Força, Trabalho, Potência e Energia

3.012 visualizações

Publicada em

Pequeno resumo sobre o conteúdo de Força, Trabalho, Potência e Energia.

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
3.012
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
94
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Força, Trabalho, Potência e Energia

  1. 1. Ação capaz de alterar a velocidade de um corpo, modificando o seu estado de repouso ou de movimento. 1 Elementos de uma força:  Intensidade: capacidade de produzir efeitos maiores ou menores onde está sendo aplicada.  Direção: Indicada pela reta a qual a força atua. Podendo ser vertical, horizontal ou inclinada.  Sentido: Orientação do deslocamento sobre a direção da força.  As grandezas que são descritas por meio a intensidade, direção e sentido são denominadas grandezas vetoriais. Graficamente é representada por um vetor (segmento de reta com uma seta na extremidade para indicar a direção e o sentido da força). A origem do segmento é o ponto de aplicação da força. F origem A força é uma grandeza física que pode ser medida, isto é, comparada com uma força adotada como unidade. De acordo com o Sistema Internacional de Unidades (SI), a unidade de força adotada é o Newton (N). Forças Combinadas O resultado final de duas ou mais forças agindo sobre um corpo é chamado resultante (R). A resultante (R) é uma única força que tem o efeito das duas combinadas. As forças combinadas constituem um sistema de forças. Para encontrar a intensidade da resultante (R) da ação de duas ou mais forças que atuam na mesma direção:  Duas forças agem em um corpo em sentidos contrários: F1 = 100 N F2 = 80 N R = F1 – F2 R = 100 N – 80 N R = 20 N Intensidade: 20 Newtons Direção: Horizontal Sentido: para a esquerda Nesse caso, a resultante R é determinada pelo componente de maior intensidade.
  2. 2.  Duas forças agem em um corpo no mesmo sentido: F1 = 72 N R = F1 + F2 R = 72 N + 30 N R = 102 N F2 = 30 N Intensidade: 102 Newtons Direção: Horizontal Sentido: para a direita 2 Todos empurram na mesma direção. Neste caso, as forças serão somadas. As forças atuantes podem formar um sistema angular. Aplicadas em um ponto de tal forma que há formação de um ângulo. F1 FR F2 A força resultante de duas forças concorrentes F1 e F2 é representada graficamente, em intensidade, direção e sentido pela diagonal do paralelogramo formado por F 1, F2 e por suas paralelas. Neste caso, as forças serão elevadas ao quadrado Força Atrito Quando determinado corpo se desloca em uma superfície, poderá ocorrer atrito, isto é, a superfície poderá exercer uma força contrária ao corpo, a chamada Força de Atrito (Fat). A força de atrito depende da natureza da superfície de contato. Em superfícies mais polidas, atrito é menor e o objeto que se desloca sofre maior resistência. O mesmo não acontece se uma superfície for muito irregular, como uma lixa, onde haverá maior atrito e maior resistência ao deslocamento de um objeto. F = força Não desliza (estático) Fate = Faplicada Atrito N = força normal Desliza (cinético) 1N 2N Parado µ = coeficiente de atrito Fatc = µc  N 3N Parado 2 Kg Parado Deslizando Fatc
  3. 3. Em um dado momento, o objeto irá se deslocar e o atrito estático demonstra que terá limite. Para calcular: Fatemáx = µe  N 2 µ = coeficiente de atrito Exemplo: µc = 0,5 µe = 0,4 objeto inicialmente parado 3 F12 Fatc = µc  N Fatc = 0,4  20 Fatc = 8N. F a (m/s ) Fat 0 0 0 2 2 0 6 6 0 10 10 0 12 8 2 14 8 3 1ª Lei - Princípio da Inércia "Um corpo em repouso tende a permanecer em repouso, e um corpo em movimento tende a permanecer em movimento."  Quando estamos dentro de um carro, e este contorna uma curva, nosso corpo tende a permanecer com a mesma velocidade vetorial a que estava submetido antes da curva, isto dá a impressão que se está sendo "jogado" para o lado contrário à curva. Isso porque a velocidade vetorial é tangente a trajetória.  Quando estamos em um carro em movimento e este freia repentinamente, nos sentimos como se fôssemos atirados para frente, pois nosso corpo tende a continuar em movimento. Conclui-se que um corpo só altera seu estado de inércia, se alguém, ou alguma coisa aplicar nele uma força resultante diferente se zero. 2ª Lei - Princípio Fundamental da Dinâmica Quando aplicamos uma mesma força em dois corpos de massas diferentes observamos que elas não produzem aceleração igual. A 2ª lei de Newton diz que a Força é sempre diretamente proporcional ao produto da aceleração de um corpo pela sua massa, ou seja: F=ma F = medido em Newtons, é a resultante de todas as forças que agem sobre o corpo; m = massa, medida em quilograma (kg); a = aceleração adquirida (em m/s²).
  4. 4. A unidade de força, no sistema internacional, é o N (Newton), que equivale a kg m/s² (quilograma metro por segundo ao quadrado). Exemplo: Quando um força de 12N é aplicada em um corpo de 2kg, qual é a aceleração adquirida por ele? F=ma 12 = 2  a a = 6 m/s² 4 3ª lei – Princípio da Ação e Reação Se um corpo aplicar uma força sobre um outro corpo, receberá deste uma força de mesma intensidade, mesma direção e de sentido contrário. Trabalho Uma força aplicada em um corpo realiza um trabalho quando produz um deslocamento. Se ao aplicar a força, não houver deslocamento do corpo, então o trabalho é nulo. Então calculamos: Trabalho é igual a Força multiplicada pelo deslocamento. Força é medida em Newtons e deslocamento em metros.   τ = trabalho (Tau) F = Força  Δs = deslocamento  J = unidade de trabalho (Joule) Trabalho da Força Peso Devemos considerar a trajetória como a altura entre o corpo e o ponto de origem, e a força a ser empregada, a força Peso. Então:  τp = trabalho da força peso  P = Força peso (massa x gravidade)  Δh = variação de altura
  5. 5. Potência A Potência é medida quando um trabalho é realizado em um menor período. Por exemplo: Dois carros saem da praia em direção a serra (h = 600m). Um dos carros realiza a viagem em 1hora, o outro demora 2horas para chegar. Qual dos carros realizou maior trabalho? O carro que subiu a serra em 1 hora realizou maior trabalho. Veja bem: temos dois que irão percorrer a mesma distância. Se um consegue percorrer em menor tempo, este realizará o trabalho com maior potência. 5 Então: Potência é igual ao trabalho dividido pela variação do tempo. Trabalho é medido em Joule e tempo em segundos. A unidade de potência é o watt (W). Também é usado Cavalo-Vapor (CV –> 1CV = 735W) e Horse-power (HP –> 1HP = 746W). Energia Energia Mecânica A Energia mecânica estuda o potencial energético de um corpo, desde que esteja sofrendo a ação de uma força cinética ou potencial. Aplicando isso matematicamente, temos: EM = EC + EP Energia mecânica = energia cinética + energia potencial A equação utilizada para o cálculo da energia cinética é constante, diferente da energia potencial. Energia Cinética Caracterizada por ser a energia adquirida por um corpo por estar em movimento. A energia está diretamente ligada ao movimento e à massa do corpo. A velocidade é calculada ao quadrado, pois isso mostra que um objeto em movimento ganha energia cinética e por conta da velocidade, essa energia cresce rapidamente. EC = m  v 2 2 EC = Energia cinética m = massa v = velocidade Energia Potencial Calcula a gravidade e sua atuação nos relação com a massa do corpo e sua energia do objeto será ‘despertada’ trabalho, quando isso ocorrer essa transformará em outro tipo de energia. EP = m  g  h EP = Energia Potencial Gravitacional m = massa g = gravidade h = altura corpos. Tem distância. A a partir do energia se

×