SlideShare uma empresa Scribd logo
1 de 21
Modelos atômicos
Modelos atômicos A origem da palavra átomo A palavra  átomo  foi utilizada pela primeira vez na Grécia antiga, por volta de 400 aC.  Demócrito  (um filósofo grego) acreditava que todo tipo de matéria fosse formado por diminutas partículas que denominou átomos (sem divisão). Acreditava-se que tais partículas representavam a menor porção de matéria possível, ou seja, eram indivisíveis. Como esta idéia não pôde ser comprovada por Demócrito e seus contemporâneos, ela ficou conhecida como 1º modelo atômico, mas meramente filosófico .
Modelo Atômico de Dalton As idéias de Demócrito permaneceram inalteradas por aproximadamente 2200 anos. Em 1808,  Dalton  retomou estas idéias sob uma nova perspectiva: a experimentação.  Baseado em reações químicas e pesagens minuciosas, chegou à conclusão de que os átomos realmente existiam e que possuíam algumas características: - Toda matéria é formada por diminutas partículas esféricas, maciças, neutras e indivisíveis chamadas átomos.  - Existe um número finito de tipos de átomos na natureza. - A combinação de iguais ou diferentes tipos de átomos originam os diferentes materiais.
Modelo Atômico de Thomson (1898)          Com a descoberta dos prótons e elétrons,  Thomson  propôs um modelo de átomo no qual os elétrons e os prótons, estariam uniformemente distribuídos, garantindo o equilíbrio elétrico entre as cargas positiva dos prótons e negativa dos elétrons.
Modelo Atômico de Rutherford (1911)       Rutherford bombardeou uma fina lâmina de ouro (0,0001 mm) com partículas "alfa" (núcleo de átomo de hélio: 2 prótons e 2 nêutrons), emitidas pelo "polônio" (Po), contido num bloco de chumbo (Pb), provido de uma abertura estreita, para dar passagem às partículas "alfa" por ele emitidas.     Envolvendo a lâmina de ouro (Au), foi colocada uma tela protetora revestida de sulfeto de zinco (ZnS).
Modelo Atômico de Rutherford (1911)   Observando as cintilações na tela de ZnS, Rutherford verificou  que muitas partículas "alfa" atravessavam a lâmina de ouro, sem sofrerem desvio, e poucas partículas "alfa" sofriam desvio. Como as partículas "alfa" têm carga elétrica positiva, o desvio seria provocado por um choque com outra carga positiva, isto é, com o núcleo do átomo, constituído  por prótons.
Modelo Atômico de Rutherford (1911)   Assim, o átomo seria um imenso vazio, no qual o núcleo ocuparia uma pequena parte, enquanto que os elétrons o circundariam numa região negativa chamada de eletrosfera, modificando assim, o modelo atômico proposto por Thomson.
   - Os Postulados  de Niels Bohr (1885-1962)        De acordo com o modelo atômico  proposto por Rutherford, os elétrons ao girarem  ao redor do núcleo, com o tempo perderiam energia, e se chocariam com o mesmo.     Como o átomo é uma estrutura estável, Niels Bohr formulou uma teoria (1913) sobre o movimento dos elétrons, fundamentado na Teoria Quântica da Radiação (1900) de Max Planck.       A teoria de Bohr fundamenta-se nos seguintes postulados:      1º postulado : Os elétrons descrevem órbitas circulares estacionárias ao redor do núcleo, sem emitirem nem absorverem energia.
2º postulado ( de Niels Bohr)  : Fornecendo energia (elétrica, térmica, ....) a um átomo, um ou mais elétrons a absorvem e saltam para níveis mais afastados do núcleo. Ao voltarem as suas órbitas originais, devolvem a energia recebida em forma de luz (fenômeno observado, tomando como  exemplo, uma barra de ferro aquecida ao rubro).
Segundo postulado de Bohr.  Um átomo  irradia  energia quando um elétron  salta  de  uma órbita de  maior energia  para uma de  menor energia . Órbitas de  Bohr  para o átomo de  hidrogênio A linha  vermelha  no espectro atômico é causada por elétrons saltando da  terceira  órbita para a  segunda  órbita O comprimento de onda guarda relação com a energia. Os menores comprimentos de onda de luz significam vibrações mais rápidas e maior energia.
A linha  verde-azulada  no espectro atômico é causada por elétrons saltando da  quarta  para a  segunda  órbita. A linha  azul  no espectro atômico é causada por elétrons saltando da  quinta  para a  segunda  órbita A linha  violeta  mais brilhante no espectro atômico é causada por elétrons saltando da  sexta  para a  segunda  órbita.
Modelos: Dalton Rutherford Thompson Bohr Atual
Teoria Quântica         De acordo com Max Planck (1900), quando uma partícula passa de uma situação de maior energia para outra de menor energia ou vice-versa, a energia é perdida ou recebida em " pacotes " que recebe o nome de  quanta ( quantum  é o singular de quanta).     O quantum é o pacote fundamental de energia e é indivisível. Cada tipo de energia tem o seu quantum.     A Teoria Quântica permitiu a identificação dos elétrons de um determinado átomo, surgindo assim  os "números quânticos".
Princípio da incerteza de Heisenberg : é impossível determinar com precisão a posição e a velocidade de um elétron num mesmo instante. Orbital é a região onde é mais provável encontrar um életron Modelo atômico atual
Descrição de uma órbita
MODELO DE SOMMERFELD 1868 - 1951 Órbitas: 1circular e as demais elípticas
- Modelo Atômico de Sommerfeld (1916)        Ao pesquisar o átomo, Sommerfeld concluiu que os elétrons de um mesmo nível, ocupam órbitas de trajetórias diferentes (circulares e elípticas) a que denominou de subníveis, que podem ser de quatro tipos:  s , p , d , f .
Princípio da dualidade da matéria de Louis de Brodlie : o elétron apresenta característica DUAL, ou seja, comporta-se como  matéria  e  energia  sendo uma  partícula-onda.    
Em 1923,  Louis Broglie  mostrou, através de uma equação matemática, que "qualquer corpo em movimento estaria associado a um fenômeno ondulatório". Desta maneira o elétron apresenta a natureza de uma  partícula-onda , obedecendo assim, às leis dos fenômenos ondulatórios, como acontece com a luz e o som.
Teoria da Mecânica Ondulatória        Em 1926,  Erwin Shröringer  formulou uma teoria chamada de "Teoria da Mecânica Ondulatória" que determinou o conceito de "orbital" .      Orbital é a região do espaço ao redor do núcleo onde existe a máxima probalidade de se encontrar o elétron.       O orbital   s   possui forma esférica  ...  ................          e os orbitais   p   possuem forma de halteres. .....    
Modelo atômico de Schrödinger -  A partir das equações de Schrödinger não é possível determinar a trajetória do elétron em torno do núcleo, mas, a uma dada energia do sistema, obtém-se a região mais provável de encontrá-lo.                                                                                                                                                                                                                                                                                                                                                         Na formulação de Schrödinger não é possível determinar a trajetória de uma partícula, o que levou a interpretações que vão totalmente além de nossa concepção macroscópica. Este resultado já havia sido apresentado no trabalho de outro fundador da Teoria Quântica, Werner Heisenberg. Usando uma formulação diferente, mas equivalente a de Schrödinger, determinou o chamado princípio da incerteza. Segundo este, quando maior a precisão na determinação experimental da posição de um elétron, menor a precisão na determinação de sua velocidade, e vice-versa. Como ambos são necessário para definir uma trajetória, este conceito teria que ser descartado. Muitos físicos passaram a assumir que o elétron não estaria necessariamente em lugar nenhum, até que fosse detectado em um experimento. As informações que podem ser obtidas passam a ser em qual região do espaço é mais provável encontrar o elétron. Esta probabilidade estaria relacionada com o modulo da função de onda associada ao elétron para uma dada energia. O resultado se mostrou correto, mas levou também a um conflito, pois passou-se de uma formulação determinista para uma estatística. Não se determina mais onde o elétron está, mas qual a probabilidade de que esteja em uma região do espaço.                                                                                       

Mais conteúdo relacionado

Mais procurados

Trabalho de quimica modelo thomson
Trabalho de quimica   modelo thomsonTrabalho de quimica   modelo thomson
Trabalho de quimica modelo thomson
Jhorlando
 
Aula formação do universo
Aula formação do universoAula formação do universo
Aula formação do universo
kaliandra Lisboa
 
Massa atômica e massa molecular
Massa atômica e massa molecularMassa atômica e massa molecular
Massa atômica e massa molecular
vargastania
 
8. tabela periódica
8. tabela periódica8. tabela periódica
8. tabela periódica
Rebeca Vale
 
Aula 6º ano - O Universo e o Sistema Solar
Aula 6º ano - O Universo e o Sistema SolarAula 6º ano - O Universo e o Sistema Solar
Aula 6º ano - O Universo e o Sistema Solar
Leonardo Kaplan
 

Mais procurados (20)

O universo
O universoO universo
O universo
 
Trabalho de quimica modelo thomson
Trabalho de quimica   modelo thomsonTrabalho de quimica   modelo thomson
Trabalho de quimica modelo thomson
 
Historia da química
Historia da químicaHistoria da química
Historia da química
 
O átomo
O átomoO átomo
O átomo
 
9º aula
9º aula9º aula
9º aula
 
Aulas 1 e 2 - Modelos Atômicos
Aulas 1 e 2 - Modelos AtômicosAulas 1 e 2 - Modelos Atômicos
Aulas 1 e 2 - Modelos Atômicos
 
Aula formação do universo
Aula formação do universoAula formação do universo
Aula formação do universo
 
A alquimia e a química
A alquimia e a químicaA alquimia e a química
A alquimia e a química
 
Polaridade de ligações e moléculas
Polaridade de ligações e moléculasPolaridade de ligações e moléculas
Polaridade de ligações e moléculas
 
Modelo atômico de Rutherford 2014
Modelo atômico de Rutherford 2014Modelo atômico de Rutherford 2014
Modelo atômico de Rutherford 2014
 
Big Bang
Big BangBig Bang
Big Bang
 
Mol a unidade da química
Mol a unidade da químicaMol a unidade da química
Mol a unidade da química
 
O universo
O universoO universo
O universo
 
QUIMICA GERAL Aula 01
QUIMICA GERAL Aula 01QUIMICA GERAL Aula 01
QUIMICA GERAL Aula 01
 
Massa atômica e massa molecular
Massa atômica e massa molecularMassa atômica e massa molecular
Massa atômica e massa molecular
 
8. tabela periódica
8. tabela periódica8. tabela periódica
8. tabela periódica
 
7. níveis de energia
7. níveis de energia7. níveis de energia
7. níveis de energia
 
Aula 6º ano - O Universo e o Sistema Solar
Aula 6º ano - O Universo e o Sistema SolarAula 6º ano - O Universo e o Sistema Solar
Aula 6º ano - O Universo e o Sistema Solar
 
Modelos Atômicos
Modelos AtômicosModelos Atômicos
Modelos Atômicos
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 

Semelhante a Quimica

Evolução do átomo
Evolução do átomoEvolução do átomo
Evolução do átomo
Erlenmeyer
 
Modelos atomicos 9ano
Modelos atomicos 9anoModelos atomicos 9ano
Modelos atomicos 9ano
joana bolsi
 
Apresentação modelos atômicos elenice
Apresentação modelos atômicos  eleniceApresentação modelos atômicos  elenice
Apresentação modelos atômicos elenice
EEB Paulo Bauer
 
Estrutura Atomica Coc 2010
Estrutura Atomica Coc 2010Estrutura Atomica Coc 2010
Estrutura Atomica Coc 2010
Coc2010
 

Semelhante a Quimica (20)

Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
70661 20090210080029
70661 2009021008002970661 20090210080029
70661 20090210080029
 
Modelo atômico
Modelo atômicoModelo atômico
Modelo atômico
 
Aula dani
Aula daniAula dani
Aula dani
 
Evolução atomica 2015
Evolução atomica 2015Evolução atomica 2015
Evolução atomica 2015
 
AtomíStica
AtomíSticaAtomíStica
AtomíStica
 
Modelos
 Modelos Modelos
Modelos
 
Modelo atômico
Modelo atômicoModelo atômico
Modelo atômico
 
Evolução do átomo
Evolução do átomoEvolução do átomo
Evolução do átomo
 
Modelos atomicos 9ano
Modelos atomicos 9anoModelos atomicos 9ano
Modelos atomicos 9ano
 
Estrutura atômica
Estrutura atômica Estrutura atômica
Estrutura atômica
 
Evolução do modelo atômico
Evolução do modelo atômicoEvolução do modelo atômico
Evolução do modelo atômico
 
MODELOS ATÔMICOS
MODELOS ATÔMICOS MODELOS ATÔMICOS
MODELOS ATÔMICOS
 
Estrutura atomica 2012
Estrutura atomica 2012Estrutura atomica 2012
Estrutura atomica 2012
 
ATOMÍSTICA-INTRODUÇÃO
ATOMÍSTICA-INTRODUÇÃOATOMÍSTICA-INTRODUÇÃO
ATOMÍSTICA-INTRODUÇÃO
 
Modelos atõmicos
Modelos atõmicosModelos atõmicos
Modelos atõmicos
 
Apresentação modelos atômicos elenice
Apresentação modelos atômicos  eleniceApresentação modelos atômicos  elenice
Apresentação modelos atômicos elenice
 
Atomística - Dalton ao átomo Moderno
Atomística - Dalton ao átomo ModernoAtomística - Dalton ao átomo Moderno
Atomística - Dalton ao átomo Moderno
 
Estrutura Atomica Coc 2010
Estrutura Atomica Coc 2010Estrutura Atomica Coc 2010
Estrutura Atomica Coc 2010
 

Último

Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
FabianeMartins35
 
matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
CleidianeCarvalhoPer
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
tatianehilda
 

Último (20)

PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
Araribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medioAraribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medio
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
O PLANETA TERRA E SEU SATÉLITE NATURAL - LUA
O PLANETA TERRA E SEU SATÉLITE NATURAL - LUAO PLANETA TERRA E SEU SATÉLITE NATURAL - LUA
O PLANETA TERRA E SEU SATÉLITE NATURAL - LUA
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
 

Quimica

  • 2. Modelos atômicos A origem da palavra átomo A palavra átomo foi utilizada pela primeira vez na Grécia antiga, por volta de 400 aC. Demócrito (um filósofo grego) acreditava que todo tipo de matéria fosse formado por diminutas partículas que denominou átomos (sem divisão). Acreditava-se que tais partículas representavam a menor porção de matéria possível, ou seja, eram indivisíveis. Como esta idéia não pôde ser comprovada por Demócrito e seus contemporâneos, ela ficou conhecida como 1º modelo atômico, mas meramente filosófico .
  • 3. Modelo Atômico de Dalton As idéias de Demócrito permaneceram inalteradas por aproximadamente 2200 anos. Em 1808, Dalton retomou estas idéias sob uma nova perspectiva: a experimentação. Baseado em reações químicas e pesagens minuciosas, chegou à conclusão de que os átomos realmente existiam e que possuíam algumas características: - Toda matéria é formada por diminutas partículas esféricas, maciças, neutras e indivisíveis chamadas átomos. - Existe um número finito de tipos de átomos na natureza. - A combinação de iguais ou diferentes tipos de átomos originam os diferentes materiais.
  • 4. Modelo Atômico de Thomson (1898)       Com a descoberta dos prótons e elétrons, Thomson propôs um modelo de átomo no qual os elétrons e os prótons, estariam uniformemente distribuídos, garantindo o equilíbrio elétrico entre as cargas positiva dos prótons e negativa dos elétrons.
  • 5. Modelo Atômico de Rutherford (1911)    Rutherford bombardeou uma fina lâmina de ouro (0,0001 mm) com partículas "alfa" (núcleo de átomo de hélio: 2 prótons e 2 nêutrons), emitidas pelo "polônio" (Po), contido num bloco de chumbo (Pb), provido de uma abertura estreita, para dar passagem às partículas "alfa" por ele emitidas.     Envolvendo a lâmina de ouro (Au), foi colocada uma tela protetora revestida de sulfeto de zinco (ZnS).
  • 6. Modelo Atômico de Rutherford (1911) Observando as cintilações na tela de ZnS, Rutherford verificou  que muitas partículas "alfa" atravessavam a lâmina de ouro, sem sofrerem desvio, e poucas partículas "alfa" sofriam desvio. Como as partículas "alfa" têm carga elétrica positiva, o desvio seria provocado por um choque com outra carga positiva, isto é, com o núcleo do átomo, constituído  por prótons.
  • 7. Modelo Atômico de Rutherford (1911) Assim, o átomo seria um imenso vazio, no qual o núcleo ocuparia uma pequena parte, enquanto que os elétrons o circundariam numa região negativa chamada de eletrosfera, modificando assim, o modelo atômico proposto por Thomson.
  • 8.   - Os Postulados  de Niels Bohr (1885-1962)     De acordo com o modelo atômico  proposto por Rutherford, os elétrons ao girarem  ao redor do núcleo, com o tempo perderiam energia, e se chocariam com o mesmo.     Como o átomo é uma estrutura estável, Niels Bohr formulou uma teoria (1913) sobre o movimento dos elétrons, fundamentado na Teoria Quântica da Radiação (1900) de Max Planck.     A teoria de Bohr fundamenta-se nos seguintes postulados:      1º postulado : Os elétrons descrevem órbitas circulares estacionárias ao redor do núcleo, sem emitirem nem absorverem energia.
  • 9. 2º postulado ( de Niels Bohr) : Fornecendo energia (elétrica, térmica, ....) a um átomo, um ou mais elétrons a absorvem e saltam para níveis mais afastados do núcleo. Ao voltarem as suas órbitas originais, devolvem a energia recebida em forma de luz (fenômeno observado, tomando como  exemplo, uma barra de ferro aquecida ao rubro).
  • 10. Segundo postulado de Bohr. Um átomo irradia energia quando um elétron salta de uma órbita de maior energia para uma de menor energia . Órbitas de Bohr para o átomo de hidrogênio A linha vermelha no espectro atômico é causada por elétrons saltando da terceira órbita para a segunda órbita O comprimento de onda guarda relação com a energia. Os menores comprimentos de onda de luz significam vibrações mais rápidas e maior energia.
  • 11. A linha verde-azulada no espectro atômico é causada por elétrons saltando da quarta para a segunda órbita. A linha azul no espectro atômico é causada por elétrons saltando da quinta para a segunda órbita A linha violeta mais brilhante no espectro atômico é causada por elétrons saltando da sexta para a segunda órbita.
  • 12. Modelos: Dalton Rutherford Thompson Bohr Atual
  • 13. Teoria Quântica      De acordo com Max Planck (1900), quando uma partícula passa de uma situação de maior energia para outra de menor energia ou vice-versa, a energia é perdida ou recebida em " pacotes " que recebe o nome de quanta ( quantum é o singular de quanta).    O quantum é o pacote fundamental de energia e é indivisível. Cada tipo de energia tem o seu quantum.     A Teoria Quântica permitiu a identificação dos elétrons de um determinado átomo, surgindo assim  os "números quânticos".
  • 14. Princípio da incerteza de Heisenberg : é impossível determinar com precisão a posição e a velocidade de um elétron num mesmo instante. Orbital é a região onde é mais provável encontrar um életron Modelo atômico atual
  • 16. MODELO DE SOMMERFELD 1868 - 1951 Órbitas: 1circular e as demais elípticas
  • 17. - Modelo Atômico de Sommerfeld (1916)     Ao pesquisar o átomo, Sommerfeld concluiu que os elétrons de um mesmo nível, ocupam órbitas de trajetórias diferentes (circulares e elípticas) a que denominou de subníveis, que podem ser de quatro tipos:  s , p , d , f .
  • 18. Princípio da dualidade da matéria de Louis de Brodlie : o elétron apresenta característica DUAL, ou seja, comporta-se como matéria e energia sendo uma partícula-onda.    
  • 19. Em 1923, Louis Broglie mostrou, através de uma equação matemática, que "qualquer corpo em movimento estaria associado a um fenômeno ondulatório". Desta maneira o elétron apresenta a natureza de uma partícula-onda , obedecendo assim, às leis dos fenômenos ondulatórios, como acontece com a luz e o som.
  • 20. Teoria da Mecânica Ondulatória     Em 1926, Erwin Shröringer formulou uma teoria chamada de "Teoria da Mecânica Ondulatória" que determinou o conceito de "orbital" .     Orbital é a região do espaço ao redor do núcleo onde existe a máxima probalidade de se encontrar o elétron.       O orbital  s   possui forma esférica ... ................       e os orbitais  p   possuem forma de halteres. .....  
  • 21. Modelo atômico de Schrödinger - A partir das equações de Schrödinger não é possível determinar a trajetória do elétron em torno do núcleo, mas, a uma dada energia do sistema, obtém-se a região mais provável de encontrá-lo.                                                                                                                                                                                                                                                                                                                                                         Na formulação de Schrödinger não é possível determinar a trajetória de uma partícula, o que levou a interpretações que vão totalmente além de nossa concepção macroscópica. Este resultado já havia sido apresentado no trabalho de outro fundador da Teoria Quântica, Werner Heisenberg. Usando uma formulação diferente, mas equivalente a de Schrödinger, determinou o chamado princípio da incerteza. Segundo este, quando maior a precisão na determinação experimental da posição de um elétron, menor a precisão na determinação de sua velocidade, e vice-versa. Como ambos são necessário para definir uma trajetória, este conceito teria que ser descartado. Muitos físicos passaram a assumir que o elétron não estaria necessariamente em lugar nenhum, até que fosse detectado em um experimento. As informações que podem ser obtidas passam a ser em qual região do espaço é mais provável encontrar o elétron. Esta probabilidade estaria relacionada com o modulo da função de onda associada ao elétron para uma dada energia. O resultado se mostrou correto, mas levou também a um conflito, pois passou-se de uma formulação determinista para uma estatística. Não se determina mais onde o elétron está, mas qual a probabilidade de que esteja em uma região do espaço.