FÍSICA 
LEIS DE NEWTON 
1. FORÇA 
A idéia de força é bastante relacionada com a 
experiência diária de qualquer pessoa. Se...
Primeira lei de Newton (Lei da inércia, 
de Galileu) 
Quando a resultante das forças é nula, um cor-po 
em repouso continu...
ESTUDO DIRIGIDO 
1 Qual a unidade de força no sistema internacio-nal? 
2 O que é inércia? 
3 Enuncie a 1ª Lei de Newton. 
...
4 A figura representa dois corpos, A e B, ligados 
entre si por um fio inextensível que passa por 
uma polia. Despreze os ...
Próximos SlideShares
Carregando em…5
×

Apostila leis de newton

430 visualizações

Publicada em

Apostila leis de newton

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
430
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
14
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Apostila leis de newton

  1. 1. FÍSICA LEIS DE NEWTON 1. FORÇA A idéia de força é bastante relacionada com a experiência diária de qualquer pessoa. Sempre que puxamos ou empurramos um objeto, dizemos que es-tamos fazendo uma força sobre ele. É possível encon-trar forças que se manifestam sem que haja contato entre os corpos que interagem. Por exemplo: um ímã exerce uma força magnética de atração sobre um pre-go, mesmo que haja certa distância entre eles; um pente eletrizado exerce uma força elétrica de atração sobre os cabelos de uma pessoa, sem necessidade de entrar em contato com eles; de forma semelhante, a Terra atrai os objetos próximos à sua superfície, mesmo que eles não estejam em contato com ela. A força com que a Terra atrai um corpo é o peso deste corpo. Sempre que ocorrer uma mudança no estado de movimento de um corpo, teremos a atuação de uma força. Unidade (SI): Newton (N). 2. INÉRCIA Galileu acreditava que qualquer estudo sobre o comportamento da natureza deveria ter por base ex-periências cuidadosas. Realizando, então, uma série de experiências com corpos em movimento, ele con-cluiu, por exemplo, que sobre o livro que é empurra-do em uma mesa atua também uma força de atrito, que tende sempre a contrariar o seu movimento. As-sim, de acordo com Galileu, se não houvesse atrito, o livro não pararia quando cessasse o empurrão. As conclusões de Galileu estão sintetizadas a seguir: se um corpo estiver em repouso, é necessária a ação de uma força sobre ele para colocá-lo em movimento. Uma vez iniciado o movimento, cessando a ação da força, o corpo continuará a se mover indefinidamente em linha reta, com velocidade constante. lnércia A inércia consiste na tendência do corpo em manter sua velocidade vetorial constante. Explicando, para uma melhor compreensão: Exemplo1: Quando um corpo está em REPOUSO, ele tem uma tendência natural e espontânea de continuar em repouso, isto é, uma tendência de MANTER SUA VELOCIDADE NULA. Assim, quando um ônibus arranca, a partir do repouso, o passageiro despreveni-do cai, por insistir em manter-se em repouso. Editora Exato 19 Figura 1 Ônibus acelera e o passageiro cai para trás. a v Como fazer para vencer a inércia? Para vencer a inércia, é preciso sempre ter a in-tervenção de uma força. O passageiro deve segurar-se no ônibus, para receber uma força capaz de vencer a sua inércia de repouso e de acelerá-lo juntamente com o ônibus. Exemplo 2: Quando um corpo está em movimento, ele tem uma tendência natural e espontânea de continuar em movimento, mantendo inalterável a sua velocidade vetorial. Assim, quando um ônibus, em pleno movi-mento em linha reta, freia bruscamente, o passageiro desprevenido é projetado para a frente, por insistir em manter o seu movimento vetorial. Para vencer essa inércia de movimento, mais uma vez, será preciso a intervenção de uma força. V Figura 2 Ônibus freia e o passageiro cai para frente. a O passageiro deve segurar-se no ônibus, para receber uma força capaz de vencer a sua inércia de movimento e de freá-lo, juntamente com o ônibus. 3. PRIMEIRA LEI DE NEWTON Vários anos mais tarde, após Galileu ter esta-belecido o conceito de inércia, lsaac Newton, ao for-mular as leis básicas da mecânica, conhecidas como "as três leis de Newton", concordou com as conclu-sões de Galileu e usou-as no enunciado de sua pri-meira lei:
  2. 2. Primeira lei de Newton (Lei da inércia, de Galileu) Quando a resultante das forças é nula, um cor-po em repouso continua em repouso, e um corpo em movimento continua em movimento em linha reta e com velocidade constante. Repouso M.R.U. Força resultante nula Equilíbrio (Ponto Material) 4. PRINCÍPIO FUNDAMENTAL DA DINÂMI- CA (2ª LEI DE NEWTON) A aceleração que um corpo adquire é direta-mente proporcional à força resultante que atua sobre ele e tem a mesma direção e o mesmo sentido desta força. Na segunda lei de Newton, quando um corpo esti-ver sujeito a várias forças, deve-se substituí-las – F – pela resultante r F r dessas forças. Então temos, de uma maneira mais geral: r r Fr m a = × Unidade de força no SI: Newton (N) r Observe que a força aplicada Fr e a aceleração adquirida são grandezas vetoriais que têm sempre a mesma orientação, isto é, mesma direção e sentido, pois a massa m é um escalar positivo. 1N= 1Kg m/s2 5. AÇÃO X REAÇÃO (3ª LEI DE NEWTON) A toda força de ação corresponde uma força de reação, com o mesmo módulo, mesma direção e sen-tidos OPOSTOS. Ação e reação estão sempre aplicadas em cor-pos distintos, portanto AÇÃO E REAÇÃO NUNCA SE EQUILIBRAM. Ação e reação têm SEMPRE O MESMO MÓDULO, mas podem produzir efeitos diferentes. Exemplo: Considere dois patinadores, A e B, sobre patins em uma pista de gelo. O patinador A empurra o pati-nador B. O que se observa na pista é que ambos os patinadores se movem em sentidos opostos. Se os pa-tinadores Editora Exato 20 tiverem a mesma massa, terão a mesma a-celeração; se tiverem massas diferentes, o de maior massa terá menor aceleração, mas a força trocada en-tre eles terá módulo igual. Observe ainda que a força que A aplica está em B, a que B aplica está em A. Assim mesmo, tendo módulos iguais e sentidos opostos, não podem se a-nular. Figura 4 Referencial A B A B + FBA FAB FAB =FBA 6. PESO E MASSA 6.1. Peso de um corpo A força peso de um corpo é conseqüência do campo gravitacional criado pela Terra. O planeta Terra, bem como qualquer corpo material, cria em torno de si um campo de forças a-trativas, denominado campo gravitacional. Qualquer corpo dentro do campo gravitacional da Terra será a-traído por esta, e a força de atração é denominada força gravitacional. Não considerando os efeitos ligados à rotação da Terra, a força gravitacional, aplicada pela Terra, corresponde ao peso do corpo. r o vetor acele-ração Sendo m a massa do corpo e g de queda livre (imposta pelo campo gravitacio-nal e que é independente da massa do corpo), de acordo com a 2ª Lei de Newton (PFD), o vetor peso r P será dado por: r r = P mg 1. A massa (m) é característica do corpo e é a mesma em qualquer local do universo em que esteja o corpo, isto é, a massa independe do local. 2. A intensidade do campo gravitacional varia com o local e é independente da massa do corpo que está sendo atraído pela Terra. 3. O peso de um corpo não é característica sua, pois varia de uma região para outra, proporcional-mente ao valor da gravidade local. Isto significa que, se a gravidade for n vezes maior, o peso de um dado corpo também será n vezes maior.
  3. 3. ESTUDO DIRIGIDO 1 Qual a unidade de força no sistema internacio-nal? 2 O que é inércia? 3 Enuncie a 1ª Lei de Newton. EXERCÍCIOS RESOLVIDOS 1 Explique por que um passageiro sem cinto de se-gurança é arremessado para frente quando o carro freia bruscamente. Resolução: O passageiro do carro viaja à mesma velocidade do carro, quando o carro freia, o passageiro continua com a mesma velocidade, o que dá a entender que ele é arremessado para frente. 2 Nos exercícios abaixo, despreze os atritos e con-sidere a gravidade g = 10m / s 2 . a) Calcule a aceleração do bloco abaixo: F1 =20N 3kg F2=5N Resolução: R F ma F F ma = − = − = = 1 2 2 20 5 3. 15 3. 15 5 / a = = a = m s 3 a a b) Calcule a tração no fio suposto perfeito A B ma=1kg mb=4kg Resolução: Editora Exato 21 Em primeiro lugar, devemos colocar todas as forças que atuam nos blocos, assim teremos NA A T PA B T PB B do P . cálculo P m g B B P P N 4.10 40 B B = = = Escrevemos R F = ma , para cada bloco: A F ma R T m . a A = = B F = ma R P − T = m a B B Somando as equações: T = m a a P − T = m a B b ( ) ( ) B A B P a m m = + = + 40 1 4 2 a 40 5 8 / a = a = m s A T m a T T N , agora é substituir em 1.8 8 = = = . Se você substituir em B B P −T = m a dará o mesmo re-sultado. Faça pra ver! EXERCÍCIOS 1 O corpo indicado na figura tem massa de 5 kg e está em repouso sobre um plano horizontal sem atrito. Aplica-se ao corpo uma força de 20N. Qual a aceleração adquirida por ele? 5kg F 2 Um determinado corpo está inicialmente em re-pouso, sobre uma superfície sem qualquer atrito. Num determinado instante aplica-se sobre o mesmo uma força horizontal constante de módulo 12N. Sabendo-se que o corpo adquire uma velo-cidade de 4m/s em 2 segundos, calcule sua acele-ração e sua massa. 3 Em 20 de julho, Neil Armstrong tornou-se a pri-meira pessoa a pôr os pés na Lua. Suas primeiras palavras, após tocar a superfície da Lua, foram "É um pequeno passo para um homem, mas um gi-gantesco salto para a Humanidade". Sabendo que, na época, Neil Armstrong tinha uma massa de 70 kg e que a gravidade da Terra é de 10m/s² e a da Lua é de 1,6m/s², calcule o peso do astronauta na Terra e na Lua.
  4. 4. 4 A figura representa dois corpos, A e B, ligados entre si por um fio inextensível que passa por uma polia. Despreze os atritos e a massa da polia. Sabe-se que a intensidade da tração do fio é de 12N, a massa do corpo A, 4,8kg e g = 10m/s². Calcule a aceleração do sistema e a massa do corpo B. A B 5 Julgue os itens: 1 Todo corpo, por inércia, tende a manter sua aceleração constante. 2 O uso de cintos de segurança em automóveis é uma conseqüência da 1ª lei de Newton, a Lei da inércia. 3 Um corpo que está sobre uma mesa e se man-tém em repouso, tem aplicado sobre ele duas forças: o peso e a força normal. Essas forças constituem um par ação e reação, pois estão sendo aplicadas num mesmo corpo. 4 Se há forças aplicadas num corpo, certamente ele apresenta uma aceleração não-nula. GABARITO Estudo dirigido 1 Newton (N) 2 Consiste na tendência do corpo em manter sua velocidade vetorial constante. 3 Quando a resultante das forças é nula, um corpo em repouso continua em repouso, e um corpo em movimento continua em movimento em linha reta e com velocidade constante. 4 O par ação e reação possui a mesma direção, a mesma intensidade e sentidos opostos, e não se anulam pois estão aplicados em corpos diferen-tes. Exercícios 1 4m/s². 2 2m/s² e 6kg. 3 700N e 112N. 4 2,5m/s² e 1,6kg. Editora Exato 22 5 E, C, E, E

×