SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
hppt://emersonmatematica.blogspot.com
Blog Prof. Emerson
1
hppt://emersonmatematica.blogspot.com
Séries e Seqüências
SEQÜÊNCIAS
Definição: Uma seqüência é uma função cujo domínio é o conjunto dos números
inteiros positivos. O contradomínio de uma seqüência será considerado o conjunto dos
números reais.
A cada número inteiro positivo "n" corresponde um número real f(n).
a1 = f(1) ; a2 = f(2) ; a3 = f(3) ; ... ; an = f(n)
Notações:
{an} = {a1, a2, a3, ..., an, ...}
an é o termo genérico da seqüência.
Exemplos:
1)
2)
Se, quando n cresce, an se torna cada vez mais próximo de um número real L, diz-se
que a seqüência {an} tem limite L (ou converge para L) e se escreve:
Uma seqüência que não é convergente, é chamada de divergente.
hppt://emersonmatematica.blogspot.com
Blog Prof. Emerson
2
hppt://emersonmatematica.blogspot.com
TEOREMA DO SANDUÍCHE
Se {an}, {bn}, {cn} são seqüências tais que an bn cn para todo e se
então
SÉRIES
Definição: Se {an} é uma seqüência, então:
A soma infinita a1 + a2 + a3 + ... + an + ... = é chamada série.
Cada número ai é um termo da série;
an é o termo genérico de ordem n.
Para definir a SOMA de infinitas parcelas, consideram-se as SOMAS PARCIAIS.
S1 = a1
S2 = a1 + a2
S3 = a1 + a2 + a3
------------------------
Sn = a1 + a2 + a3 + ... + an-1 + an
E a SEQÜÊNCIA DAS SOMAS PARCIAIS
S1, S2, S3, ..., Sn, ...
Se essa seqüência tem limite S, então a série CONVERGE e sua soma é S.
Ou seja: Se , então a série converge e sua soma é a1+a2+a3+...+an... = S
Se a seqüência {Sn} não tem limite, então a série DIVERGE.
hppt://emersonmatematica.blogspot.com
Blog Prof. Emerson
3
hppt://emersonmatematica.blogspot.com
TEOREMA
Se a série converge, então
OBS: * A recíproca desse teorema é falsa, isto é, existem séries cujo termo genérico
tende a zero e que não são convergentes.
* Vale a contrapositiva: "se o limite não é zero, então a série não converge", que
constitui o:
TESTE DA DIVERGÊNCIA
Dada a série , diverge.
SÉRIE GEOMÉTRICA
TIPO: com a 0
r é a razão.
Ex: 1 + 2 + 4 + 8 + 16 + ...
a = 1
r =
SOMA DE UMA SÉRIE GEOMÉTRICA
A série geométrica
Converge e tem soma se | r | < 1.
Diverge se | r | 1.
TESTE DA COMPARAÇÃO
Sejam e duas séries de termos positivos. Então:
hppt://emersonmatematica.blogspot.com
Blog Prof. Emerson
4
hppt://emersonmatematica.blogspot.com
* Se , sendo "c" um número real, então as séries são ambas
convergentes ou ambas divergentes.
* Se e se converge, então também converge.
* Se e se diverge, então também diverge.
OBS: Se an é expressa por uma fração, devemos considerar tanto no numerador, quanto
no denominador de bn somente os termos de maior importância.
Ex: Verifique se a série dada converge ou diverge:
é uma série geométrica de razão 1/3, logo ela é convergente. Aplicando o teste
da comparação, temos:
Logo, conclui-se que a série CONVERGE.
SÉRIE-P
CONVERGE se p > 1
DIVERGE se p 1
Se p = 1, a série
hppt://emersonmatematica.blogspot.com
Blog Prof. Emerson
5
hppt://emersonmatematica.blogspot.com
é chamada SÉRIE HARMÔNICA e, de acordo com o
teorema, é divergente.
SÉRIE ALTERNADA
É da forma:
SÉRIES DE POTÊNCIA
Séries de potências de x:
ou
Séries de potência de (x-c):
Por conveniência, vamos admitir que , mesmo quando x = 0.
Ao substituir x por um número real, obtém-se uma série de termos constantes que pode
convergir ou divergir.
Em qualquer série de potências de x, a série converge sempre para x=0, pois se
substituirmos x por 0 a série se reduz a a0.
Na série de potências de (x-c), a série converge para x = c.
Para determinar os outros valores de x para os quais a série converge, utiliza-se o teste
da razão.
TESTE DE LEIBINZ
Uma série alternada CONVERGE se:
* Seu termo genérico, em módulo, tende a zero.
hppt://emersonmatematica.blogspot.com
Blog Prof. Emerson
6
hppt://emersonmatematica.blogspot.com
* A série dos módulos é decrescente.
Há três maneiras diferentes de verificar se a série dos módulos é decrescente.
a) verificar se, para todo "k" inteiro positivo, .
b) verificar se, para todo "k" inteiro positivo, .
c) considerar a função f(x) = f(n) e verificar o sinal de sua derivada. Se f'(x)<0, então f
é decrescente.
CONVERGÊNCIA ABSOLUTA
Definição: Uma série é absolutamente convergente se a série dos módulos
é convergente.
Ex: A série alternada é absolutamente convergente, pois a série dos
módulos é uma série-p, com p=2 > 1 e, portanto, convergente.
TEOREMA
Se uma série infinita é absolutamente convergente, então a série é convergente.
TESTE DE D'ALEMBERT
Seja uma série de termos não nulos e seja . Então:
* Se L < 1, a série é ABSOLUTAMENTE CONVERGENTE.
* Se L > 1, (incluindo L = ), a série é DIVERGENTE.
hppt://emersonmatematica.blogspot.com
Blog Prof. Emerson
7
hppt://emersonmatematica.blogspot.com
* Se L = 1, o teste falha (nada se pode afirmar).
RESUMO
TESTE SÉRIE
CONVERGÊNCIA ou
DIVERGÊNCIA
COMENTÁRIOS
da
DIVERGÊNCIA
ou do N-ÉSIMO
TERMO
DIVERGE se
Nada se pode
afirmar se
SÉRIE
GEOMÉTRICA
* CONVERGE e tem soma
se | r | < 1.
* DIVERGE se | r | 1
Útil para testes de
comparação
SÉRIE-P
* CONVERGE se p > 1
* DIVERGE se p 1
Útil para testes de
comparação
da
COMPARAÇÃO
no limite
e
an > 0, bn > 0
* Se , ,
então ambas as séries
CONVERGEM ou ambas
DIVERGEM.
* Se e
CONVERGE, então
CONVERGE.
* Se e
DIVERGE, então
DIVERGE.
A série de
comparação ,
é, em geral, uma
série geométrica ou
uma série-p.
Para achar bn,
consideram-se
apenas os termos de
an que têm maior
efeito.
de LEIBNIZ
ALTERNADA
an > 0
CONVERGE se:
*
* A série dos módulos é
decrescente.
Aplicável somente
a séries alternadas.
Se o primeiro item
é falso, aplica-se o
TESTE DA
DIVERGÊNCIA.

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Cord.polares
Cord.polaresCord.polares
Cord.polares
 
Gabarito av2 ma14_2016
Gabarito av2 ma14_2016Gabarito av2 ma14_2016
Gabarito av2 ma14_2016
 
Geometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontosGeometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontos
 
Aula 6 - MA14 - PROFMAT - CPII
Aula 6 - MA14 - PROFMAT - CPII Aula 6 - MA14 - PROFMAT - CPII
Aula 6 - MA14 - PROFMAT - CPII
 
Leaner algebra presentation (ring)
Leaner algebra presentation (ring)Leaner algebra presentation (ring)
Leaner algebra presentation (ring)
 
Funções
FunçõesFunções
Funções
 
Determinants
DeterminantsDeterminants
Determinants
 
Cilindro de revolução
Cilindro de revoluçãoCilindro de revolução
Cilindro de revolução
 
Permutações
PermutaçõesPermutações
Permutações
 
Fatoração de polinomios
Fatoração de polinomiosFatoração de polinomios
Fatoração de polinomios
 
Analisis Real
Analisis RealAnalisis Real
Analisis Real
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Radiciação
RadiciaçãoRadiciação
Radiciação
 
Limite de função de duas variáveis
Limite de função de duas variáveisLimite de função de duas variáveis
Limite de função de duas variáveis
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Econometria modelos de_regressao_linear
Econometria modelos de_regressao_linearEconometria modelos de_regressao_linear
Econometria modelos de_regressao_linear
 
Progressão aritmética e geométrica
Progressão aritmética e geométricaProgressão aritmética e geométrica
Progressão aritmética e geométrica
 
Sistemas Lineares.pptx
Sistemas Lineares.pptxSistemas Lineares.pptx
Sistemas Lineares.pptx
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Ring ( gelanggang_)
Ring ( gelanggang_)Ring ( gelanggang_)
Ring ( gelanggang_)
 

Semelhante a Séries e Seqüências

Apostila de-series-de-potencias
Apostila de-series-de-potenciasApostila de-series-de-potencias
Apostila de-series-de-potenciasDanielison Pinto
 
18 series de taylor e de maclaurin
18 series de taylor e de maclaurin18 series de taylor e de maclaurin
18 series de taylor e de maclaurinGabriela Cristina
 
2º/2012 - Prova 02 de Autômatos e Computabilidade
2º/2012 - Prova 02 de Autômatos e Computabilidade2º/2012 - Prova 02 de Autômatos e Computabilidade
2º/2012 - Prova 02 de Autômatos e Computabilidadeshichibukai_01
 
Matriz sistema-linear-e-determinante
Matriz sistema-linear-e-determinanteMatriz sistema-linear-e-determinante
Matriz sistema-linear-e-determinanteGraciele Alves
 
Potencia de expoente fraccionario
Potencia de expoente fraccionarioPotencia de expoente fraccionario
Potencia de expoente fraccionarioJeremias Manhica
 
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenanEquações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenanRenan Gustavo
 
Construcao racionais operacoes
Construcao racionais operacoesConstrucao racionais operacoes
Construcao racionais operacoesClaudia Braz
 
Transformar potencias de expoente fraccionario
Transformar potencias de expoente fraccionarioTransformar potencias de expoente fraccionario
Transformar potencias de expoente fraccionarioJeremias Manhica
 
Sequencias e series unicamp
Sequencias e series   unicampSequencias e series   unicamp
Sequencias e series unicampLuis Gustavo
 
Laboratório virtual eletrodinâmica
Laboratório virtual eletrodinâmicaLaboratório virtual eletrodinâmica
Laboratório virtual eletrodinâmicaVictor Said
 

Semelhante a Séries e Seqüências (18)

Formulario series
Formulario seriesFormulario series
Formulario series
 
Apostila de-series-de-potencias
Apostila de-series-de-potenciasApostila de-series-de-potencias
Apostila de-series-de-potencias
 
Trabalho equações
Trabalho equaçõesTrabalho equações
Trabalho equações
 
Sequencia
SequenciaSequencia
Sequencia
 
18 series de taylor e de maclaurin
18 series de taylor e de maclaurin18 series de taylor e de maclaurin
18 series de taylor e de maclaurin
 
2º/2012 - Prova 02 de Autômatos e Computabilidade
2º/2012 - Prova 02 de Autômatos e Computabilidade2º/2012 - Prova 02 de Autômatos e Computabilidade
2º/2012 - Prova 02 de Autômatos e Computabilidade
 
Equações trigonométricas
Equações trigonométricasEquações trigonométricas
Equações trigonométricas
 
Algebra
AlgebraAlgebra
Algebra
 
Matriz sistema-linear-e-determinante
Matriz sistema-linear-e-determinanteMatriz sistema-linear-e-determinante
Matriz sistema-linear-e-determinante
 
Potencia de expoente fraccionario
Potencia de expoente fraccionarioPotencia de expoente fraccionario
Potencia de expoente fraccionario
 
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenanEquações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
 
Notação científica completo
Notação científica   completoNotação científica   completo
Notação científica completo
 
Álgebra Li
Álgebra LiÁlgebra Li
Álgebra Li
 
Construcao racionais operacoes
Construcao racionais operacoesConstrucao racionais operacoes
Construcao racionais operacoes
 
Transformar potencias de expoente fraccionario
Transformar potencias de expoente fraccionarioTransformar potencias de expoente fraccionario
Transformar potencias de expoente fraccionario
 
Transformada_Z.pdf
Transformada_Z.pdfTransformada_Z.pdf
Transformada_Z.pdf
 
Sequencias e series unicamp
Sequencias e series   unicampSequencias e series   unicamp
Sequencias e series unicamp
 
Laboratório virtual eletrodinâmica
Laboratório virtual eletrodinâmicaLaboratório virtual eletrodinâmica
Laboratório virtual eletrodinâmica
 

Mais de Professor Emerson

Mais de Professor Emerson (7)

Gabarito matematica-ENADE 2008
Gabarito matematica-ENADE 2008Gabarito matematica-ENADE 2008
Gabarito matematica-ENADE 2008
 
Matematica-ENADE 2008
Matematica-ENADE 2008Matematica-ENADE 2008
Matematica-ENADE 2008
 
OBMEP-2010-Prova
OBMEP-2010-ProvaOBMEP-2010-Prova
OBMEP-2010-Prova
 
OBMEP-2010-Solução da Prova
OBMEP-2010-Solução da ProvaOBMEP-2010-Solução da Prova
OBMEP-2010-Solução da Prova
 
Manual Moodle
Manual MoodleManual Moodle
Manual Moodle
 
Raciocínio Lógico
Raciocínio LógicoRaciocínio Lógico
Raciocínio Lógico
 
Estatistica
EstatisticaEstatistica
Estatistica
 

Último

Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManuais Formação
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasCasa Ciências
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasillucasp132400
 
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxD9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxRonys4
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.silves15
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasRosalina Simão Nunes
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinhaMary Alvarenga
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxOsnilReis1
 
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...ArianeLima50
 
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumGÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumAugusto Costa
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?Rosalina Simão Nunes
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
ANTIGUIDADE CLÁSSICA - Grécia e Roma Antiga
ANTIGUIDADE CLÁSSICA - Grécia e Roma AntigaANTIGUIDADE CLÁSSICA - Grécia e Roma Antiga
ANTIGUIDADE CLÁSSICA - Grécia e Roma AntigaJúlio Sandes
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfAdrianaCunha84
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdfJorge Andrade
 

Último (20)

Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envio
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de Partículas
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasil
 
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxD9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinha
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
 
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
 
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumGÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
ANTIGUIDADE CLÁSSICA - Grécia e Roma Antiga
ANTIGUIDADE CLÁSSICA - Grécia e Roma AntigaANTIGUIDADE CLÁSSICA - Grécia e Roma Antiga
ANTIGUIDADE CLÁSSICA - Grécia e Roma Antiga
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdf
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf
 

Séries e Seqüências

  • 1. hppt://emersonmatematica.blogspot.com Blog Prof. Emerson 1 hppt://emersonmatematica.blogspot.com Séries e Seqüências SEQÜÊNCIAS Definição: Uma seqüência é uma função cujo domínio é o conjunto dos números inteiros positivos. O contradomínio de uma seqüência será considerado o conjunto dos números reais. A cada número inteiro positivo "n" corresponde um número real f(n). a1 = f(1) ; a2 = f(2) ; a3 = f(3) ; ... ; an = f(n) Notações: {an} = {a1, a2, a3, ..., an, ...} an é o termo genérico da seqüência. Exemplos: 1) 2) Se, quando n cresce, an se torna cada vez mais próximo de um número real L, diz-se que a seqüência {an} tem limite L (ou converge para L) e se escreve: Uma seqüência que não é convergente, é chamada de divergente.
  • 2. hppt://emersonmatematica.blogspot.com Blog Prof. Emerson 2 hppt://emersonmatematica.blogspot.com TEOREMA DO SANDUÍCHE Se {an}, {bn}, {cn} são seqüências tais que an bn cn para todo e se então SÉRIES Definição: Se {an} é uma seqüência, então: A soma infinita a1 + a2 + a3 + ... + an + ... = é chamada série. Cada número ai é um termo da série; an é o termo genérico de ordem n. Para definir a SOMA de infinitas parcelas, consideram-se as SOMAS PARCIAIS. S1 = a1 S2 = a1 + a2 S3 = a1 + a2 + a3 ------------------------ Sn = a1 + a2 + a3 + ... + an-1 + an E a SEQÜÊNCIA DAS SOMAS PARCIAIS S1, S2, S3, ..., Sn, ... Se essa seqüência tem limite S, então a série CONVERGE e sua soma é S. Ou seja: Se , então a série converge e sua soma é a1+a2+a3+...+an... = S Se a seqüência {Sn} não tem limite, então a série DIVERGE.
  • 3. hppt://emersonmatematica.blogspot.com Blog Prof. Emerson 3 hppt://emersonmatematica.blogspot.com TEOREMA Se a série converge, então OBS: * A recíproca desse teorema é falsa, isto é, existem séries cujo termo genérico tende a zero e que não são convergentes. * Vale a contrapositiva: "se o limite não é zero, então a série não converge", que constitui o: TESTE DA DIVERGÊNCIA Dada a série , diverge. SÉRIE GEOMÉTRICA TIPO: com a 0 r é a razão. Ex: 1 + 2 + 4 + 8 + 16 + ... a = 1 r = SOMA DE UMA SÉRIE GEOMÉTRICA A série geométrica Converge e tem soma se | r | < 1. Diverge se | r | 1. TESTE DA COMPARAÇÃO Sejam e duas séries de termos positivos. Então:
  • 4. hppt://emersonmatematica.blogspot.com Blog Prof. Emerson 4 hppt://emersonmatematica.blogspot.com * Se , sendo "c" um número real, então as séries são ambas convergentes ou ambas divergentes. * Se e se converge, então também converge. * Se e se diverge, então também diverge. OBS: Se an é expressa por uma fração, devemos considerar tanto no numerador, quanto no denominador de bn somente os termos de maior importância. Ex: Verifique se a série dada converge ou diverge: é uma série geométrica de razão 1/3, logo ela é convergente. Aplicando o teste da comparação, temos: Logo, conclui-se que a série CONVERGE. SÉRIE-P CONVERGE se p > 1 DIVERGE se p 1 Se p = 1, a série
  • 5. hppt://emersonmatematica.blogspot.com Blog Prof. Emerson 5 hppt://emersonmatematica.blogspot.com é chamada SÉRIE HARMÔNICA e, de acordo com o teorema, é divergente. SÉRIE ALTERNADA É da forma: SÉRIES DE POTÊNCIA Séries de potências de x: ou Séries de potência de (x-c): Por conveniência, vamos admitir que , mesmo quando x = 0. Ao substituir x por um número real, obtém-se uma série de termos constantes que pode convergir ou divergir. Em qualquer série de potências de x, a série converge sempre para x=0, pois se substituirmos x por 0 a série se reduz a a0. Na série de potências de (x-c), a série converge para x = c. Para determinar os outros valores de x para os quais a série converge, utiliza-se o teste da razão. TESTE DE LEIBINZ Uma série alternada CONVERGE se: * Seu termo genérico, em módulo, tende a zero.
  • 6. hppt://emersonmatematica.blogspot.com Blog Prof. Emerson 6 hppt://emersonmatematica.blogspot.com * A série dos módulos é decrescente. Há três maneiras diferentes de verificar se a série dos módulos é decrescente. a) verificar se, para todo "k" inteiro positivo, . b) verificar se, para todo "k" inteiro positivo, . c) considerar a função f(x) = f(n) e verificar o sinal de sua derivada. Se f'(x)<0, então f é decrescente. CONVERGÊNCIA ABSOLUTA Definição: Uma série é absolutamente convergente se a série dos módulos é convergente. Ex: A série alternada é absolutamente convergente, pois a série dos módulos é uma série-p, com p=2 > 1 e, portanto, convergente. TEOREMA Se uma série infinita é absolutamente convergente, então a série é convergente. TESTE DE D'ALEMBERT Seja uma série de termos não nulos e seja . Então: * Se L < 1, a série é ABSOLUTAMENTE CONVERGENTE. * Se L > 1, (incluindo L = ), a série é DIVERGENTE.
  • 7. hppt://emersonmatematica.blogspot.com Blog Prof. Emerson 7 hppt://emersonmatematica.blogspot.com * Se L = 1, o teste falha (nada se pode afirmar). RESUMO TESTE SÉRIE CONVERGÊNCIA ou DIVERGÊNCIA COMENTÁRIOS da DIVERGÊNCIA ou do N-ÉSIMO TERMO DIVERGE se Nada se pode afirmar se SÉRIE GEOMÉTRICA * CONVERGE e tem soma se | r | < 1. * DIVERGE se | r | 1 Útil para testes de comparação SÉRIE-P * CONVERGE se p > 1 * DIVERGE se p 1 Útil para testes de comparação da COMPARAÇÃO no limite e an > 0, bn > 0 * Se , , então ambas as séries CONVERGEM ou ambas DIVERGEM. * Se e CONVERGE, então CONVERGE. * Se e DIVERGE, então DIVERGE. A série de comparação , é, em geral, uma série geométrica ou uma série-p. Para achar bn, consideram-se apenas os termos de an que têm maior efeito. de LEIBNIZ ALTERNADA an > 0 CONVERGE se: * * A série dos módulos é decrescente. Aplicável somente a séries alternadas. Se o primeiro item é falso, aplica-se o TESTE DA DIVERGÊNCIA.