando um SISTEMA num dado ESTADO INICIAL passa através de vários PROCESSOS TERMODINÂMICOS e finalmente voltar ao seu ESTADO INICIAL, o SISTEMA foi submetido a um processo de ciclo ou cíclico. Estado 1 Estado 2 Ciclo ✓ PROCESSO REVERSÍVEL: é definido como um PROCESSO que, uma vez que tem chegado à algum ESTADO, pode ser revertido. E ao fazê-lo, não deixa qualquer alteração no SISTEMA ou FRONTEIRA. O ESTADO volta a ser o mesmo. Ex.: uma pedra de gelo que volta a ser água líquida. ✓ PROCESSO IRREVERSÍVEL: é um PROCESSO que não pode retornar às suas condições originais. Ex.: um livro que é arrastado em uma mesa. Quando paramos de empurra-lo, ele para de se mover por ATRITO (CALOR) e não há como recuperar a ENERGIA usada.
  • 19. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 19 Propriedade intensiva e extensiva As PROPRIEDADES são as características mensuráveis de um SISTEMA que está em equilíbrio . Estas PROPRIEDADES podem ser INTENSIVAS ou EXTENSIVAS: ✓ EXTENSIVA: seu valor para o SISTEMA como um todo é a soma dos valores das partes. As PROPRIEDADES EXTENSIVAS dependem da dimensão ou extensão do SISTEMA. Ex.: massa, volume, energia, entalpia e etc. ✓ INTENSIVAS: não são características aditivas. Seus valores são independentes da dimensão ou extensão do SISTEMA e podem variar de um local para o outro. Ex.: temperatura, pressão, massa específica (densidade), volume específico, entalpia específica e etc. PROPRIEDADES EXTENSIVAS PROPRIEDADES INTENSIVAS
  • 20. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 20 Fases de um sistema físico O termo FASE, refere-se à quantidade de matéria que é homogênea tanto em composição química quanto em estrutura física. Homogeneidade na estrutura física significa que a matéria é totalmente SÓLIDA, totalmente LÍQUIDA ou totalmente GASOSA. Deposição Solidificação Condensação Sublimação Fusão Evaporação Ganho de Energia (aquecimento) Perda de Energia (resfriamento)
  • 21. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 21 Fases de um sistema físico Um sistema pode conter uma ou mais fases. Por exemplo um SISTEMA de água LÍQUIDA e vapor d’água contém duas fases. Quando mais de uma fase está presente, as FASES são separadas por FRONTEIRAS DE FASE. Água líquida Água líquida Vapor d’água Vapor d’água Fronteira de fase
  • 22. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 22 Fervendo a água sem calor Fonte: “Fervendo água na seringa”, https://youtu.be/AKfJoXtaAdY
  • 23. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 23 Equilíbrio de um sistema termodinâmico A ênfase da Termodinâmica situa-se principalmente nos estados de EQUILÍBRIO e nas mudanças de um estado de equilíbrio para o outro. O conceito de EQUILÍBRIO é muito amplo na Termodinâmica e abrange o equilíbrio mecânico (forças), térmico, de fase e químico. Para testar que um estado encontra-se em EQUILÍBRIO, basta isolar o SISTEMA de sua VIZINHANÇA e observar se as PROPRIEDADES mudam com o tempo. Se isso não ocorrer, o SISTEMA encontra-se em ESTADO DE EQUILÍBRIO. PROCESSO TERMODINÂMICO Estado de equilíbrio 1 Estado de equilíbrio 2
  • 24. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 24 Lei Zero da Termodinâmica O que acontece quando colocamos muitos corpos em contato térmico? Imagine a situação em que temos três corpos com temperaturas diferentes estão dentro de um recipiente isolado termicamente: Q’ Q’’ TS TG TA
  • 25. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 25 Lei Zero da Termodinâmica TS=TG TS=TA TS=TA LEI ZERO DA TERMODINÂMICA: Se dois corpos A e B (Skol e Absolut), estiverem em equilíbrio térmico com um terceiro corpo C (Gelo), então, os corpos A e B também estarão em equilíbrio térmico entre si. TS TG TA
  • 26. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 26 Processo quase-estático Entende-se por PROCESSO QUASE-ESTÁTICO ou em QUASE-EQUIÍBRIO o PROCESSO que evolui lentamente e cujas PROPRIEDADES variam infinitesimalmente, ou seja, 𝑑𝑥 → 0. PROCESSO QUASE-ESTÁTICO Todos os estados pelos quais o sistema passa num processo em QUASE-EQUILÍBRIO podem ser considerados como estados de EQUILÍBRIO. Como os efeitos do NÃO- EQUILÍBRIO estão inevitavelmente presentes durante os PROCESSOS reais, para os sistemas de interesse em Engenharia o processo em QUASE-EQUILÍBRIO pode ser uma boa aproximação, mas nunca ocorre de fato. O conceito de QUASE-EQUILÍBRIO se restringe a suas situações: (1) modelos termodinâmicos simples que fornecem informações qualitativas de um sistema real equivalente. (2) O conceito do processo em QUASE- EQUILÍBRIO é útil na dedução das relações existentes entres as propriedades do sistema, o que simplifica a análise.
  • 27. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 27 Processo quase-estático Para criarmos um PROCESSO QUASE-ESTÁTICO devemos passar lentamente de um ESTADO DE EQUILÍBRIO para outro. Na Figura abaixo, vemos um pistão móvel confinando um gás em um recipiente completamente fechado e mantido fixo por pequenas esferas de metal. Se retirarmos uma esfera de cada vez, o resultado será um processo lento e sem mudanças bruscas, ou seja, um PROCESSO QUASE-ESTÁTICO. Esferas metálicas retiradas lentamente Fronteira PROCESSO QUASE- ESTÁTICO
  • 28. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 28 Exemplo de PROCESSO QUASE-ESTÁTICO: abrir lentamente a tampa de um refrigerante para que haja variação infinitesimal da PRESSÃO e as outras propriedades mudem suavemente. Processo quase-estático
  • 29. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 29 Processo quase-estático (não muito/meme)
  • 30. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 30 Unidade e dimensões Quando cálculos de Engenharia são realizados, é necessário todo cuidado com as UNIDADES das GRANDEZAS FÍSICAS envolvidas no problema. Por isso a ANÁLISE DIMENSIONAL das equações é de suma importância para evitar erros. Deste modo, as GRANDEZAS FÍSICAS possuem dimensões e podem ser separadas em: ✓ GRADEZA FUNDAMENTAL: surge pela comparação (medida) com um padrão fundamental criado por nós. Ex.: massa (kg), comprimento (m), tempo (s), temperatura (K), libra-massa (lb), pé (ft), polegada (in) e etc. ✓ GRADEZA DERIVADA: são definidas em função das GRADEZAS FUNDAMENTAIS através de leis físicas apropriadas como por exemplo a 2ª Lei de Newton (𝐹 = 𝑚𝑎). Ex.: força (N), velocidade (m/s), aceleração (m/s2), energia (J), potência (W), libra-força (lbf) e etc.
  • 31. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 31 Sistema Internacional de Unidades (SI) SI é a abreviação de Système International de d’Unités em francês (clique para escutar a pronúncia), que é o sistema de unidades aceito por tratados internacionais na maioria dos países. As UNIDADES BÁSICAS ou FUNDAMENTAIS do SI são o quilograma (kg), metro (𝑚), o segundo (s) e o Kelvin (K), respectivamente. E algumas das UNIDADES DERIVADAS são: força em newton (N), energia em joule (J) e a potência em watt (W). Grandeza Símbolo Nome Massa kg quilograma Comprimento m metro Tempo s segundo Temperatura K kelvin Força N newton Energia J joule Potência W watt
  • 32. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 32 Conjunto padrão de prefixos do SI Frequentemente torna-se necessário trabalhar com valores extremamente elevados ou extremamente pequenos. Nessas situações utiliza-se o conjunto padrão de PREFIXOS do SI
  • 33. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 33 Sistema Inglês de Unidades Embora o SI seja o padrão internacional, muitos segmentos da comunidade de Engenharia nos países de língua inglesa utilizam outras UNIDADES. Também é comum vê-las em ferramentas, máquinas industriais e Tabelas de Engenharia. Portanto é importante conhecer o Sistema Inglês de Unidades. Grandeza Símbolo Nome Conversões Massa lb libra-massa 1 lb ≅ 0,454 kg Comprimento ft pé 1 ft = 0,3048 m Tempo s segundo − Temperatura ℉ fahrenheit 1 K = 5 9 (℉ + 459,67) Força lbf libra-força 1 𝑁 = 0,22481 𝑙𝑏𝑓 Energia lbf ⋅ ft libra-força ⋅ pé 1 𝐽 = 9,4787 × 10−4 𝐵𝑇𝑈 1 𝐵𝑇𝑈 = 778,17 lbf ⋅ ft Potência lbf ⋅ ft 𝑠 libra-força ⋅ pé ÷ segundo 1 𝑘𝑊 = 1,341 𝐻𝑃 1 𝐻𝑃 = 550 lbf ⋅ ft 𝑠
  • 34. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 34 Análise dimensional A 2ª Lei de Newton do movimento estabelece que a FORÇA líquida atuando sobre um corpo é proporcional a ACELERAÇÃO. Multiplicando por uma constante de proporcionalidade temos que: 𝐹 ∝ 𝑎 ⟹ 𝐹 = 𝑚 ⋅ 𝑎 Esta constante mede a quantidade de inércia que o corpo possui e é conhecida como MASSA. Se fizermos a análise dimensional da Eq. (1), obtemos o seguinte resultado: 𝐹 = 𝑚 ⋅ [𝑎] ⟹ 𝐹 = kg ⋅ m s2 A GRANDEZA DERIVADA resultante kg ⋅ m/s2 é a unidade natural de FORÇA no SI conhecida como Newton. 𝐹 = kg ⋅ m s2 ≡ N (1)
  • 35. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 35 Propriedades termodinâmicas importantes VOLUME ESPECÍFICO (𝑣): é matéria distribuída uniformemente ao longo de uma região, ou seja, o VOLUME por unidade de MASSA de uma substância. 𝑉 𝑉′ 𝜌 = lim 𝑉→𝑉′ 𝑚 𝑉 ⟶ Densidade ou massa específica ⇒ 𝑚 = න 𝑉 𝜌𝑑𝑉 ⟶ Massa total do SISTEMA ⇒ 𝑣 = 1 𝜌 ⇒ 𝑣 = 𝑉 𝑚 (2) A Eq. (2) é conhecida como VOLUME ESPECÍFICO e suas unidades são: 𝑣 = m3 kg (SI) 𝑣 = ft3 lb (S. Inglês)
  • 36. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 36 Propriedades termodinâmicas importantes PRESSÃO (𝑝): é a FORÇA NORMAL por unidade de ÁREA. 𝑝 = lim 𝐴→𝐴′ 𝐹𝑁 𝐴 ⟶ Pressão no ponto com “área” 𝐴′ ⇒ 𝑝 = 𝐹𝑁 𝐴 ⟶ Pressão absoluta (3) A Eq. (3) é conhecida como PRESSÃO ABSOLUTA do gás e suas unidades são: 𝑝 = 𝑁 m2 ≡ 𝑃𝑎 (SI) 𝐹𝑁 𝐴′ 𝐴 𝑝 = lbf ft2 ou (S. Inglês) 𝑝 = lbf in2 ≡ psi
  • 37. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 37 Unidades de pressão A unidade de PRESSÃO no SI é o pascal. Entretanto, é conveniente trabalhar com múltiplos do Pa: o kPa, o bar e o MPa. 1 kPa = 103 Pa 1 bar = 105 Pa 1 MPa = 106 Pa Outras unidades comumente utilizadas para pressão são libra-força por pé quadrado, lbf/ft2 e libra-força por polegada quadrada, lbf/in2 , também conhecida como psi (pound per square inch). Embora a pressão atmosférica da Terra varie com o local, um valor padrão de referência pode ser definido e utilizado para representar outras pressões: 1 atmosfera padrão atm = ൞ 1,01325 × 105 Pa 14,696 lbf/in2 Lembrando que a PRESSÃO discutida na Termodinâmica é sempre a PRESSÃO ABSOLUTA e portanto devemos sempre levarem conta a PRESSÃO ATMOSFÉRICA.
  • 38. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 38 Escalas termométricas Como quantificar (medir) estados térmicos (temperatura)? Para medir qualquer grandeza física, é necessário a comparação com um PADRÃO DE MEDIDAS. Por exemplo, o padrão de comprimento no SI [1], é o metro [2]. Para construir um padrão, ou seja, um INSTRUMENTO DE MEDIDA, devemos escolher PONTOS DE REFERÊNCIA para comparação. Para medidas de temperatura, este instrumento é o TERMÔMETRO, constituído com uma substância com uma grandeza física que varie com a temperatura. A substância geralmente é o mercúrio e os pontos de referência para comparar estados térmicos são o PONTO DE FUSÃO E EBULIÇÃO da água. Com esses dois pontos basta criar uma ESCALA para comparar estados térmicos.
  • 39. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 39 Existem muitas ESCALAS TERMOMÉTRICAS, as mais comuns são as escalas Celsius e Fahrenheit, além da própria Temperatura Absoluta Kelvin. Para converter as temperaturas entre essas escalas de temperatura, colocam-se esses três termômetros, graduados nas escalas Celsius, Fahrenheit e Kelvin, em contato térmico com o mesmo corpo ou sistema físico. Os valores medidos serão respectivamente 𝑇𝐶, 𝑇𝐹 e 𝑇. Ponto de fusão Ponto de ebulição Sistema físico Escala Celsius Escala Fahrenheit Kelvin 100 °C 0 °C 𝑇𝐶 𝑇𝐹 𝑇 212 °F 32 °F 373 K 273 K   Escalas termométricas
  • 40. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 40 Para converter entre as escalas, basta encontrar as razões entre os segmetos  e , respectivamente para 𝑇𝐶, 𝑇𝐹 e 𝑇. Com esta igualdade, podemos obter relações entre as temperaturas 𝑇𝐶, 𝑇𝐹 e 𝑇: Escalas termométricas (4) (5) 𝜶 𝜷 = 𝑇𝐶 − 0 100 − 0 = 𝑇𝐹 − 32 212 − 32 = 𝑇 − 273 373 − 273 𝑇𝐶 ↔ 𝑇𝐹 ⇒ 𝑇𝐶 100 = 𝑇𝐹 − 32 180 ⟹ 𝑇𝐶 5 = 𝑇𝐹 − 32 9 𝑇𝐶 ↔ 𝑇 ⇒ 𝑇𝐶 100 = 𝑇𝐹 − 273 100 ⟹ 𝑇 = 𝑇𝐶 + 273
  • 41. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 41 As duas ESCALAS DE TEMPERATURA mais comuns nos países de língua inglesa são as escalas Fahrenheit e Rankine. Por definição , a ESCALA RANKINE, cuja unidade é o grau rankine (°R), é proporcional à temperatura Kelvin de acordo com a Equação: Escala Rankine 𝑇𝑅 = 1,8 𝑇 (6) A ESCALA RANKINE também é uma escala termodinâmica absoluta de temperatura com um ZERO ABSOLUTO que coincide como ZERO ABSOLUTO da temperatura absoluta Kelvin. Nas relações termodinâmicas (equações), a temperatura é sempre em função das TEMPERATURAS ABSOLUTAS Kelvin ou Rankine, a menos que se especifique o contrário. Um grau da mesma magnitude de o da TEMPERATURA ABSOLUTA Rankine é utilizado da ESCALA Fahrenheit, mas o ponto zero é deslocado conforme a relação de transformação abaixo: 𝑇𝐹 = 𝑇𝑅 − 459,67 (7) Normalmente o número 459,67 é arredondado para 460 assim como acontece com o 243,15 na TEMPERATURA ABSOLUTA Kelvin.
  • 42. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 42 Vídeo-aulas recomendadas [1] “#1 Conceitos Básicos de Termodinâmica: Introdução”, Canal Engenharia & Cia, último acesso em 31/08/2020 às 13:23, https://youtu.be/W9qnNdhHxtA
  • 43. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 43 Vídeo-aulas recomendadas [2] “#2 Título e Volume Específico | Propriedades Termodinâmica”, Canal Engenharia & Cia, último acesso em 31/08/2020 às 13:31, https://youtu.be/NntVDncyLqQ
  • 44. 13/08/2021 FMU - Termodinâmica V3.0 - Prof. A. Lozéa 44 Referências Bibliográficas [1] Sistema Internacional de Unidades (SI), último acesso em 11/07/2014 às 15:00, http://escola.britannica.com.br/article/483009/Sistema-Internacional-de-Unidades-SI [2] Wikipedia, Metro, último acesso em 11/07/2014 às 15:00, http://pt.wikipedia.org/wiki/Metro [3] “ENRIQUECIMENTO DE URÂNIO NO BRASIL”. Desenvolvimento da tecnologia por ultracentrifugação, último acesso em 11/07/2014 às 15:00, http://ecen.com/eee54/eee54p/enriquec_uranio_brasil.htm