SlideShare uma empresa Scribd logo
1 de 37
Baixar para ler offline
TENSIÔMETRO: DISPOSITIVO
PRÁTICO PARA CONTROLE
DA IRRIGAÇÃO
Juscelino Antônio de Azevedo
Euzebio Medrado da Silva
Planaltina-DF
1999
Empresa Brasileira de Pesquisa Agropecuária
Centro de Pesquisa Agropecuária dos Cerrados
Ministério da Agricultura e do Abastecimento
CIRCULAR TÉCNICA nº 001 ISSN
Julho, 1999
Copyright  Embrapa – 1999
Embrapa Cerrados. Circular Técnica, 001
Exemplares desta publicação podem ser solicitados a:
Embrapa Cerrados
BR 020, km 18, Rodovia Brasília/Fortaleza
Caixa Postal 08223
CEP 73301-970 – Planaltina, DF
Telefone (061) 389-1171 – Fax (061) 389-2953
Tiragem: 200 exemplares
Comitê de Publicações:
Eduardo Delgado Assad (Presidente), Maria Alice
Bianchi, Daniel Pereira Guimarães, Leide Rovênia
Miranda de Andrade, Euzebio Medrado da Silva, Carlos
Roberto Spehar, José Luis Fernandes Zoby e Nilda Maria
da Cunha Sette (Secretária-Executiva).
Coordenação editorial: Nilda Maria da Cunha Sette
Revisão gramatical: Nilda Maria da Cunha Sette
Maria Helena Gonçalves Teixeira
Normalização bibliográfica: Dauí Antunes Correa
Diagramação e arte final: Jussara Flores de Oliveira
Capa: Chaile Cherne
Impressão e acabamento: Jaime Arbués Carneiro, Divino B. Souza
AZEVEDO, J.A. de; SILVA, E.M. da. Tensiômetro: dispositivo prático
para controle da irrigação. Planaltina: Embrapa Cerrados, 1999.
33p. (Embrapa Cerrados. Circular Técnica, 001).
1. . 2 .
3. . I. Embrapa Cer-
rados (Planaltina, DF). II. Título. III. Série.
CDD
Sumário
1. INTRODUÇÃO ....................................................................... 6
2. TIPOS DE TENSIÔMETROS E SEUS COMPONENTES .................... 8
3. FUNCIONAMENTO E PRINCÍPIO DE OPERAÇÃO ......................... 11
4. LEITURAS DOS TENSIÔMETROS .............................................. 12
5. PREPARAÇÃO DE TENSIÔMETROS PARA INSTALAÇÃO ............. 15
6. CUIDADOS NA UTILIZAÇÃO DO TENSIÔMETRO ........................ 17
7. PROBLEMAS COMUNS E MEDIDAS CORRETIVAS....................... 22
8. TESTES DOS TENSIÔMETROS ................................................. 24
9. CONFIABILIDADE DO TENSIÔMETRO ....................................... 30
10. USO DO TENSIÔMETRO PARA IRRIGAÇÃO ............................... 31
11. QUESTÕES FREQÜENTES DO USUÁRIO ..................................... 34
12. CONSIDERAÇÕES FINAIS ....................................................... 35
13. REFERÊNCIAS BIBLIOGRÁFICAS .............................................. 36
TENSIÔMETRO:
dispositivo prático para controle da irrigação
Juscelino Antônio de Azevedo1
Euzébio Medrado da Silva1
RESUMO - O trabalho contém informações relacionadas ao uso
do tensiômetro no controle de irrigação. São apresentados os
diversos tipos e componentes dos aparelhos, princípio de funcio-
namento e formas de calcular e interpretar os valores de poten-
cial matricial. Os principais cuidados e testes prévios necessários
para utilização são descritos, destacando os problemas mais co-
muns e medidas corretivas para funcionamento satisfatório. O
momento de aplicar as irrigações para culturas de grãos é infor-
mado, baseando-se em resultados de trabalhos experimentais nos
quais a tensão de água no solo era recomendada como forma de
controle de irrigação. Questões freqüentes apresentadas por
usuários de tensiômetros são descritas. Conclui-se que o uso
correto de tensiômetros no manejo da irrigação pode determinar
reduções de lâmina de água entre 25% e 40%, comparativamen-
te ao manejo sem critérios.
Palavras-chave: Tensiômetro, controle de irrigação, potencial ma-
tricial, água no solo, manejo de água, conser-
vação de água, culturas de grãos.
TENSIOMETER: a practical device for irrigation control
ABSTRACT - The work contains information about the use of
tensiometers for irrigation control. The various types and
components of the devices, principle of functioning and forms
to calculate and to interpret the values of matric potential are
* Apresentado no Curso sobre Manejo de pivô-central: otimização do uso de ener-
gia e água, realizado na Embrapa Arroz e Feijão, em Goiânia-GO, no período de 6
a 17/3/1995.
1
Pesquisadores da Embrapa Cerrados. km 18, BR 020, Cx. Postal 08223.
CEP 73301-970 - Planaltina-DF.
presented. The main cares and necessary previous tests for using
tensiometers are described, emphasizing the most common
problems and corrective measures for satisfactory functioning.
The moment to apply the irrigation for grain crops is given, based
on experimental results in which only water tension measurements
are recommended for irrigation control. Frequent questions
presented by users of tensiometers are described and discussed.
It is concluded that the correct use of tensiometers for handling
the irrigation management can result in reductions of water
applications between 25% and 40%, in comparision to handling
water without criteria.
Key words: Tensiometer, irrigation control, matric potential, soil
moisture, water management, water conservation,
grains crops.
1. INTRODUÇÃO
A prática da irrigação no Brasil e, em particular no Cerrado,
vem sendo realizada, de forma geral, sem um manejo adequado.
É de reconhecimento de técnicos e de irrigantes, a necessidade
de se adotar critérios racionais para administrar as irrigações,
visando à aplicação da água no momento certo e na quantidade
apropriada. As conseqüências benéficas previsíveis são: maior
produtividade das culturas e o uso mais racional da água, energia
e outros insumos.
Por meio de uma programação de irrigação, é possível ob-
ter-se rendimentos satisfatórios das culturas, suprindo integral-
mente suas necessidades de água nas diferentes fases de desen-
volvimento. Entretanto, somente a prática de irrigação não ga-
rante, por si, boa produtividade. A correta irrigação deve estar
conjugada com outras práticas recomendáveis como uso de semen-
tes de boa qualidade, variedades adaptadas, preparo apropriado
do solo, fertilização oportuna em níveis requeridos pela planta e
controle sistemático de doenças, pragas e ervas daninhas.
O acompanhamento do nível de umidade no solo, na zona
de maior atividade das raízes, tem sido recomendado com uma
das formas pertinentes para verificação da efetividade das irriga-
ções. Esse acompanhamento pode ser realizado, indiretamente,
por meio de medidas da tensão em que a água se encontra retida
no solo. Com essas medidas, tanto superficiais quanto em pro-
fundidade, é possível identificar se o solo está suficientemente
seco para o reinício das irrigações ou suficientemente úmido para
interromper sua aplicação. Essas medidas podem ser consegui-
das, facilmente, utilizando o tensiômetro.
O tensiômetro, aparelho desenvolvido por Gardner em 1922
(Camargo et al., 1982), é empregado para medir a tensão com
que a água está retida pelas partículas do solo, também conheci-
do por potencial matricial. Dispondo-se da relação entre o con-
teúdo de água no solo e a tensão em que ela se encontra pode-se
estabelecer, indiretamente, o teor de água no solo a partir das
leituras desse aparelho. Segundo Campbell & Mulla (1990), de
todos os métodos disponíveis para conhecimento dos potenciais
de água no solo em irrigação, o tensiômetro é talvez o mais
utilizado.
Em comparação com outros métodos de controle da irriga-
ção, o tensiômetro tem como vantagens: o conhecimento em tem-
po real da tensão de água no solo e, indiretamente do teor de água
no solo; utilização do conceito de potencial, medindo diretamente
a energia de retenção da água pelo solo; facilidade de uso, desde
que convenientemente instalado, mantido e interpretado; e custo
relativamente baixo e facilmente encontrado no comércio, possibi-
litando maior aplicação por parte de agricultores irrigantes.
O pouco conhecimento sobre o uso adequado do tensiôme-
tro, entre os técnicos e produtores, tem limitado, de forma acen-
tuada, o emprego de metodologias de manejo da irrigação, basea-
das em medidas do conteúdo de água no solo. Por isso, este
trabalho foi desenvolvido com o intuito de apresentar as infor-
mações essenciais sobre o tensiômetro, objetivando viabilizar seu
emprego eficiente no controle das irrigações em áreas de con-
centração da agricultura irrigada no Cerrado.
2. TIPOS DE TENSIÔMETROS E SEUS COMPONENTES
O tensiômetro consiste em uma cápsula porosa, geralmente
de cerâmica ou porcelana, conectada a um medidor de vácuo
(que pode ser um vacuômetro metálico ou um manômetro de
mercúrio) através de um tubo plástico ou de outro material, ten-
do todas as partes preenchidas com água. A cápsula porosa é
permeável à água e aos solutos na solução do solo, sendo, entre-
tanto, impermeável a gases e à matriz do solo, até determinado
nível de tensão. A Figura 1 mostra o esquema de um dos tipos de
tensiômetro com vacuômetro.
FIG. 1. Vista em perspectiva e partes componentes de um tensiômetro muni-
do de vacuômetro metálico (Azevedo et al., 1983a).
Esse aparelho pode ser construído com materiais e acessórios
facilmente encontrados no comércio.
Outro tipo de tensiômetro, também bastante utilizado, é o
de manômetro de mercúrio, conforme ilustrado na Figura 2.
FIG. 2. Esquema mostrando as partes componentes de um tensiômetro de
mercúrio (Azevedo et al., 1983a).
Detalhes construtivos de unidades caseiras dos tensiôme-
tros a vacuômetro e com manômetro de mercúrio podem ser
encontrados também em Cassel & Klute (1986) e Faria & Costa
(1987).
Além desses modelos mais comuns, existem ainda os de
leitura direta (Camargo et al., 1982) e o simplificado (Arruda et
al., 1986) que utilizam o comprimento da câmara gasosa forma-
da no tubo para estabelecer o nível de tensão. Outra versão de
tensiômetro, mais avançada em termos do processo de medida
da tensão estabelecida em seu interior, é o que usa um transmis-
sor eletrônico de pressão com saída digital. Segundo Campbell &
Mulla (1990), esse tensiômetro consiste unicamente numa cáp-
sula porosa e um tubo cheio de água com sua extremidade supe-
rior tampada com uma rolha de borracha. Durante a leitura, o
transmissor eletrônico é conectado ao tensiômetro por meio de
uma agulha inserida através da rolha, sensibilizando o medidor
imediatamente. Utilizando esse tipo de equipamento de leitura, é
possível atender a grande número de tensiômetros com um único
medidor. Novas versões permitem até o registro eletrônico dos
dados diretamente no computador. Outra variação de tensiôme-
tro é o de leitura rápida, utilizado de forma portátil, para realizar
medidas em vários locais do solo, fornecendo cada leitura em
aproximadamente 2 minutos.
O tensiômetro a vacuômetro tem o seu emprego mais reco-
mendado para o controle das irrigações no campo, em virtude de
sua simplicidade e facilidade de operação, comparado com o
tensiômetro provido de manômetro de mercúrio. No entanto, o
tensiômetro de mercúrio possui maior precisão nas leituras, po-
rém, sendo de manuseio mais difícil, é mais utilizado em traba-
lhos de pesquisa. Comercialmente, encontram-se disponíveis no
mercado brasileiro, tensiômetros com manômetro de mercúrio,
adaptados para uso no campo. Entretanto, é importante desta-
car a necessidade de realizar com cuidado a manipulação do mer-
cúrio procurando evitar possíveis derrames desse produto para o
solo.
3. FUNCIONAMENTO E PRINCÍPIO DE OPERAÇÃO
O funcionamento do tensiômetro é simples. Após estar com-
pletamente cheio de água e em solo saturado, nenhuma água
passará pela cápsula e não haverá vácuo. À medida que o solo
seca, a água sai do tensiômetro através da cápsula porosa, crian-
do um vácuo no interior do tubo equivalente à tensão da água
no solo. A magnitude desse vácuo será indicada no manômetro
conectado ao tensiômetro. De forma inversa, após uma chuva ou
irrigação, o teor de água no solo é aumentado e a água passa do
solo para o tensiômetro através da cápsula e as leituras de vácuo
ficam mais baixas (Azevedo et al., 1983a).
Em razão de seu princípio de operação, as leituras dos ten-
siômetros são a expressão da energia necessária para a água ser
liberada das superfícies das partículas do solo, onde se encontra
retida. Considerando que o tensiômetro mede energia, o tipo de
solo não determina diferenças apreciáveis. Assim, por exemplo,
uma leitura de 40 centibares (cbar) em solos argilosos e arenosos
significa que as plantas aí cultivadas estarão sujeitas à mesma
energia de retenção de água. No entanto, como os solos argilo-
sos retêm, naturalmente, mais água que os arenosos, para o mes-
mo nível de tensão, o tempo para esgotamento da água armaze-
nada no solo argiloso será maior que no arenoso. E, finalmente,
como as leituras do tensiômetro não dependem do tipo de solo,
sua utilização é feita sem necessidade de calibração.
O funcionamento do tensiômetro depende da formação de
vácuo em seu interior. Por causa disto, seu limite de operação
depende do ponto em que a água, sob vácuo, entra em processo
de cavitação, ou seja, começa haver a formação acentuada de
bolhas de vapor d’água dentro do sistema. Nesse momento, há
pronunciada redução da sensibilidade das medidas do tensiôme-
tro. O limite superior de medidas do tensiômetro diminui com a
altitude do lugar e com a temperatura da água. No entanto, em
geral, toma-se o valor de 80 cbar (80 kPa) como limite de leitura
máxima de operação do tensiômetro.
4. LEITURAS DOS TENSIÔMETROS
As unidades de medidas utilizadas nos tensiômetros são
bastante variadas. Elas podem vir expressas em unidades como
kilopascal (kPa), atmosfera (atm), bária (bar), centímetros de água
(cmH2
O), centibária (cbar), centímetros de mercúrio (cmHg), milí-
metros de mercúrio (mmHg). Essas unidades de pressão podem
ser relacionadas entre si utilizando a Tabela 1.
TABELA 1. Fatores para conversão de unidades de medida de
tensão.
1 atm = 1 bar x 1,0133 1 bar = 1 atm x 0,9868
1 atm = 1 cm H2
O x 1033,3 1 bar = 1 cm H2
O x 1019,91
1 atm = 1 cm de Hg x 76 1 bar = 1 cm Hg x 75,01
1 cm H2
O = 1 cm de Hg x 0,0736 1 cm de Hg = 1 cm H2
O x 13,6
1 cbar = 0,01 bar 1 bar = 100 cbar
1 cbar = 1 kPa 1 bar = 100 kPa
Normalmente, os tensiômetros vêm com escalas de medi-
das correspondentes a uma variação de 0 a 100 cbar. Por exem-
plo, se o tensiômetro vier com uma escala expressa em cbar, a
faixa de medidas será de 0 a 100 cbar. Nessa escala, a leitura
zero indica que o solo está saturado e que as raízes das plantas
podem sofrer pela falta de oxigênio. De 20 a 60 cbar, o teor de
água no solo é adequado à maioria das culturas.
4.1 Formas de cálculo
O valor da tensão de água no solo é calculado a partir da
leitura do tensiômetro e depende principalmente da profundidade
de instalação da cápsula porosa no solo. Para calcular os valores
de tensão em centibária ou kPa são usadas as seguintes expres-
sões:
a) Para tensiômetros de mercúrio:
Tas
= 0,098 (12,6h – h1
– h2
) (1)
onde Tas
= tensão de água no solo (cbar ou kPa); h = elevação
da coluna de mercúrio (cm); h1
= distância entre o nível do
mercúrio do reservatório e a superfície do solo (cm); h2
= distân-
cia da superfície do solo até o meio da cápsula porosa (cm).
b) Para tensiômetros a vacuômetro graduados em cbar ou
kPa e que não disponham de regulagem para zerar a
leitura inicial em relação ao seu comprimento.
Tas
= L – 0,098 h) (2)
onde Tas
=tensão de água no solo (cbar ou kPa); L =leitura do
vacuômetro (cbar ou kPa); h = altura da coluna de água no
interior do tensiômetro (cm).
c) Para tensiômetro a vacuômetro graduado em centíme-
tros de mercúrio (cmHg) e que não disponham de regu-
lagem para zerar a leitura inicial em relação ao seu com-
primento
Tas
= L – 0,0736 h) (3)
onde Tas
= tensão de água no solo (cbar ou kPa); L = leitura do
vacuômetro (cmHg); h = altura da coluna de água no interior do
tensiômetro (cm).
4.2 Interpretação das leituras
A Tabela 2 mostra como interpretar as leituras de tensiôme-
tros em função dos diferentes intervalos de valores dentro da
faixa de medida dos instrumentos.
TABELA 2. Guia para interpretação de leituras de tensiômetros.
Condição Leitura Interpretação
(cbar)
Saturação 0 Acumulação de água;
Nível freático raso;
Aeração prejudicada;
Tensiômetro com vazamento.
Capacidade de campo 6 a 10 Ponto para interrupção das irrigações.
Evitar percolação de água e lixiviação
de nutrientes.
Momento de aplicação 20 a 40 Irrigações dirigidas para produtividade
máxima e culturas de maior valor
econômico e solos arenosos;
40 a 50 Valor usual para iniciar irrigações;
Aeração assegurada;
Solos de textura média.
Intervalo de irrigação 50 a 60 Início de irrigação em solo argiloso;
Manutenção da umidade disponível.
Seco 70 a 80 Valor de início de deficit;
Alguma umidade disponível;
Risco de perda de produção.
Adaptado de James (1988)
Sabe-se que a tensão de água no solo varia com a umidade.
Contudo, em latossolo de cerrado a umidade varia muito pouco
quando a tensão passa de 100 para 1500 cbar, sendo que a
variação da umidade é maior na faixa de 0 a 100 cbar, engloban-
do a faixa útil do tensiômetro (0 a 85 cbar), compreendendo
mais de 65% da água disponível às plantas, segundo Azevedo et
al. (1983b). Daí a grande aplicação dos tensiômetros nesses so-
los tropicais.
5. PREPARAÇÃO DE TENSIÔMETROS PARA INSTALAÇÃO
Na preparação dos tensiômetros para instalação, deve-se
observar os seguintes procedimentos (T. W. Prosser Company
(s.d.):
a) Normalmente, os instrumentos são recebidos vazios. Após
retirá-los da embalagem de transporte, remova a proteção da
cápsula e preencha todos os aparelhos com água destilada ou
filtrada, visando à eliminação de impurezas, use água fervida e
fria para retirar os gases dissolvidos;
b) Depois da saturação, passe uma escova sobre a cápsula
utilizando-se de escova de cerdas rígidas. Com um pano, limpe a
cápsula (Figura 3a);
c) Com os tensiômetros sobre um suporte e no ar ambiente,
observe a formação de gotículas de água sobre a cápsula, indi-
cando que os aparelhos estão rigorosamente saturados;
d) Retorne as cápsulas para um recipiente com água livre de
ar e permita que elas fiquem imersas durante uma semana. Man-
tenha o nível de água no interior dos instrumentos para saturar
todas as superfícies plásticas interiores (Figura 3b);
e) Com as cápsulas submersas em água, aplique a bombi-
nha manual de vácuo até que as bolhas de ar desapareçam, na
subida, em direção ao medidor de vácuo. Mantenha o vácuo por
dois ou três minutos com a cápsula submersa em água, visando à
remoção de bolhas de ar dos poros da cápsula porosa (Figura 3c);
f) Se necessário, encha o tensiômetro com água, aperte a
tampa e coloque-o no ar ambiente ou em uma caixa com solo
seco. O ponteiro do vacuômetro elevar-se-á devido à saída de
água através da cápsula para o ar ou solo seco;
h) Com um pano, elimine a água que está sobre a cápsula
porosa e repita os passos de f a g. Leituras de 70 cbar ou maiores
serão obtidas devido à remoção de ar. O movimento do ponteiro
será mais rápido. Essa operação deverá ser repetida, caso a leitu-
ra de 70 ou mais cbar não seja obtida.
Cubra as cápsulas com papel toalha umedecido até que os
buracos no local de instalação sejam preparados. Os tensiôme-
tros estão prontos para serem instalados.
6. CUIDADOS NA UTILIZAÇÃO DO TENSIÔMETRO
O sucesso na utilização do tensiômetro, para monitoramen-
to da água no solo, depende muito da correta instalação do
instrumento em locais representativos da condição de extração
de água que se deseja acompanhar. Pontos importantes como
número de instrumentos, profundidade de instalação e freqüên-
cia de leituras devem ser cuidadosamente observados.
6.1 Número de instrumentos
Várias condições devem ser consideradas ao se estimar o
número de tensiômetros necessários para determinada área. Pre-
ferivelmente, usam-se pelo menos três tensiômetros para cada
área que se diferencia pelo solo, cultura, declividade, métodos e
freqüência de irrigação.
É recomendável o uso de tensiômetros em diferentes pro-
fundidades. Em solos irrigáveis de cerrado, onde geralmente o
sistema radicular de culturas anuais é superficial em virtude dos
sistemas de preparo, de correção e de fertilização adotados, acon-
selha-se o emprego de três a quatro baterias de três tensiômetros
cada uma, visando a uma média representativa. Devem ser locali-
zados a 10, 20 e 30 cm de profundidade, onde se encontra a
maior concentração de raízes efetivas na absorção de água de
culturas de grãos como trigo, feijão, e milho. Recomenda-se ins-
talar os tensiômetros no interior das fileiras das culturas (Figura
4) para permitir o registro das variações da tensão de água desde
o início do ciclo da planta no perfil de solo de 0 a 35 cm. A coloca-
ção do tensiômetro no interior da fileira de plantas não interfere
no livre trânsito de maquinário nas operações de cultivo.
FIG. 4. Detalhe da instalação de tensiômetros no interior da fileira da cultura
em três profundidades de solo (Adaptado de Azevedo et al., 1983a).
Preparação
do buraco
Inserção do
tensiômetro
Arremate
trado
6.2. Instalação
Geralmente, são escolhidos locais representativos da área
para instalação dos tensiômetros, devendo-se assinalar visivel-
mente suas posições para evitar danificá-los. A instalação do
tensiômetro deve ser feita de maneira que a cápsula fique na
região de maior concentração do sistema radicular (Figura 4).
Para uma boa instalação (Figuras 5 e 6), a preparação do
buraco, usando-se um trado ou um pedaço de cano de ferro ou
PVC rígido, deve ser realizada com o solo úmido e no mesmo
diâmetro do tubo do tensiômetro. É importante colocar a cápsu-
la na profundidade exata de instalação. Evite buracos maiores
que a profundidade estabelecida, para impedir a acumulação de
ar e de água nas imediações da cápsula, afetando a acurácia das
leituras. Deve-se comprimir levemente o solo da superfície ao
redor do tensiômetro, para que a água de irrigação ou de chuva
não alcance a cápsula pelo espaço deixado entre o tubo do tensiô-
metro e o solo (Figura 6). O contato da cápsula com o solo é
fundamental para leituras precisas. Se o buraco for bem maior
que o diâmetro do tubo, e a cápsula não ficar em contato perfei-
to com o solo, falsas leituras ocorrerão na faixa alta do vacuôme-
tro. Leituras inconsistentes na faixa baixa da escala do vacuôme-
tro podem acontecer, quando a água de chuva ou de irrigações
escorrer por entre o tubo e o solo, alcançando a cápsula.
Na instalação ou remoção dos aparelhos do solo, manuseie
os tensiômetros cuidadosamente. Não force o vacuômetro, mas
o tubo plástico para instalar e primeiro gire o instrumento antes
de removê-lo do solo, segurando-o bem firme. Após a instalação,
os aparelhos devem ser protegidos com uma cobertura (Figura
7), visando a minimizar flutuações de temperatura que podem ter
leve efeito sobre as leituras dos vacuômetros, bem como manter
um visor bem claro, facilitando as leituras e evitando a penetra-
ção de água que pode enferrujá-los.
FIG. 5. Aspectos do tensiômetro e do solo em condições apropriadas e não
adequadas de instalação (T.W. Prosser Company (s.d.).
FIG. 6. Seqüência da operação de instalação do tensiômetro no campo (Aze-
vedo et al., 1983a).
Tensiômetro na
profundidade da
cápsula
Instalação
inadequada
Instalação
apropriada
PROTEÇÃO DE TENSIÔMETROS
FIG. 7. Proteção de tensiômetro (T.W. Prosser Company (s.d.).
Embora o tensiômetro não seja um instrumento feito para
sofrer mudanças constantes, essas podem ocorrer em algumas
situações, como, por exemplo, antes da colheita de culturas
anuais. Um grande número de mudanças de locais não é aconse-
lhável, pois a cápsula porosa, além de frágil, pode ter reduzida
sua porosidade devido à cristalização de sais quando sua superfí-
cie torna-se seca.
6.3 Freqüência e registro de leituras
A freqüência de leituras depende da evapotranspiração em
relação à capacidade de armazenamento de água do solo. Em
10cm
20cm
30cm
PLANTA JOVEM
PLANTA ADULTA
condições de climas determinantes de elevado consumo hídrico,
elas são mais freqüentes, pois serão maiores e mais rápidas as
variações nos valores de tensão da água no solo. Três leituras, no
mínimo, devem ser feitas entre as irrigações. Devem ser mais
freqüentes quando se aproxima a irrigação. Essa rotina é reco-
mendável uma vez que permite o conhecimento, dia-a-dia, das
variações, inferindo as alterações na extração de água pela cultu-
ra ao longo de seu ciclo, fornecendo informações sobre a confia-
bilidade das leituras e permitindo ajustes ou serviços em tempo
hábil nos aparelhos.
O uso do tensiômetro torna-se mais eficiente quando as
leituras são anotadas e também colocadas em gráficos. A Figura
8 é um exemplo de como podem ser feitas essas anotações, pois,
além de mostrar o que aconteceu no passado, pode indicar a
necessidade ou não de irrigação nos próximos dias, pelo prolon-
gamento da linha que mostra a evolução das leituras.
7. PROBLEMAS COMUNS E MEDIDAS CORRETIVAS
De acordo com Azevedo et al. (1983a), o tensiômetro pode
apresentar alguns problemas como:
a) manômetro enferrujado em virtude da penetração de água
no seu interior;
b) vazamento na tampa, nas conexões ou no medidor, per-
mitindo a entrada de ar para dentro do aparelho;
c) a tampa rachada devido à exposição ao sol;
d) desaferição do ponteiro por causa da força com que este
volta e bate no pino de aferição. Isto acontece em razão da
retirada brusca da tampa quando a leitura é alta;
e) resposta lenta à variação de umidade em virtude da de-
posição de material do solo na superfície da cápsula.
FIG. 8. Interpretação das leituras de tensiômetros colocados em gráficos (Aze-
vedo et al., 1983a).
O tensiômetro instalado no campo pode avariar devido à
alta sucção ou problemas de vazamento. No caso da leitura do
manômetro, permanecer na posição zero, deve-se reenchê-lo com
água e submetê-lo a um teste de sucção (≤ 80 cbar), para verifi-
car se está havendo penetração de ar através das conexões ou
cápsula. No tensiômetro previamente seco, após reenchimento,
podem surgir pequenas bolhas de ar provenientes da cápsula,
que poderão ser vistas através da parte transparente do tensiô-
metro. Isso não significa defeito do aparelho; entretanto, se as
bolhas forem grandes e provenientes da parte interior do tensiô-
metro, remove-se o instrumento para reparo e provavelmente será
necessária nova cápsula.
A - Após uma irrigação bem
conduzida
B - Deste ponto é possível por meio
da linha AB, estimar quando será
necessária a próxima irrigação.
C - Antes da irrigação
D - Após uma irrigação mal conduzida, onde
a água não se distribuiu adequadamente
no solo
E - O solo tornou-se seco antecipadamente
em virtude de uma irrigação inadequada.
F - Após E houve uma irrigação adequada.
Se as bolhas originarem-se da seção do manômetro, esse
fato indica que pode haver vazamento no manômetro ou na co-
nexão dele com o tubo. Caso não se verifique formação de bo-
lhas grandes, possivelmente a tampa estará rachada ou indevida-
mente apertada. Uma limpeza do manômetro será necessária com
aplicação do óleo antioxidante. Novo manômetro será necessá-
rio, se o ponteiro do mostrador não apresentar livre movimento
por causa da presença de ferrugem.
8. TESTES DOS TENSIÔMETROS
Antes de se proceder à instalação dos tensiômetros no cam-
po, deve-se realizar uma série de testes para verificar a integrida-
de do instrumento em relação a possíveis vazamentos. É impor-
tante salientar que o tensiômetro, em pleno funcionamento, opera
à semelhança de uma câmara hermeticamente fechada e, portan-
to, a verificação de sua integridade funcional consiste em basi-
camente detectar possíveis pontos de entrada de ar na faixa nor-
mal de operação (0 a 80 cbar).
8.1 Verificação de vazamentos
O tensiômetro deve estar livre de vazamentos para se obter
um funcionamento desejável e, para isto, cada instrumento deve
ser testado antes de ser usado. Os testes podem ser conduzidos
mais facilmente, se a cápsula de cerâmica ou porcelana porosa já
estiver umedecida ou saturada pela imersão em água por um
período de quatro a sete dias antes do início do teste. Enche-se
completamente o instrumento com água fervida e fria, depois
bate-se levemente para ajudar a remoção do ar, reenche-se com
água se necessário, fecha-se a extremidade superior do tubo com
a tampa e expõe-se a cápsula ao ar livre para que a água evapore.
Após cinco a oito horas, o manômetro deverá registrar 50 ou
mais cbar sem que haja demasiado acúmulo de ar no topo do
tensiômetro.
Caso o tensiômetro não passe no teste inicial, deve-se re-
peti-lo. Se o resultado não for satisfatório nessa repetição do
teste, certamente haverá algum vazamento, caso contrário pro-
vavelmente estará em condições de ser usado no campo. Entre-
tanto, poderá ser feito um teste adicional, que corresponderá a
uma continuação do anterior. Quando o mostrador indicar leitu-
ras entre 40 e 70, envolve-se a cápsula em um pequeno saco de
plástico e fecha-se com uma tira de borracha ao redor do tubo,
para evitar a continuação do processo de evaporação. Se a leitu-
ra no próximo dia tiver sofrido variação em torno de seis ou mais
unidades da leitura do dia anterior, o tensiômetro foi satisfatório
no primeiro teste e não no segundo, indicando que algum vaza-
mento pode estar ocorrendo.
Quando se usam tensiômetros munidos de vacuômetros
metálicos e esses apresentam leituras iniciais diferentes de zero,
pode-se agir de duas maneiras: abrir a tampa do manômetro e
aferir o ponteiro ou anotar a leitura inicial que será subtraída das
leituras feitas no campo.
Nos tensiômetros munidos de manômetro de mercúrio, quan-
do esses possuírem escala móvel, o instrumento poderá ser zera-
do, movendo-se essa escala de modo que a leitura da elevação
do mercúrio já forneça a tensão na profundidade de instalação
da cápsula.
8.2 Pressão de borbulhamento da cápsula
São realizados testes de pressão de borbulhamento e con-
dutância hidráulica das cápsulas porosas para verificar sua ade-
quabilidade à construção ou promover sua substituição na ocor-
rência de danos às cápsulas. São testes normalmente feitos
pelos fabricantes ou fornecedores dos instrumentos para que o
cliente receba equipamentos confiáveis.
A pressão de borbulhamento é definida como a pressão
mínima de ar aplicada na cápsula saturada de água, na qual o ar
começaria a borbulhar através de seus poros. Essa pressão deve
ter valor mínimo de 100 cbar para o bom funcionamento do
tensiômetro, pois caso contrário ocorrerá a formação de bolhas
de ar no interior do tensiômetro, uma vez que até 100 cbar a
cápsula deve ser permeável apenas à água e aos íons.
Nesse teste, as cápsulas previamente saturadas são conec-
tadas, sem água no seu interior, a uma fonte de pressão contro-
lada e submetida a incrementos de pressão de 10 cbar até o
ponto em que surge a primeira bolha de ar através da cápsula. No
entanto, como a faixa de atuação prática do tensiômetro não
ultrapassa 80 a 85 cbar, utiliza-se como limite máximo de pres-
são de teste o valor de 100 cbar.
A pressão de borbulhamento está intimamente ligada ao
diâmetro do maior poro da cápsula. Essa relação pode ser expres-
sa pela seguinte equação (4):
(4)
onde P = pressão de borbulhamento (dinas/cm2
); t = tensão
superficial da água a 20 ºC (72,75 dinas/cm2
); R = raio do poro
(cm).
No caso da cápsula suportar a pressão máxima de teste de
1 atmosfera, (aproximadamente 100 cbar) sem borbulhamento,
pode-se concluir que o maior diâmetro de poro da cápsula apre-
senta valor menor que 2,88 x 10-4
cm, determinado pela equação
(4), sabendo que 1 atmosfera é igual a 1,03 x 106
dinas/cm2
:
8.3 Condutância hidráulica
A condutância hidráulica das cápsulas porosas dos tensiô-
metros pode ser entendida como a vazão de água através da
parede da cápsula por unidade de diferença de pressão. Sua di-
mensão, quando a pressão é dada em termos de carga hidráulica
(cm de água), é unidade de área por unidade de tempo (cm2
/s).
É de interesse utilizar cápsulas com condutância a mais alta
possível, pois essa propriedade determina a velocidade de res-
posta do tensiômetro às variações de umidade do solo.
A determinação experimental da condutância hidráulica das
cápsulas porosas pode ser realizada sob pressão atmosférica e
sob pressão adicional de ar de 150 cbar. A título de exemplo
serão apresentados os passos e os cálculos necessários para rea-
lização do teste de condutância sob pressão atmosférica. Con-
vém ressaltar que o uso da pressão acima da atmosférica diminui
o tempo de teste mas, por outro lado, exige uma fonte de pres-
são, manômetro e registros de controle.
Normalmente, na realização do teste de condutância sob
pressão atmosférica, necessita-se de um conjunto de materiais,
compreendendo tubo de plástico incolor de 1,30 m de compri-
mento e 9 mm de diâmetro interno; recipiente que simula o solo
com água mantido em nível constante (vertedouro ou cubeta);
pé com suporte de tábua, onde são presos os tubos de plástico;
acopladores das cápsulas com dois anéis de borracha para veda-
ção e fixação e recipiente coletor de água.
A determinação da condutância hidráulica é feita pelo mé-
todo da “carga variável”, tendo-se o seguinte procedimento: (a)
imersão das cápsulas porosas em água destilada durante 24 ho-
ras; (b) fixação da cápsula de teste, através da junta especial, ao
tubo de plástico; (c) cálculo da área da seção transversal do
tubo; (d) enchimento do tubo de água e imersão da cápsula em
um recipiente, como mostra a Figura 9.
FIG. 9. Desenho esquemático do conjunto para teste de condutância em cáp-
sulas porosas de tensiômetros.
Registra-se a posição inicial, H1
, que pode ser conveniente-
mente estabelecida em 100 cm, e permite-se um abaixamento
em torno de 10 cm, para um nível H2
. O tempo transcorrido,
(t2
– t1
), para o rebaixamento de H1
para H2
, será utilizado no
cálculo da condutância, indicado pela seguinte equação (4):
C = (4)
onde C = condutância hidráulica (cm2
/s); a = área da seção
transversal do tubo plástico (cm2
); H1
= potencial hidráulico ini-
( )H1
H2
a 1n
t2
- t1
cial (cm H2
O); H2
= potencial hidráulico final (cm H2
O); t1
=
tempo inicial (s), correspondente a H1
;
t2
= tempo final (s), cor-
respondente a H2
.
Como exemplo da aplicação dessa metodologia, apresenta-
se na Tabela 3, os resultados da avaliação da condutância hi-
dráulica de cinco cápsulas porosas:
TABELA 3. Condutância média de cápsulas porosas de tensiô-
metros, submetidas à pressão atmosférica.
Tempo em segundos (t2
– t1
)
Repetições H1
e H2
Cap Cap Cap Cap Cap
(cm) Nº 1 Nº 2 Nº 3 Nº 4 Nº 5
1ª 100 - 90 1180 835 735 910 915
2ª 90 - 80 1285 960 810 1070 910
3ª 80 - 70 1425 1020 745 1210 1005
Condutância
média (cm2
/s) 5,8x10-5
8,0x10-5
9,9x10-5
7,1x10-5
8,0x10-5
Exemplo de cálculo para a cápsula nº 1:
Considere um tubo com diâmetro de 9 mm, corresponden-
do a uma área transversal, a = 0,6362 cm2
. Com os valores de
tempo da Tabela 3, para a cápsula 1, pode-se obter os seguintes
resultados:
1ª repetição:
2ª repetição:
3ª repetição:
Média das três repetições
9. CONFIABILIDADE DO TENSIÔMETRO
É importante ressaltar que a aceitação do tensiômetro de-
pende do grau de confiança do usuário em relação às suas medi-
das. Essa, por sua vez, depende do perfeito entendimento de seu
funcionamento e do reconhecimento da necessidade de se reali-
zar manutenções periódicas. Muita resistência ao uso deriva do
desconhecimento do princípio de funcionamento e da correta
interpretação das leituras, bem como dos cuidados necessários à
manutenção.
9.1 Acurácia
Quando os tensiômetros são adequadamente instalados e
operados, propiciam leituras acuradas, sendo bastante sensíveis
na faixa de tensão de água no solo onde a maioria das culturas
se desenvolvem. Muitas vezes, são empregados como referência
para a avaliação de outros métodos de determinação da umidade
do solo. Segundo T.W. Prosser Company (s.d.), variações peque-
nas na umidade disponível resultantes de compactação ou tipo
do solo, densidade radicular e outros fatores podem ser facil-
mente registrados em vacuômetros sensíveis e dificilmente por
outros métodos. Para muitos trabalhos de pesquisa, em que me-
didas precisas da força de retenção e da umidade do solo são
exigidas, necessita-se do tensiômetro.
Em condições de campo porém, essa mesma acurácia de
controle pode não ser prática. Assim, variações de 10 a 15 cbar
em torno de um valor como 50 cbar, apropriado ao início da
irrigação de muitas culturas de grãos podem acontecer, tanto em
resposta às variações espaciais do potencial matricial no campo
como à maior sensibilidade do tensiômetro. A umidade do solo
estará mantida no intervalo para ótimo crescimento da cultura e
mesmo maiores variações podem ocorrer por curtos períodos sem
perda de produtividade ou qualidade do produto comercial.
9.2 Requisitos de manutenção no campo
Quando o solo está seco, cai o nível de água no interior dos
tensiômetros, criando um vácuo nesse espaço livre de água. Quan-
do ele umedece após irrigação ou chuva, o vácuo diminui deter-
minando elevação da água ao seu nível original. Entretanto, com
os ciclos de umedecimento e secagem, parte do ar vindo do solo
é preso na parte superior do tensiômetro, dificultando as respos-
tas dos aparelhos às variações na umidade do solo e levando a
leituras abaixo dos valores reais de tensão.
Assim, uma das tarefas de manutenção mais importantes é,
regularmente, retirar esse ar e substitui-lo por água. Para isso,
retira-se a borracha e/ou tampão na extremidade superior do tubo
e adiciona-se água previamente fervida e esfriada até completar
o nível. Nos tensiômetros de mercúrio, essa tarefa é realizada
com o auxílio de uma pisseta com rolha de borracha adaptável à
introdução de água no corpo do tensiômetro.
Esse serviço deve ser feito a cada três dias de leituras ou
sempre que haja suspeita de acumulação de ar. O melhor período
para abastecimento e retirada de ar dos tensiômetros é logo após
as irrigações quando o solo encontra-se bem úmido. Deve-se rea-
lizar essas tarefas após as leituras do dia. Nessas ocasiões, verifi-
ca-se também o nível de água no aparelho, completando-o quan-
do o rebaixamento desse nível estiver entre 2,5 e 5,0 cm abaixo
da extremidade superior do tensiômetro.
10. USO DO TENSIÔMETRO PARA IRRIGAÇÃO
O intervalo de medida do tensiômetro é importante para o
manejo da irrigação mesmo representando pequena fração do
intervalo de potenciais de água no qual as plantas conseguem
extrair a água do solo (Campbell & Mulla, 1990). Segundo esses
autores isso é verdade, porque a absorção de água pelas plantas
freqüentemente começa a cair abaixo da taxa de absorção po-
tencial antes que o potencial de água no solo na zona radicular
alcance valores fora do intervalo prático de medida do tensiôme-
tro.
10.1 Momento da aplicação de água
Melhor que um único valor de tensão para início das irriga-
ções, é preferível a recomendação de um intervalo ótimo de valo-
res para dar flexibilidade à operacionalização da irrigação pelo
irrigante. A Tabela 4 fornece informações das faixas de tensão
recomendadas para o momento de irrigação em algumas culturas
de grãos.
TABELA 4. Indicações de tensões de água no solo para início
das irrigações de algumas culturas anuais segundo
diversos autores.
Cultura Profundidade Tensão Referências
(cm) (cbar)
Trigo 10 60 Silva et al. (1993); Guerra et al. (1994)
10 40 Guerra (1995)
10 e 20* 32 - 97 Saad e Libardi (1992)
Feijão 10 50 Bernardo et al. (1970)
10 70 - 100 Figuerêdo et al. (1994)
15 25 - 30 Stone e Moreira (1986)
15 30 - 40 Silveira e Stone (1994)
15 60 Azevedo e Caixeta (1986)
15 60 Libardi e Saad (1994)
Milho 10 40 Guerra et al. (1997b)
- 70 Resende et al. (1990)
Soja 15 e 30* 37 - 63 Saad e Libardi (1992)
10 70 Guerra et al. (1997a)
Arroz 15 25 Embrapa/SPI (1992)
* O primeiro valor refere-se aos estádios iniciais de desenvolvimento vegetativo e o
segundo às fases posteriores do ciclo.
É interessante ressaltar que o momento de irrigar é sempre
dado pela média das leituras dos tensiômetros mais superficiais
em virtude da maior extração de água dessa camada, atingindo, em
menor tempo, os valores de tensão indicados na Tabela 4 acima.
10.2 Momento de interromper a irrigação
Pelas próprias leituras de tensiômetros pode-se determinar
o momento de interromper as irrigações, pois tão logo a água
penetre na cápsula de cerâmica as leituras dos vacuômetros co-
meçam a cair. De acordo a T.W. Prosser Company (s.d.), as irri-
gações podem ser suspensas quando os instrumentos mais rasos
alcançarem leituras na faixa de 0 a 10 cbar e os mais profundos
na faixa de 10 a 15 cbar, não sendo necessário irrigar até as
leituras serem zeradas. As leituras dos instrumentos começam a
se elevar após a drenagem da água gravitacional e início de ab-
sorção de água pelas raízes. Leituras contínuas na faixa de 0 a 20
cbar indicam solo úmido, devendo as irrigações serem cortadas
ou reduzidas até que essa situação seja corrigida. Esse procedi-
mento sofre as limitações relativas à velocidade de resposta do
tensiômetro e de redistribuição da água no perfil do solo e, por-
tanto, as possibilidades de erro na aplicação da lâmina desejada
são maiores do que realizando o corte com base no restabeleci-
mento completo do armazenamento.
Dispondo-se das curvas de retenção de água do perfil de
solo de interesse da irrigação e da eficiência de aplicação de
água do equipamento, é possível calcular, com relativa precisão,
as lâminas brutas de irrigação correspondentes ao deficit hídrico,
indicado em tempo real pelos tensiômetros de todas as profundi-
dades. Esse é o procedimento recomendado para determinar a
lâmina de água necessária e nesse caso o critério para parar as
irrigações passa a ser o tempo necessário para aplicação integral
dessa lâmina. Essa prática é considerada uma das alternativas
adequadas para garantir irrigações satisfatórias.
11. QUESTÕES FREQÜENTES DO USUÁRIO
São questões que normalmente aparecem quando os tensiô-
metros são usados pela primeira vez, de acordo a T. W. Prosser
Company (s.d.).
a) Leituras que não parecem refletir o conteúdo real de
água no solo
Acontece em razão de se julgar que o teor de água no solo
naquele momento é muito diferente do indicado pelo instrumen-
to. É um problema muito comum e fácil de ser superado, bastan-
do coletar amostras de solo na profundidade da cápsula e cons-
tatar, pelo tato ou por gravimetria, a precisão das leituras dos
tensiômetros. Um exemplo típico é o de agricultores que irrigam,
julgando que o solo está suficientemente seco, embora as leitu-
ras dos instrumentos, mesmo aqueles instalados na porção su-
perficial do solo, estejam nas faixas de baixa tensão, de zero a 20
cbar, indicando umidade adequada.
b) Resposta lenta a irrigações
São várias as razões para esse problema. As principais são:
baixa taxa de infiltração devido à compactação ou ao tipo de
solo; instrumentos vazios ou com ar em seu interior; cápsulas
muito usadas e parcialmente obstruídas por sais e movimento
emperrado do medidor em virtude de pequenos danos.
c) Necessidade freqüente de reabastecimento
Em geral, é indicativo de prática de irrigações deficientes,
com leituras nas faixas mais secas por períodos de vários dias.
Outras causas podem ser: a instalação inadequada com o solo
não convenientemente compactado em torno do tubo do apare-
lho; abertura na vedação que pode ser borracha danificada; e
falha na conexão do manômetro.
d) Maiores variações na taxa de mudança das leituras
São variações de umidade do solo que ocorrem devido a
condições de topografia e tipo de solo, bem como em razão da
variabilidade espacial das propriedades físico-hídricas do solo.
Essas variações acontecem normalmente e, sendo esperadas, exi-
gem maior número de aparelhos, visando à obtenção de leituras
médias realísticas que possibilitem melhor controle da irrigação.
12. CONSIDERAÇÕES FINAIS
Agricultores que usam corretamente os tensiômetros têm
obtido resultados satisfatórios de produtividade de culturas, muito
embora haja grandes variações quanto ao nível de adoção e da
obediência aos procedimentos recomendados para o melhor uso
dos instrumentos. Dependendo de condições de clima, do tipo
de cultura explorada e do manejo da irrigação, estima-se que a
utilização eficiente de tensiômetros pode determinar reduções
de 25% a 40% nas lâminas de água aplicadas nas irrigações,
comparativamente ao manejo sem critério, com a conseqüente
economia nos dispêndios de energia.
Considera-se que o custo de aproximadamente R$ 1.600,00
(um mil e seiscentos reais), de três ou quatro conjuntos de três
tensiômetros, necessários a uma unidade de irrigação, que pode
ser um pivô-central, é apenas marginal, quando comparado aos
benefícios que propiciam e aos elevados investimentos na aquisi-
ção de equipamentos de irrigação. Ressalta-se ainda que esse
custo pode ser reduzido, adquirindo-se as partes componentes e
construindo e testando o tensiômetro ou mesmo usando-o por
vários anos desde que sejam observados cuidados na manuten-
ção e conservação dos aparelhos.
A adoção da tensiometria, principalmente nos últimos anos,
por parcela crescente de produtores irrigantes tem sido, ao lado
dos trabalhos de pesquisa e de difusão de tecnologia de diferen-
tes instituições, um dos principais instrumentos para a amplia-
ção, em maior escala, do emprego desses aparelhos no controle
da irrigação. A necessidade cada vez maior de aumentar a produ-
ção por unidade de área cultivada, como forma de elevar os ní-
veis de rentabilidade da agricultura irrigada faz do tensiômetro
um instrumento útil para controle da irrigação, pelas valiosas
informações que fornece relacionadas à energia de retenção da
água pelo solo na zona de raízes.
13. REFERÊNCIAS BIBLIOGRÁFICAS
ARRUDA, F.B.; LELIS, L.G.L.; BARROS, S.B.M. de. Montagem e
teste do tensiômetro simplificado. Campinas: IAC, 1986.
10p. (IAC. Boletim Técnico, 223).
AZEVEDO, J.A. de; SILVA, E.M. da; RESENDE, M.; GUERRA,
A.F. Aspectos sobre o manejo da irrigação por aspersão para
o Cerrado. Planaltina: EMBRAPA-CPAC, 1983a. 53p.
(EMBRAPA-CPAC. Circular Técnica, 16).
AZEVEDO, J.A. de; FREIRE, J.C.; SILVA, E.M. da. Característi-
cas físico-hídricas importantes para a irrigação de solos re-
presentativos de Cerrados. In: CONGRESSO BRASILEIRO DE
ENGENHARIA AGRÍCOLA, 11., 1981. Brasília. Anais. Brasília:
SBEA, 1983b. p. 843-844.
AZEVEDO, J.A. de; CAIXETA, T.J. Irrigação do feijoeiro.
Planaltina: EMBRAPA-CPAC, 1986. 60p. (EMBRAPA-CPAC.
Circular Técnica, 23).
BERNARDO, S.; GALVÃO, J. D.; GUERINI, H.; CARVALHO, J. B.
de. Efeito dos níveis de água no solo sobre a produção do
feijoeiro. Seiva, Viçosa, v.30, n.71, p.7-13, 1970.
CAMARGO A.P.; GROHMANN, F.; CAMARGO, M.B.B. Tensiô-
metro simples de leitura direta. Pesquisa Agropecuária Brasi-
leira, Brasília, v.17, n.12, p.1963-1972, 1982.
CAMPBELL, G.S.; MULLA, D.J. Measurement of soil water content
and potential. In: STEWART, B.A.; NIELSEN, D.R., ed.
Irrigation of agricultural crops. Madison: ASA, 1990. p.127-
141. (Agronomy Monograph, 30).
CASSEL, D.K.; KLUTE, A. Water potential: tensiometry. In:
KLUTE, A., ed. Methods of soil analysis. 2ed. Madison: ASA/
Soil Science Society of America, 1986. Part 1. p. 563-596.
(ASA. Agronomy, 9).
DOORENBOS, J.; KASSAM, A.H. Yield response to water. Roma:
FAO, 1979. 193p. (Irrigation and Drainage Paper, 33)
EMBRAPA. Serviço de Produção de Informação (Brasília, DF). Re-
comendações técnicas para o cultivo do arroz em regiões
favorecidas: zonas 31, 36, 40, 64, 83 e 89. Brasília, 1992.
123p.
FARIA, R.T. de; COSTA, A.C.S. da. Tensiômetro: construção,
instalação e utilização. Londrina: IAPAR, 1987. 22p. (IAPAR.
Circular, 56).
FIGUERÊDO, S.F.; PERES, J.R.R.; MIYAZAWA, K.; LUCHIARI
JÚNIOR, A.; GUERRA, A.F.; AZEVEDO, J.A. de; ANDRADE,
L.M. de. Estabelecimento do momento de irrigação em fei-
jão, baseado em níveis de tensão de água em latossolo dos
cerrados. In: EMBRAPA. Centro de Pesquisa Agropecuária
dos Cerrados (Planaltina, DF). Relatório técnico anual do
Centro de Pesquisa Agropecuária dos Cerrados 1987/1990.
Planaltina, 1994. p.159-161.
GUERRA, A.F.; SILVA, E.M. da; AZEVEDO, J.A. de. Tensão de
água no solo: um critério viável para irrigação do trigo na
região do cerrado. Pesquisa Agropecuária Brasileira, Brasília,
v.29, n.4, p.631-636, 1994.
GUERRA, A.F. Manejo de irrigação do trigo para obtenção de
máxima produtividade na região dos cerrados. Pesquisa
Agropecuária Brasileira, Brasília, v.30, n.4, p.515-521, 1995.
GUERRA, A.F.; ANTONINI, J.C. dos A. Irrigação suplementar para
a cultura da soja. In: EMBRAPA. Centro de Pesquisa
Agropecuária dos Cerrados (Planaltina, DF). Relatório técni-
co anual do Centro de Pesquisa Agropecuária dos Cerrados
1991 a 1995. Planaltina, 1997a. p.99-100.
GUERRA, A.F.; ANTONINI, J.C. dos A.; SILVA, D.B. da;
RODRIGUES, G.C. Manejo de irrigação e fertilização
nitrogenada para a cultura do milho. In: EMBRAPA. Centro
de Pesquisa Agropecuária dos Cerrados (Planaltina, DF). Re-
latório técnico anual do Centro de Pesquisa Agropecuária
dos Cerrados 1991 a 1995. Planaltina, 1997b. p.97-98.
JAMES, L.G. Principles of farm irrigation system design. New
York: J. Wiley, 1988. 543p.
LIBARDI, P.L.; SAAD, A.M. Balanço hídrico em cultura de feijão
irrigada por pivô central em latossolo roxo. Revista Brasilei-
ra de Ciência do Solo, Campinas, v.18, n.3, p.529-532, 1994.
RESENDE, M.; FRANÇA, G.E. de; ALVES, V.M.C. Considerações
técnicas sobre a cultura do milho irrigado. Sete Lagoas:
EMBRAPA-CNPMS, 1990. 24p. (EMBRAPA-CNPMS. Docu-
mentos, 7).
SAAD, A.M.; LIBARDI, P.L. Uso prático do tensiômetro pelo agri-
cultor irrigante. São Paulo: IPT. 1992. 27p.
SILVA, D.B. da; ANDRADE, J.M.V. de; GUERRA, A.F. Informa-
ções básicas para o cultivo do trigo irrigado na região do
Brasil Central. Planaltina: EMBRAPA-CPAC, 1993. 31p.
(EMBRAPA-CPAC. Circular Técnica, 29).
SILVEIRA, P.M. da; STONE, L.F. Manejo da irrigação do feijoeiro:
uso do tensiômetro e avaliação do desempenho do pivô cen-
tral. Goiânia: EMBRAPA-CNPAF / Brasília: EMBRAPA-SPI,
1994. 46p. (EMBRAPA-CNPAF. Circular Técnica, 27).
STONE, L.F.; MOREIRA, J.A.A. Irrigação do feijoeiro. Goiânia:
EMBRAPA-CNPAF, 1986. 31p. (EMBRAPA-CNPAF. Circular
Técnica, 20).
T. W. PROSSER COMPANY (Arlington). Irrometer - moisture
indicator: reference book. Arlington, [s.d.]. 30p.

Mais conteúdo relacionado

Mais procurados

Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.
Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.
Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.Geagra UFG
 
Simulado manejo de plantas daninhas
Simulado manejo de plantas daninhasSimulado manejo de plantas daninhas
Simulado manejo de plantas daninhasAndré Fontana Weber
 
A CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZ
A CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZA CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZ
A CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZANTONIO INACIO FERRAZ
 
Manejo de pragas no sorgo e milheto
Manejo de pragas no sorgo e milhetoManejo de pragas no sorgo e milheto
Manejo de pragas no sorgo e milhetoGeagra UFG
 
Pragas quarentenárias em fruticultura
Pragas quarentenárias em fruticulturaPragas quarentenárias em fruticultura
Pragas quarentenárias em fruticulturaJuan Rodríguez
 
Propagacão de plantas frutiferas
Propagacão de plantas frutiferasPropagacão de plantas frutiferas
Propagacão de plantas frutiferaspaisagista
 
Manejo Integrado de Doenças no Algodão
Manejo Integrado de Doenças no AlgodãoManejo Integrado de Doenças no Algodão
Manejo Integrado de Doenças no AlgodãoGeagra UFG
 
MANEJO INTEGRADO DE DOENÇAS NA SOJA
MANEJO INTEGRADO DE DOENÇAS NA SOJA MANEJO INTEGRADO DE DOENÇAS NA SOJA
MANEJO INTEGRADO DE DOENÇAS NA SOJA Geagra UFG
 
Fungos fitopatogenicos
Fungos fitopatogenicosFungos fitopatogenicos
Fungos fitopatogenicosRogger Wins
 
Cultura do Amendoim
Cultura do AmendoimCultura do Amendoim
Cultura do AmendoimKiller Max
 
Apostila completa 2_parte_horticultura[1][1]
Apostila completa 2_parte_horticultura[1][1]Apostila completa 2_parte_horticultura[1][1]
Apostila completa 2_parte_horticultura[1][1]Antonio Davi Vaz Lima
 
INTRODUÇÃO À CULTURA DO FEIJÃO
INTRODUÇÃO À CULTURA DO FEIJÃOINTRODUÇÃO À CULTURA DO FEIJÃO
INTRODUÇÃO À CULTURA DO FEIJÃOGeagra UFG
 
MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA
MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA
MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA Geagra UFG
 
NUTRIÇÃO MINERAL DA SOJA
NUTRIÇÃO MINERAL DA SOJANUTRIÇÃO MINERAL DA SOJA
NUTRIÇÃO MINERAL DA SOJAGeagra UFG
 
Adubação cafeeiro - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...
Adubação cafeeiro  - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...Adubação cafeeiro  - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...
Adubação cafeeiro - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...Revista Cafeicultura
 

Mais procurados (20)

Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.
Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.
Manejo de mancha branca, cercosporiose, bipolares e diplodia no milho.
 
Simulado manejo de plantas daninhas
Simulado manejo de plantas daninhasSimulado manejo de plantas daninhas
Simulado manejo de plantas daninhas
 
Doenças do milho
Doenças do milhoDoenças do milho
Doenças do milho
 
A CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZ
A CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZA CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZ
A CULTURA DA CANA DE AÇÚCAR-ANTONIO INACIO FERRAZ
 
Manejo de pragas no sorgo e milheto
Manejo de pragas no sorgo e milhetoManejo de pragas no sorgo e milheto
Manejo de pragas no sorgo e milheto
 
Enxertia
EnxertiaEnxertia
Enxertia
 
Pragas quarentenárias em fruticultura
Pragas quarentenárias em fruticulturaPragas quarentenárias em fruticultura
Pragas quarentenárias em fruticultura
 
Propagacão de plantas frutiferas
Propagacão de plantas frutiferasPropagacão de plantas frutiferas
Propagacão de plantas frutiferas
 
Manejo Integrado de Doenças no Algodão
Manejo Integrado de Doenças no AlgodãoManejo Integrado de Doenças no Algodão
Manejo Integrado de Doenças no Algodão
 
Fitopatologia
FitopatologiaFitopatologia
Fitopatologia
 
MANEJO INTEGRADO DE DOENÇAS NA SOJA
MANEJO INTEGRADO DE DOENÇAS NA SOJA MANEJO INTEGRADO DE DOENÇAS NA SOJA
MANEJO INTEGRADO DE DOENÇAS NA SOJA
 
Fungos fitopatogenicos
Fungos fitopatogenicosFungos fitopatogenicos
Fungos fitopatogenicos
 
Técnicas de Propagação Vegetativa
Técnicas de Propagação Vegetativa Técnicas de Propagação Vegetativa
Técnicas de Propagação Vegetativa
 
Cultura do Amendoim
Cultura do AmendoimCultura do Amendoim
Cultura do Amendoim
 
Apostila completa 2_parte_horticultura[1][1]
Apostila completa 2_parte_horticultura[1][1]Apostila completa 2_parte_horticultura[1][1]
Apostila completa 2_parte_horticultura[1][1]
 
INTRODUÇÃO À CULTURA DO FEIJÃO
INTRODUÇÃO À CULTURA DO FEIJÃOINTRODUÇÃO À CULTURA DO FEIJÃO
INTRODUÇÃO À CULTURA DO FEIJÃO
 
MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA
MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA
MANEJO DE PLANTAS DANINHAS NA CULTURA DA SOJA
 
NUTRIÇÃO MINERAL DA SOJA
NUTRIÇÃO MINERAL DA SOJANUTRIÇÃO MINERAL DA SOJA
NUTRIÇÃO MINERAL DA SOJA
 
Ecofisiologia da cana
Ecofisiologia da canaEcofisiologia da cana
Ecofisiologia da cana
 
Adubação cafeeiro - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...
Adubação cafeeiro  - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...Adubação cafeeiro  - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...
Adubação cafeeiro - MANEJO DA FERTILIDADE DOS SOLOS E ADUBAÇÃO EQUILIBRADA P...
 

Destaque

Curva de retenção de água no solo
Curva de retenção de água no soloCurva de retenção de água no solo
Curva de retenção de água no soloMarcio Carneiro
 
18.ago ouro i 09.45_489_celg-d
18.ago ouro i 09.45_489_celg-d18.ago ouro i 09.45_489_celg-d
18.ago ouro i 09.45_489_celg-ditgfiles
 
Pivo Central - Irrigacao
Pivo Central - IrrigacaoPivo Central - Irrigacao
Pivo Central - IrrigacaoAlex Tosta
 
Fertirrega 2004 c indice 1
Fertirrega 2004 c indice 1Fertirrega 2004 c indice 1
Fertirrega 2004 c indice 1Armindo Rosa
 
Vida e saude tenha uma vida saudavel
Vida e saude tenha uma vida saudavelVida e saude tenha uma vida saudavel
Vida e saude tenha uma vida saudavelbarbiebruxadoleste
 
Contaminao guas-subterrneas-1233738259965242-3
Contaminao guas-subterrneas-1233738259965242-3Contaminao guas-subterrneas-1233738259965242-3
Contaminao guas-subterrneas-1233738259965242-3Renato Andrei
 
Culturas sem solo / hidroponia
Culturas sem solo / hidroponiaCulturas sem solo / hidroponia
Culturas sem solo / hidroponiaArmindo Rosa
 
Parte1irrigas 1
Parte1irrigas 1Parte1irrigas 1
Parte1irrigas 1ETEEPA
 
Monitor de Irrigação - Pivô Central
Monitor de Irrigação - Pivô CentralMonitor de Irrigação - Pivô Central
Monitor de Irrigação - Pivô CentralEduardo Peixoto
 
Apresentação seminário tatiane
Apresentação seminário tatianeApresentação seminário tatiane
Apresentação seminário tatianeMESTRADOAMBIENTAL
 
Alface hidroponica
Alface hidroponicaAlface hidroponica
Alface hidroponicaclaudiowolph
 
Trabalho De IrrigaçãO Pivot Central 03 3 A
Trabalho De IrrigaçãO Pivot Central  03 3 ATrabalho De IrrigaçãO Pivot Central  03 3 A
Trabalho De IrrigaçãO Pivot Central 03 3 AIF Baiano - Campus Catu
 
Metodo do cálculo de energia incidente segundo IEEE 1584
Metodo do cálculo de energia incidente segundo IEEE 1584Metodo do cálculo de energia incidente segundo IEEE 1584
Metodo do cálculo de energia incidente segundo IEEE 1584Henrique Andrade
 
Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...
Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...
Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...Alex Tosta
 
Hidroponia - dossie tecnico - a george,lamaral,sjaisingh
Hidroponia - dossie tecnico - a george,lamaral,sjaisinghHidroponia - dossie tecnico - a george,lamaral,sjaisingh
Hidroponia - dossie tecnico - a george,lamaral,sjaisinghJNR
 

Destaque (20)

Geo 04
Geo 04Geo 04
Geo 04
 
Curva de retenção de água no solo
Curva de retenção de água no soloCurva de retenção de água no solo
Curva de retenção de água no solo
 
18.ago ouro i 09.45_489_celg-d
18.ago ouro i 09.45_489_celg-d18.ago ouro i 09.45_489_celg-d
18.ago ouro i 09.45_489_celg-d
 
Pivo Central - Irrigacao
Pivo Central - IrrigacaoPivo Central - Irrigacao
Pivo Central - Irrigacao
 
Fertirrega 2004 c indice 1
Fertirrega 2004 c indice 1Fertirrega 2004 c indice 1
Fertirrega 2004 c indice 1
 
Vida e saude tenha uma vida saudavel
Vida e saude tenha uma vida saudavelVida e saude tenha uma vida saudavel
Vida e saude tenha uma vida saudavel
 
Contaminao guas-subterrneas-1233738259965242-3
Contaminao guas-subterrneas-1233738259965242-3Contaminao guas-subterrneas-1233738259965242-3
Contaminao guas-subterrneas-1233738259965242-3
 
Culturas sem solo / hidroponia
Culturas sem solo / hidroponiaCulturas sem solo / hidroponia
Culturas sem solo / hidroponia
 
Circul14
Circul14Circul14
Circul14
 
Parte1irrigas 1
Parte1irrigas 1Parte1irrigas 1
Parte1irrigas 1
 
Monitor de Irrigação - Pivô Central
Monitor de Irrigação - Pivô CentralMonitor de Irrigação - Pivô Central
Monitor de Irrigação - Pivô Central
 
Estimativa de aumento de produtividade com o uso de irrigação.
Estimativa de aumento de produtividade com o uso de irrigação. Estimativa de aumento de produtividade com o uso de irrigação.
Estimativa de aumento de produtividade com o uso de irrigação.
 
Apresentação seminário tatiane
Apresentação seminário tatianeApresentação seminário tatiane
Apresentação seminário tatiane
 
Alface hidroponica
Alface hidroponicaAlface hidroponica
Alface hidroponica
 
Trabalho De IrrigaçãO Pivot Central 03 3 A
Trabalho De IrrigaçãO Pivot Central  03 3 ATrabalho De IrrigaçãO Pivot Central  03 3 A
Trabalho De IrrigaçãO Pivot Central 03 3 A
 
Metodo do cálculo de energia incidente segundo IEEE 1584
Metodo do cálculo de energia incidente segundo IEEE 1584Metodo do cálculo de energia incidente segundo IEEE 1584
Metodo do cálculo de energia incidente segundo IEEE 1584
 
Irrigação
IrrigaçãoIrrigação
Irrigação
 
Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...
Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...
Defesa do Mestrado - TOLERÂNCIA AO DÉFICE HÍDRICO E EFICIÊNCIA DO USO DE ÁGUA...
 
33 irrigacao por_aspersao
33 irrigacao por_aspersao33 irrigacao por_aspersao
33 irrigacao por_aspersao
 
Hidroponia - dossie tecnico - a george,lamaral,sjaisingh
Hidroponia - dossie tecnico - a george,lamaral,sjaisinghHidroponia - dossie tecnico - a george,lamaral,sjaisingh
Hidroponia - dossie tecnico - a george,lamaral,sjaisingh
 

Semelhante a Tensiômetro dispositivo para controle irrigação

Agricultura de alta productividade (pt)
Agricultura de alta productividade (pt)Agricultura de alta productividade (pt)
Agricultura de alta productividade (pt)GeoSpatiumLab
 
Cap13 Hidrometria
Cap13 HidrometriaCap13 Hidrometria
Cap13 HidrometriaGrazi Ruas
 
Artigo Científico - Relação bifásica
Artigo Científico - Relação bifásicaArtigo Científico - Relação bifásica
Artigo Científico - Relação bifásicaIgor Guimarães
 
Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...
Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...
Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...Elton Mello
 
AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...
AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...
AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...Gabriella Ribeiro
 
Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...
Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...
Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...avani torres
 
Manual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdf
Manual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdfManual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdf
Manual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdfEDSONMARTINSCHAMBULE
 
Linígrafo
LinígrafoLinígrafo
Linígrafothiagono
 
Cartilha uso racional da água - Embrapa e Nestlé
Cartilha uso racional da água  - Embrapa e Nestlé Cartilha uso racional da água  - Embrapa e Nestlé
Cartilha uso racional da água - Embrapa e Nestlé Raquel Maria Cury Rodrigues
 
Uso sustentável de resíduos suíno
Uso sustentável de resíduos suínoUso sustentável de resíduos suíno
Uso sustentável de resíduos suínoLeandro Almeida
 
Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)
Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)
Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)PET. EAA
 
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...Biblioteca IFFluminense campus Macaé
 
Luiz eduardo-mendes
Luiz eduardo-mendesLuiz eduardo-mendes
Luiz eduardo-mendesBRUNO SAHARA
 
Vazão de gases, medição
Vazão de gases, mediçãoVazão de gases, medição
Vazão de gases, mediçãoWagner Branco
 

Semelhante a Tensiômetro dispositivo para controle irrigação (20)

Agricultura de alta productividade (pt)
Agricultura de alta productividade (pt)Agricultura de alta productividade (pt)
Agricultura de alta productividade (pt)
 
Cap13 Hidrometria
Cap13 HidrometriaCap13 Hidrometria
Cap13 Hidrometria
 
Artigo Científico - Relação bifásica
Artigo Científico - Relação bifásicaArtigo Científico - Relação bifásica
Artigo Científico - Relação bifásica
 
Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...
Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...
Dispositivos desaeradores, conhecidos como eliminadores, bloqueadores ou aliv...
 
AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...
AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...
AQDEURIM: UMA FERRAMENTA COMPUTACIONAL DESENVOLVIDA PARA AUXILIAR NA DETERMIN...
 
Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...
Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...
Manualde procedimentos tecnicoseadministrativosdeoutorgadedireitodeusoderecur...
 
Manual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdf
Manual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdfManual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdf
Manual_Pratico_de_Dimensionamento_Tecnico_de_Regadios.pdf
 
Linígrafo
LinígrafoLinígrafo
Linígrafo
 
Desafio4
Desafio4Desafio4
Desafio4
 
Cartilha uso racional da água - Embrapa e Nestlé
Cartilha uso racional da água  - Embrapa e Nestlé Cartilha uso racional da água  - Embrapa e Nestlé
Cartilha uso racional da água - Embrapa e Nestlé
 
Uso sustentável de resíduos suíno
Uso sustentável de resíduos suínoUso sustentável de resíduos suíno
Uso sustentável de resíduos suíno
 
Qualidade da Água
Qualidade da ÁguaQualidade da Água
Qualidade da Água
 
Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)
Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)
Tecnologias de irrigação para pastagem e cana-de-açúcar (Prof. Brasileiro)
 
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
 
Hidrometria
HidrometriaHidrometria
Hidrometria
 
Agricultura de Precisão - UFCG Pombal
Agricultura de Precisão - UFCG PombalAgricultura de Precisão - UFCG Pombal
Agricultura de Precisão - UFCG Pombal
 
Vazao
VazaoVazao
Vazao
 
V24n01a11
V24n01a11V24n01a11
V24n01a11
 
Luiz eduardo-mendes
Luiz eduardo-mendesLuiz eduardo-mendes
Luiz eduardo-mendes
 
Vazão de gases, medição
Vazão de gases, mediçãoVazão de gases, medição
Vazão de gases, medição
 

Mais de Rogger Wins

Relatório de estágio
Relatório de estágioRelatório de estágio
Relatório de estágioRogger Wins
 
Roteiro de diagnstico_e_avaliao_de_produo
Roteiro de diagnstico_e_avaliao_de_produoRoteiro de diagnstico_e_avaliao_de_produo
Roteiro de diagnstico_e_avaliao_de_produoRogger Wins
 
Química e fertilidade do solo unidades
Química e fertilidade do solo  unidadesQuímica e fertilidade do solo  unidades
Química e fertilidade do solo unidadesRogger Wins
 
Parecer técnico suinocultura
Parecer técnico suinoculturaParecer técnico suinocultura
Parecer técnico suinoculturaRogger Wins
 
Padrao respostas discursivas_agronomia_2010
Padrao respostas discursivas_agronomia_2010Padrao respostas discursivas_agronomia_2010
Padrao respostas discursivas_agronomia_2010Rogger Wins
 
Normalizacao monografia bib_iel_122008
Normalizacao monografia bib_iel_122008Normalizacao monografia bib_iel_122008
Normalizacao monografia bib_iel_122008Rogger Wins
 
Manual de adubacao_2004_versao_internet
Manual de adubacao_2004_versao_internetManual de adubacao_2004_versao_internet
Manual de adubacao_2004_versao_internetRogger Wins
 
Parecer técnico suinocultura
Parecer técnico suinoculturaParecer técnico suinocultura
Parecer técnico suinoculturaRogger Wins
 
Virus como agentes de doencas de plantas em pdf
Virus como agentes de doencas de plantas em pdfVirus como agentes de doencas de plantas em pdf
Virus como agentes de doencas de plantas em pdfRogger Wins
 
Variabilidade fenotipica soja
Variabilidade fenotipica sojaVariabilidade fenotipica soja
Variabilidade fenotipica sojaRogger Wins
 
Soja artigo insetos
Soja artigo insetosSoja artigo insetos
Soja artigo insetosRogger Wins
 
Seminário aditivos ftpa pronto
Seminário aditivos ftpa prontoSeminário aditivos ftpa pronto
Seminário aditivos ftpa prontoRogger Wins
 
Reprodução das bactérias
Reprodução das bactériasReprodução das bactérias
Reprodução das bactériasRogger Wins
 
Referencias bibliograficas
Referencias bibliograficasReferencias bibliograficas
Referencias bibliograficasRogger Wins
 
Plan experimentos
Plan experimentosPlan experimentos
Plan experimentosRogger Wins
 

Mais de Rogger Wins (20)

Relatório de estágio
Relatório de estágioRelatório de estágio
Relatório de estágio
 
Roteiro de diagnstico_e_avaliao_de_produo
Roteiro de diagnstico_e_avaliao_de_produoRoteiro de diagnstico_e_avaliao_de_produo
Roteiro de diagnstico_e_avaliao_de_produo
 
Química e fertilidade do solo unidades
Química e fertilidade do solo  unidadesQuímica e fertilidade do solo  unidades
Química e fertilidade do solo unidades
 
Prova n2
Prova n2Prova n2
Prova n2
 
Parecer técnico suinocultura
Parecer técnico suinoculturaParecer técnico suinocultura
Parecer técnico suinocultura
 
Padrao respostas discursivas_agronomia_2010
Padrao respostas discursivas_agronomia_2010Padrao respostas discursivas_agronomia_2010
Padrao respostas discursivas_agronomia_2010
 
Normalizacao monografia bib_iel_122008
Normalizacao monografia bib_iel_122008Normalizacao monografia bib_iel_122008
Normalizacao monografia bib_iel_122008
 
Manual de adubacao_2004_versao_internet
Manual de adubacao_2004_versao_internetManual de adubacao_2004_versao_internet
Manual de adubacao_2004_versao_internet
 
Parecer técnico suinocultura
Parecer técnico suinoculturaParecer técnico suinocultura
Parecer técnico suinocultura
 
Agronomia 2010
Agronomia 2010Agronomia 2010
Agronomia 2010
 
Virus como agentes de doencas de plantas em pdf
Virus como agentes de doencas de plantas em pdfVirus como agentes de doencas de plantas em pdf
Virus como agentes de doencas de plantas em pdf
 
Variabilidade fenotipica soja
Variabilidade fenotipica sojaVariabilidade fenotipica soja
Variabilidade fenotipica soja
 
V53n4a16
V53n4a16V53n4a16
V53n4a16
 
V31n4a15
V31n4a15V31n4a15
V31n4a15
 
Soja artigo insetos
Soja artigo insetosSoja artigo insetos
Soja artigo insetos
 
Seminário aditivos ftpa pronto
Seminário aditivos ftpa prontoSeminário aditivos ftpa pronto
Seminário aditivos ftpa pronto
 
Rt60001
Rt60001Rt60001
Rt60001
 
Reprodução das bactérias
Reprodução das bactériasReprodução das bactérias
Reprodução das bactérias
 
Referencias bibliograficas
Referencias bibliograficasReferencias bibliograficas
Referencias bibliograficas
 
Plan experimentos
Plan experimentosPlan experimentos
Plan experimentos
 

Tensiômetro dispositivo para controle irrigação

  • 1. TENSIÔMETRO: DISPOSITIVO PRÁTICO PARA CONTROLE DA IRRIGAÇÃO Juscelino Antônio de Azevedo Euzebio Medrado da Silva Planaltina-DF 1999 Empresa Brasileira de Pesquisa Agropecuária Centro de Pesquisa Agropecuária dos Cerrados Ministério da Agricultura e do Abastecimento CIRCULAR TÉCNICA nº 001 ISSN Julho, 1999
  • 2. Copyright  Embrapa – 1999 Embrapa Cerrados. Circular Técnica, 001 Exemplares desta publicação podem ser solicitados a: Embrapa Cerrados BR 020, km 18, Rodovia Brasília/Fortaleza Caixa Postal 08223 CEP 73301-970 – Planaltina, DF Telefone (061) 389-1171 – Fax (061) 389-2953 Tiragem: 200 exemplares Comitê de Publicações: Eduardo Delgado Assad (Presidente), Maria Alice Bianchi, Daniel Pereira Guimarães, Leide Rovênia Miranda de Andrade, Euzebio Medrado da Silva, Carlos Roberto Spehar, José Luis Fernandes Zoby e Nilda Maria da Cunha Sette (Secretária-Executiva). Coordenação editorial: Nilda Maria da Cunha Sette Revisão gramatical: Nilda Maria da Cunha Sette Maria Helena Gonçalves Teixeira Normalização bibliográfica: Dauí Antunes Correa Diagramação e arte final: Jussara Flores de Oliveira Capa: Chaile Cherne Impressão e acabamento: Jaime Arbués Carneiro, Divino B. Souza AZEVEDO, J.A. de; SILVA, E.M. da. Tensiômetro: dispositivo prático para controle da irrigação. Planaltina: Embrapa Cerrados, 1999. 33p. (Embrapa Cerrados. Circular Técnica, 001). 1. . 2 . 3. . I. Embrapa Cer- rados (Planaltina, DF). II. Título. III. Série. CDD
  • 3. Sumário 1. INTRODUÇÃO ....................................................................... 6 2. TIPOS DE TENSIÔMETROS E SEUS COMPONENTES .................... 8 3. FUNCIONAMENTO E PRINCÍPIO DE OPERAÇÃO ......................... 11 4. LEITURAS DOS TENSIÔMETROS .............................................. 12 5. PREPARAÇÃO DE TENSIÔMETROS PARA INSTALAÇÃO ............. 15 6. CUIDADOS NA UTILIZAÇÃO DO TENSIÔMETRO ........................ 17 7. PROBLEMAS COMUNS E MEDIDAS CORRETIVAS....................... 22 8. TESTES DOS TENSIÔMETROS ................................................. 24 9. CONFIABILIDADE DO TENSIÔMETRO ....................................... 30 10. USO DO TENSIÔMETRO PARA IRRIGAÇÃO ............................... 31 11. QUESTÕES FREQÜENTES DO USUÁRIO ..................................... 34 12. CONSIDERAÇÕES FINAIS ....................................................... 35 13. REFERÊNCIAS BIBLIOGRÁFICAS .............................................. 36
  • 4. TENSIÔMETRO: dispositivo prático para controle da irrigação Juscelino Antônio de Azevedo1 Euzébio Medrado da Silva1 RESUMO - O trabalho contém informações relacionadas ao uso do tensiômetro no controle de irrigação. São apresentados os diversos tipos e componentes dos aparelhos, princípio de funcio- namento e formas de calcular e interpretar os valores de poten- cial matricial. Os principais cuidados e testes prévios necessários para utilização são descritos, destacando os problemas mais co- muns e medidas corretivas para funcionamento satisfatório. O momento de aplicar as irrigações para culturas de grãos é infor- mado, baseando-se em resultados de trabalhos experimentais nos quais a tensão de água no solo era recomendada como forma de controle de irrigação. Questões freqüentes apresentadas por usuários de tensiômetros são descritas. Conclui-se que o uso correto de tensiômetros no manejo da irrigação pode determinar reduções de lâmina de água entre 25% e 40%, comparativamen- te ao manejo sem critérios. Palavras-chave: Tensiômetro, controle de irrigação, potencial ma- tricial, água no solo, manejo de água, conser- vação de água, culturas de grãos. TENSIOMETER: a practical device for irrigation control ABSTRACT - The work contains information about the use of tensiometers for irrigation control. The various types and components of the devices, principle of functioning and forms to calculate and to interpret the values of matric potential are * Apresentado no Curso sobre Manejo de pivô-central: otimização do uso de ener- gia e água, realizado na Embrapa Arroz e Feijão, em Goiânia-GO, no período de 6 a 17/3/1995. 1 Pesquisadores da Embrapa Cerrados. km 18, BR 020, Cx. Postal 08223. CEP 73301-970 - Planaltina-DF.
  • 5. presented. The main cares and necessary previous tests for using tensiometers are described, emphasizing the most common problems and corrective measures for satisfactory functioning. The moment to apply the irrigation for grain crops is given, based on experimental results in which only water tension measurements are recommended for irrigation control. Frequent questions presented by users of tensiometers are described and discussed. It is concluded that the correct use of tensiometers for handling the irrigation management can result in reductions of water applications between 25% and 40%, in comparision to handling water without criteria. Key words: Tensiometer, irrigation control, matric potential, soil moisture, water management, water conservation, grains crops. 1. INTRODUÇÃO A prática da irrigação no Brasil e, em particular no Cerrado, vem sendo realizada, de forma geral, sem um manejo adequado. É de reconhecimento de técnicos e de irrigantes, a necessidade de se adotar critérios racionais para administrar as irrigações, visando à aplicação da água no momento certo e na quantidade apropriada. As conseqüências benéficas previsíveis são: maior produtividade das culturas e o uso mais racional da água, energia e outros insumos. Por meio de uma programação de irrigação, é possível ob- ter-se rendimentos satisfatórios das culturas, suprindo integral- mente suas necessidades de água nas diferentes fases de desen- volvimento. Entretanto, somente a prática de irrigação não ga- rante, por si, boa produtividade. A correta irrigação deve estar conjugada com outras práticas recomendáveis como uso de semen- tes de boa qualidade, variedades adaptadas, preparo apropriado do solo, fertilização oportuna em níveis requeridos pela planta e controle sistemático de doenças, pragas e ervas daninhas.
  • 6. O acompanhamento do nível de umidade no solo, na zona de maior atividade das raízes, tem sido recomendado com uma das formas pertinentes para verificação da efetividade das irriga- ções. Esse acompanhamento pode ser realizado, indiretamente, por meio de medidas da tensão em que a água se encontra retida no solo. Com essas medidas, tanto superficiais quanto em pro- fundidade, é possível identificar se o solo está suficientemente seco para o reinício das irrigações ou suficientemente úmido para interromper sua aplicação. Essas medidas podem ser consegui- das, facilmente, utilizando o tensiômetro. O tensiômetro, aparelho desenvolvido por Gardner em 1922 (Camargo et al., 1982), é empregado para medir a tensão com que a água está retida pelas partículas do solo, também conheci- do por potencial matricial. Dispondo-se da relação entre o con- teúdo de água no solo e a tensão em que ela se encontra pode-se estabelecer, indiretamente, o teor de água no solo a partir das leituras desse aparelho. Segundo Campbell & Mulla (1990), de todos os métodos disponíveis para conhecimento dos potenciais de água no solo em irrigação, o tensiômetro é talvez o mais utilizado. Em comparação com outros métodos de controle da irriga- ção, o tensiômetro tem como vantagens: o conhecimento em tem- po real da tensão de água no solo e, indiretamente do teor de água no solo; utilização do conceito de potencial, medindo diretamente a energia de retenção da água pelo solo; facilidade de uso, desde que convenientemente instalado, mantido e interpretado; e custo relativamente baixo e facilmente encontrado no comércio, possibi- litando maior aplicação por parte de agricultores irrigantes. O pouco conhecimento sobre o uso adequado do tensiôme- tro, entre os técnicos e produtores, tem limitado, de forma acen- tuada, o emprego de metodologias de manejo da irrigação, basea- das em medidas do conteúdo de água no solo. Por isso, este trabalho foi desenvolvido com o intuito de apresentar as infor- mações essenciais sobre o tensiômetro, objetivando viabilizar seu emprego eficiente no controle das irrigações em áreas de con- centração da agricultura irrigada no Cerrado.
  • 7. 2. TIPOS DE TENSIÔMETROS E SEUS COMPONENTES O tensiômetro consiste em uma cápsula porosa, geralmente de cerâmica ou porcelana, conectada a um medidor de vácuo (que pode ser um vacuômetro metálico ou um manômetro de mercúrio) através de um tubo plástico ou de outro material, ten- do todas as partes preenchidas com água. A cápsula porosa é permeável à água e aos solutos na solução do solo, sendo, entre- tanto, impermeável a gases e à matriz do solo, até determinado nível de tensão. A Figura 1 mostra o esquema de um dos tipos de tensiômetro com vacuômetro. FIG. 1. Vista em perspectiva e partes componentes de um tensiômetro muni- do de vacuômetro metálico (Azevedo et al., 1983a).
  • 8. Esse aparelho pode ser construído com materiais e acessórios facilmente encontrados no comércio. Outro tipo de tensiômetro, também bastante utilizado, é o de manômetro de mercúrio, conforme ilustrado na Figura 2. FIG. 2. Esquema mostrando as partes componentes de um tensiômetro de mercúrio (Azevedo et al., 1983a).
  • 9. Detalhes construtivos de unidades caseiras dos tensiôme- tros a vacuômetro e com manômetro de mercúrio podem ser encontrados também em Cassel & Klute (1986) e Faria & Costa (1987). Além desses modelos mais comuns, existem ainda os de leitura direta (Camargo et al., 1982) e o simplificado (Arruda et al., 1986) que utilizam o comprimento da câmara gasosa forma- da no tubo para estabelecer o nível de tensão. Outra versão de tensiômetro, mais avançada em termos do processo de medida da tensão estabelecida em seu interior, é o que usa um transmis- sor eletrônico de pressão com saída digital. Segundo Campbell & Mulla (1990), esse tensiômetro consiste unicamente numa cáp- sula porosa e um tubo cheio de água com sua extremidade supe- rior tampada com uma rolha de borracha. Durante a leitura, o transmissor eletrônico é conectado ao tensiômetro por meio de uma agulha inserida através da rolha, sensibilizando o medidor imediatamente. Utilizando esse tipo de equipamento de leitura, é possível atender a grande número de tensiômetros com um único medidor. Novas versões permitem até o registro eletrônico dos dados diretamente no computador. Outra variação de tensiôme- tro é o de leitura rápida, utilizado de forma portátil, para realizar medidas em vários locais do solo, fornecendo cada leitura em aproximadamente 2 minutos. O tensiômetro a vacuômetro tem o seu emprego mais reco- mendado para o controle das irrigações no campo, em virtude de sua simplicidade e facilidade de operação, comparado com o tensiômetro provido de manômetro de mercúrio. No entanto, o tensiômetro de mercúrio possui maior precisão nas leituras, po- rém, sendo de manuseio mais difícil, é mais utilizado em traba- lhos de pesquisa. Comercialmente, encontram-se disponíveis no mercado brasileiro, tensiômetros com manômetro de mercúrio, adaptados para uso no campo. Entretanto, é importante desta- car a necessidade de realizar com cuidado a manipulação do mer- cúrio procurando evitar possíveis derrames desse produto para o solo.
  • 10. 3. FUNCIONAMENTO E PRINCÍPIO DE OPERAÇÃO O funcionamento do tensiômetro é simples. Após estar com- pletamente cheio de água e em solo saturado, nenhuma água passará pela cápsula e não haverá vácuo. À medida que o solo seca, a água sai do tensiômetro através da cápsula porosa, crian- do um vácuo no interior do tubo equivalente à tensão da água no solo. A magnitude desse vácuo será indicada no manômetro conectado ao tensiômetro. De forma inversa, após uma chuva ou irrigação, o teor de água no solo é aumentado e a água passa do solo para o tensiômetro através da cápsula e as leituras de vácuo ficam mais baixas (Azevedo et al., 1983a). Em razão de seu princípio de operação, as leituras dos ten- siômetros são a expressão da energia necessária para a água ser liberada das superfícies das partículas do solo, onde se encontra retida. Considerando que o tensiômetro mede energia, o tipo de solo não determina diferenças apreciáveis. Assim, por exemplo, uma leitura de 40 centibares (cbar) em solos argilosos e arenosos significa que as plantas aí cultivadas estarão sujeitas à mesma energia de retenção de água. No entanto, como os solos argilo- sos retêm, naturalmente, mais água que os arenosos, para o mes- mo nível de tensão, o tempo para esgotamento da água armaze- nada no solo argiloso será maior que no arenoso. E, finalmente, como as leituras do tensiômetro não dependem do tipo de solo, sua utilização é feita sem necessidade de calibração. O funcionamento do tensiômetro depende da formação de vácuo em seu interior. Por causa disto, seu limite de operação depende do ponto em que a água, sob vácuo, entra em processo de cavitação, ou seja, começa haver a formação acentuada de bolhas de vapor d’água dentro do sistema. Nesse momento, há pronunciada redução da sensibilidade das medidas do tensiôme- tro. O limite superior de medidas do tensiômetro diminui com a altitude do lugar e com a temperatura da água. No entanto, em geral, toma-se o valor de 80 cbar (80 kPa) como limite de leitura máxima de operação do tensiômetro.
  • 11. 4. LEITURAS DOS TENSIÔMETROS As unidades de medidas utilizadas nos tensiômetros são bastante variadas. Elas podem vir expressas em unidades como kilopascal (kPa), atmosfera (atm), bária (bar), centímetros de água (cmH2 O), centibária (cbar), centímetros de mercúrio (cmHg), milí- metros de mercúrio (mmHg). Essas unidades de pressão podem ser relacionadas entre si utilizando a Tabela 1. TABELA 1. Fatores para conversão de unidades de medida de tensão. 1 atm = 1 bar x 1,0133 1 bar = 1 atm x 0,9868 1 atm = 1 cm H2 O x 1033,3 1 bar = 1 cm H2 O x 1019,91 1 atm = 1 cm de Hg x 76 1 bar = 1 cm Hg x 75,01 1 cm H2 O = 1 cm de Hg x 0,0736 1 cm de Hg = 1 cm H2 O x 13,6 1 cbar = 0,01 bar 1 bar = 100 cbar 1 cbar = 1 kPa 1 bar = 100 kPa Normalmente, os tensiômetros vêm com escalas de medi- das correspondentes a uma variação de 0 a 100 cbar. Por exem- plo, se o tensiômetro vier com uma escala expressa em cbar, a faixa de medidas será de 0 a 100 cbar. Nessa escala, a leitura zero indica que o solo está saturado e que as raízes das plantas podem sofrer pela falta de oxigênio. De 20 a 60 cbar, o teor de água no solo é adequado à maioria das culturas. 4.1 Formas de cálculo O valor da tensão de água no solo é calculado a partir da leitura do tensiômetro e depende principalmente da profundidade de instalação da cápsula porosa no solo. Para calcular os valores de tensão em centibária ou kPa são usadas as seguintes expres- sões:
  • 12. a) Para tensiômetros de mercúrio: Tas = 0,098 (12,6h – h1 – h2 ) (1) onde Tas = tensão de água no solo (cbar ou kPa); h = elevação da coluna de mercúrio (cm); h1 = distância entre o nível do mercúrio do reservatório e a superfície do solo (cm); h2 = distân- cia da superfície do solo até o meio da cápsula porosa (cm). b) Para tensiômetros a vacuômetro graduados em cbar ou kPa e que não disponham de regulagem para zerar a leitura inicial em relação ao seu comprimento. Tas = L – 0,098 h) (2) onde Tas =tensão de água no solo (cbar ou kPa); L =leitura do vacuômetro (cbar ou kPa); h = altura da coluna de água no interior do tensiômetro (cm). c) Para tensiômetro a vacuômetro graduado em centíme- tros de mercúrio (cmHg) e que não disponham de regu- lagem para zerar a leitura inicial em relação ao seu com- primento Tas = L – 0,0736 h) (3) onde Tas = tensão de água no solo (cbar ou kPa); L = leitura do vacuômetro (cmHg); h = altura da coluna de água no interior do tensiômetro (cm). 4.2 Interpretação das leituras A Tabela 2 mostra como interpretar as leituras de tensiôme- tros em função dos diferentes intervalos de valores dentro da faixa de medida dos instrumentos.
  • 13. TABELA 2. Guia para interpretação de leituras de tensiômetros. Condição Leitura Interpretação (cbar) Saturação 0 Acumulação de água; Nível freático raso; Aeração prejudicada; Tensiômetro com vazamento. Capacidade de campo 6 a 10 Ponto para interrupção das irrigações. Evitar percolação de água e lixiviação de nutrientes. Momento de aplicação 20 a 40 Irrigações dirigidas para produtividade máxima e culturas de maior valor econômico e solos arenosos; 40 a 50 Valor usual para iniciar irrigações; Aeração assegurada; Solos de textura média. Intervalo de irrigação 50 a 60 Início de irrigação em solo argiloso; Manutenção da umidade disponível. Seco 70 a 80 Valor de início de deficit; Alguma umidade disponível; Risco de perda de produção. Adaptado de James (1988) Sabe-se que a tensão de água no solo varia com a umidade. Contudo, em latossolo de cerrado a umidade varia muito pouco quando a tensão passa de 100 para 1500 cbar, sendo que a variação da umidade é maior na faixa de 0 a 100 cbar, engloban- do a faixa útil do tensiômetro (0 a 85 cbar), compreendendo mais de 65% da água disponível às plantas, segundo Azevedo et al. (1983b). Daí a grande aplicação dos tensiômetros nesses so- los tropicais.
  • 14. 5. PREPARAÇÃO DE TENSIÔMETROS PARA INSTALAÇÃO Na preparação dos tensiômetros para instalação, deve-se observar os seguintes procedimentos (T. W. Prosser Company (s.d.): a) Normalmente, os instrumentos são recebidos vazios. Após retirá-los da embalagem de transporte, remova a proteção da cápsula e preencha todos os aparelhos com água destilada ou filtrada, visando à eliminação de impurezas, use água fervida e fria para retirar os gases dissolvidos; b) Depois da saturação, passe uma escova sobre a cápsula utilizando-se de escova de cerdas rígidas. Com um pano, limpe a cápsula (Figura 3a); c) Com os tensiômetros sobre um suporte e no ar ambiente, observe a formação de gotículas de água sobre a cápsula, indi- cando que os aparelhos estão rigorosamente saturados; d) Retorne as cápsulas para um recipiente com água livre de ar e permita que elas fiquem imersas durante uma semana. Man- tenha o nível de água no interior dos instrumentos para saturar todas as superfícies plásticas interiores (Figura 3b); e) Com as cápsulas submersas em água, aplique a bombi- nha manual de vácuo até que as bolhas de ar desapareçam, na subida, em direção ao medidor de vácuo. Mantenha o vácuo por dois ou três minutos com a cápsula submersa em água, visando à remoção de bolhas de ar dos poros da cápsula porosa (Figura 3c); f) Se necessário, encha o tensiômetro com água, aperte a tampa e coloque-o no ar ambiente ou em uma caixa com solo seco. O ponteiro do vacuômetro elevar-se-á devido à saída de água através da cápsula para o ar ou solo seco;
  • 15. h) Com um pano, elimine a água que está sobre a cápsula porosa e repita os passos de f a g. Leituras de 70 cbar ou maiores serão obtidas devido à remoção de ar. O movimento do ponteiro será mais rápido. Essa operação deverá ser repetida, caso a leitu- ra de 70 ou mais cbar não seja obtida. Cubra as cápsulas com papel toalha umedecido até que os buracos no local de instalação sejam preparados. Os tensiôme- tros estão prontos para serem instalados. 6. CUIDADOS NA UTILIZAÇÃO DO TENSIÔMETRO O sucesso na utilização do tensiômetro, para monitoramen- to da água no solo, depende muito da correta instalação do instrumento em locais representativos da condição de extração de água que se deseja acompanhar. Pontos importantes como número de instrumentos, profundidade de instalação e freqüên- cia de leituras devem ser cuidadosamente observados. 6.1 Número de instrumentos Várias condições devem ser consideradas ao se estimar o número de tensiômetros necessários para determinada área. Pre- ferivelmente, usam-se pelo menos três tensiômetros para cada área que se diferencia pelo solo, cultura, declividade, métodos e freqüência de irrigação. É recomendável o uso de tensiômetros em diferentes pro- fundidades. Em solos irrigáveis de cerrado, onde geralmente o sistema radicular de culturas anuais é superficial em virtude dos sistemas de preparo, de correção e de fertilização adotados, acon-
  • 16. selha-se o emprego de três a quatro baterias de três tensiômetros cada uma, visando a uma média representativa. Devem ser locali- zados a 10, 20 e 30 cm de profundidade, onde se encontra a maior concentração de raízes efetivas na absorção de água de culturas de grãos como trigo, feijão, e milho. Recomenda-se ins- talar os tensiômetros no interior das fileiras das culturas (Figura 4) para permitir o registro das variações da tensão de água desde o início do ciclo da planta no perfil de solo de 0 a 35 cm. A coloca- ção do tensiômetro no interior da fileira de plantas não interfere no livre trânsito de maquinário nas operações de cultivo. FIG. 4. Detalhe da instalação de tensiômetros no interior da fileira da cultura em três profundidades de solo (Adaptado de Azevedo et al., 1983a). Preparação do buraco Inserção do tensiômetro Arremate trado
  • 17. 6.2. Instalação Geralmente, são escolhidos locais representativos da área para instalação dos tensiômetros, devendo-se assinalar visivel- mente suas posições para evitar danificá-los. A instalação do tensiômetro deve ser feita de maneira que a cápsula fique na região de maior concentração do sistema radicular (Figura 4). Para uma boa instalação (Figuras 5 e 6), a preparação do buraco, usando-se um trado ou um pedaço de cano de ferro ou PVC rígido, deve ser realizada com o solo úmido e no mesmo diâmetro do tubo do tensiômetro. É importante colocar a cápsu- la na profundidade exata de instalação. Evite buracos maiores que a profundidade estabelecida, para impedir a acumulação de ar e de água nas imediações da cápsula, afetando a acurácia das leituras. Deve-se comprimir levemente o solo da superfície ao redor do tensiômetro, para que a água de irrigação ou de chuva não alcance a cápsula pelo espaço deixado entre o tubo do tensiô- metro e o solo (Figura 6). O contato da cápsula com o solo é fundamental para leituras precisas. Se o buraco for bem maior que o diâmetro do tubo, e a cápsula não ficar em contato perfei- to com o solo, falsas leituras ocorrerão na faixa alta do vacuôme- tro. Leituras inconsistentes na faixa baixa da escala do vacuôme- tro podem acontecer, quando a água de chuva ou de irrigações escorrer por entre o tubo e o solo, alcançando a cápsula. Na instalação ou remoção dos aparelhos do solo, manuseie os tensiômetros cuidadosamente. Não force o vacuômetro, mas o tubo plástico para instalar e primeiro gire o instrumento antes de removê-lo do solo, segurando-o bem firme. Após a instalação, os aparelhos devem ser protegidos com uma cobertura (Figura 7), visando a minimizar flutuações de temperatura que podem ter leve efeito sobre as leituras dos vacuômetros, bem como manter um visor bem claro, facilitando as leituras e evitando a penetra- ção de água que pode enferrujá-los.
  • 18. FIG. 5. Aspectos do tensiômetro e do solo em condições apropriadas e não adequadas de instalação (T.W. Prosser Company (s.d.). FIG. 6. Seqüência da operação de instalação do tensiômetro no campo (Aze- vedo et al., 1983a). Tensiômetro na profundidade da cápsula Instalação inadequada Instalação apropriada PROTEÇÃO DE TENSIÔMETROS
  • 19. FIG. 7. Proteção de tensiômetro (T.W. Prosser Company (s.d.). Embora o tensiômetro não seja um instrumento feito para sofrer mudanças constantes, essas podem ocorrer em algumas situações, como, por exemplo, antes da colheita de culturas anuais. Um grande número de mudanças de locais não é aconse- lhável, pois a cápsula porosa, além de frágil, pode ter reduzida sua porosidade devido à cristalização de sais quando sua superfí- cie torna-se seca. 6.3 Freqüência e registro de leituras A freqüência de leituras depende da evapotranspiração em relação à capacidade de armazenamento de água do solo. Em 10cm 20cm 30cm PLANTA JOVEM PLANTA ADULTA
  • 20. condições de climas determinantes de elevado consumo hídrico, elas são mais freqüentes, pois serão maiores e mais rápidas as variações nos valores de tensão da água no solo. Três leituras, no mínimo, devem ser feitas entre as irrigações. Devem ser mais freqüentes quando se aproxima a irrigação. Essa rotina é reco- mendável uma vez que permite o conhecimento, dia-a-dia, das variações, inferindo as alterações na extração de água pela cultu- ra ao longo de seu ciclo, fornecendo informações sobre a confia- bilidade das leituras e permitindo ajustes ou serviços em tempo hábil nos aparelhos. O uso do tensiômetro torna-se mais eficiente quando as leituras são anotadas e também colocadas em gráficos. A Figura 8 é um exemplo de como podem ser feitas essas anotações, pois, além de mostrar o que aconteceu no passado, pode indicar a necessidade ou não de irrigação nos próximos dias, pelo prolon- gamento da linha que mostra a evolução das leituras. 7. PROBLEMAS COMUNS E MEDIDAS CORRETIVAS De acordo com Azevedo et al. (1983a), o tensiômetro pode apresentar alguns problemas como: a) manômetro enferrujado em virtude da penetração de água no seu interior; b) vazamento na tampa, nas conexões ou no medidor, per- mitindo a entrada de ar para dentro do aparelho; c) a tampa rachada devido à exposição ao sol; d) desaferição do ponteiro por causa da força com que este volta e bate no pino de aferição. Isto acontece em razão da retirada brusca da tampa quando a leitura é alta; e) resposta lenta à variação de umidade em virtude da de- posição de material do solo na superfície da cápsula.
  • 21. FIG. 8. Interpretação das leituras de tensiômetros colocados em gráficos (Aze- vedo et al., 1983a). O tensiômetro instalado no campo pode avariar devido à alta sucção ou problemas de vazamento. No caso da leitura do manômetro, permanecer na posição zero, deve-se reenchê-lo com água e submetê-lo a um teste de sucção (≤ 80 cbar), para verifi- car se está havendo penetração de ar através das conexões ou cápsula. No tensiômetro previamente seco, após reenchimento, podem surgir pequenas bolhas de ar provenientes da cápsula, que poderão ser vistas através da parte transparente do tensiô- metro. Isso não significa defeito do aparelho; entretanto, se as bolhas forem grandes e provenientes da parte interior do tensiô- metro, remove-se o instrumento para reparo e provavelmente será necessária nova cápsula. A - Após uma irrigação bem conduzida B - Deste ponto é possível por meio da linha AB, estimar quando será necessária a próxima irrigação. C - Antes da irrigação D - Após uma irrigação mal conduzida, onde a água não se distribuiu adequadamente no solo E - O solo tornou-se seco antecipadamente em virtude de uma irrigação inadequada. F - Após E houve uma irrigação adequada.
  • 22. Se as bolhas originarem-se da seção do manômetro, esse fato indica que pode haver vazamento no manômetro ou na co- nexão dele com o tubo. Caso não se verifique formação de bo- lhas grandes, possivelmente a tampa estará rachada ou indevida- mente apertada. Uma limpeza do manômetro será necessária com aplicação do óleo antioxidante. Novo manômetro será necessá- rio, se o ponteiro do mostrador não apresentar livre movimento por causa da presença de ferrugem. 8. TESTES DOS TENSIÔMETROS Antes de se proceder à instalação dos tensiômetros no cam- po, deve-se realizar uma série de testes para verificar a integrida- de do instrumento em relação a possíveis vazamentos. É impor- tante salientar que o tensiômetro, em pleno funcionamento, opera à semelhança de uma câmara hermeticamente fechada e, portan- to, a verificação de sua integridade funcional consiste em basi- camente detectar possíveis pontos de entrada de ar na faixa nor- mal de operação (0 a 80 cbar). 8.1 Verificação de vazamentos O tensiômetro deve estar livre de vazamentos para se obter um funcionamento desejável e, para isto, cada instrumento deve ser testado antes de ser usado. Os testes podem ser conduzidos mais facilmente, se a cápsula de cerâmica ou porcelana porosa já estiver umedecida ou saturada pela imersão em água por um período de quatro a sete dias antes do início do teste. Enche-se completamente o instrumento com água fervida e fria, depois bate-se levemente para ajudar a remoção do ar, reenche-se com água se necessário, fecha-se a extremidade superior do tubo com a tampa e expõe-se a cápsula ao ar livre para que a água evapore. Após cinco a oito horas, o manômetro deverá registrar 50 ou
  • 23. mais cbar sem que haja demasiado acúmulo de ar no topo do tensiômetro. Caso o tensiômetro não passe no teste inicial, deve-se re- peti-lo. Se o resultado não for satisfatório nessa repetição do teste, certamente haverá algum vazamento, caso contrário pro- vavelmente estará em condições de ser usado no campo. Entre- tanto, poderá ser feito um teste adicional, que corresponderá a uma continuação do anterior. Quando o mostrador indicar leitu- ras entre 40 e 70, envolve-se a cápsula em um pequeno saco de plástico e fecha-se com uma tira de borracha ao redor do tubo, para evitar a continuação do processo de evaporação. Se a leitu- ra no próximo dia tiver sofrido variação em torno de seis ou mais unidades da leitura do dia anterior, o tensiômetro foi satisfatório no primeiro teste e não no segundo, indicando que algum vaza- mento pode estar ocorrendo. Quando se usam tensiômetros munidos de vacuômetros metálicos e esses apresentam leituras iniciais diferentes de zero, pode-se agir de duas maneiras: abrir a tampa do manômetro e aferir o ponteiro ou anotar a leitura inicial que será subtraída das leituras feitas no campo. Nos tensiômetros munidos de manômetro de mercúrio, quan- do esses possuírem escala móvel, o instrumento poderá ser zera- do, movendo-se essa escala de modo que a leitura da elevação do mercúrio já forneça a tensão na profundidade de instalação da cápsula. 8.2 Pressão de borbulhamento da cápsula São realizados testes de pressão de borbulhamento e con- dutância hidráulica das cápsulas porosas para verificar sua ade- quabilidade à construção ou promover sua substituição na ocor- rência de danos às cápsulas. São testes normalmente feitos pelos fabricantes ou fornecedores dos instrumentos para que o cliente receba equipamentos confiáveis.
  • 24. A pressão de borbulhamento é definida como a pressão mínima de ar aplicada na cápsula saturada de água, na qual o ar começaria a borbulhar através de seus poros. Essa pressão deve ter valor mínimo de 100 cbar para o bom funcionamento do tensiômetro, pois caso contrário ocorrerá a formação de bolhas de ar no interior do tensiômetro, uma vez que até 100 cbar a cápsula deve ser permeável apenas à água e aos íons. Nesse teste, as cápsulas previamente saturadas são conec- tadas, sem água no seu interior, a uma fonte de pressão contro- lada e submetida a incrementos de pressão de 10 cbar até o ponto em que surge a primeira bolha de ar através da cápsula. No entanto, como a faixa de atuação prática do tensiômetro não ultrapassa 80 a 85 cbar, utiliza-se como limite máximo de pres- são de teste o valor de 100 cbar. A pressão de borbulhamento está intimamente ligada ao diâmetro do maior poro da cápsula. Essa relação pode ser expres- sa pela seguinte equação (4): (4) onde P = pressão de borbulhamento (dinas/cm2 ); t = tensão superficial da água a 20 ºC (72,75 dinas/cm2 ); R = raio do poro (cm). No caso da cápsula suportar a pressão máxima de teste de 1 atmosfera, (aproximadamente 100 cbar) sem borbulhamento, pode-se concluir que o maior diâmetro de poro da cápsula apre- senta valor menor que 2,88 x 10-4 cm, determinado pela equação (4), sabendo que 1 atmosfera é igual a 1,03 x 106 dinas/cm2 :
  • 25. 8.3 Condutância hidráulica A condutância hidráulica das cápsulas porosas dos tensiô- metros pode ser entendida como a vazão de água através da parede da cápsula por unidade de diferença de pressão. Sua di- mensão, quando a pressão é dada em termos de carga hidráulica (cm de água), é unidade de área por unidade de tempo (cm2 /s). É de interesse utilizar cápsulas com condutância a mais alta possível, pois essa propriedade determina a velocidade de res- posta do tensiômetro às variações de umidade do solo. A determinação experimental da condutância hidráulica das cápsulas porosas pode ser realizada sob pressão atmosférica e sob pressão adicional de ar de 150 cbar. A título de exemplo serão apresentados os passos e os cálculos necessários para rea- lização do teste de condutância sob pressão atmosférica. Con- vém ressaltar que o uso da pressão acima da atmosférica diminui o tempo de teste mas, por outro lado, exige uma fonte de pres- são, manômetro e registros de controle. Normalmente, na realização do teste de condutância sob pressão atmosférica, necessita-se de um conjunto de materiais, compreendendo tubo de plástico incolor de 1,30 m de compri- mento e 9 mm de diâmetro interno; recipiente que simula o solo com água mantido em nível constante (vertedouro ou cubeta); pé com suporte de tábua, onde são presos os tubos de plástico; acopladores das cápsulas com dois anéis de borracha para veda- ção e fixação e recipiente coletor de água. A determinação da condutância hidráulica é feita pelo mé- todo da “carga variável”, tendo-se o seguinte procedimento: (a) imersão das cápsulas porosas em água destilada durante 24 ho- ras; (b) fixação da cápsula de teste, através da junta especial, ao tubo de plástico; (c) cálculo da área da seção transversal do tubo; (d) enchimento do tubo de água e imersão da cápsula em um recipiente, como mostra a Figura 9.
  • 26. FIG. 9. Desenho esquemático do conjunto para teste de condutância em cáp- sulas porosas de tensiômetros. Registra-se a posição inicial, H1 , que pode ser conveniente- mente estabelecida em 100 cm, e permite-se um abaixamento em torno de 10 cm, para um nível H2 . O tempo transcorrido, (t2 – t1 ), para o rebaixamento de H1 para H2 , será utilizado no cálculo da condutância, indicado pela seguinte equação (4): C = (4) onde C = condutância hidráulica (cm2 /s); a = área da seção transversal do tubo plástico (cm2 ); H1 = potencial hidráulico ini- ( )H1 H2 a 1n t2 - t1
  • 27. cial (cm H2 O); H2 = potencial hidráulico final (cm H2 O); t1 = tempo inicial (s), correspondente a H1 ; t2 = tempo final (s), cor- respondente a H2 . Como exemplo da aplicação dessa metodologia, apresenta- se na Tabela 3, os resultados da avaliação da condutância hi- dráulica de cinco cápsulas porosas: TABELA 3. Condutância média de cápsulas porosas de tensiô- metros, submetidas à pressão atmosférica. Tempo em segundos (t2 – t1 ) Repetições H1 e H2 Cap Cap Cap Cap Cap (cm) Nº 1 Nº 2 Nº 3 Nº 4 Nº 5 1ª 100 - 90 1180 835 735 910 915 2ª 90 - 80 1285 960 810 1070 910 3ª 80 - 70 1425 1020 745 1210 1005 Condutância média (cm2 /s) 5,8x10-5 8,0x10-5 9,9x10-5 7,1x10-5 8,0x10-5 Exemplo de cálculo para a cápsula nº 1: Considere um tubo com diâmetro de 9 mm, corresponden- do a uma área transversal, a = 0,6362 cm2 . Com os valores de tempo da Tabela 3, para a cápsula 1, pode-se obter os seguintes resultados: 1ª repetição: 2ª repetição: 3ª repetição: Média das três repetições
  • 28. 9. CONFIABILIDADE DO TENSIÔMETRO É importante ressaltar que a aceitação do tensiômetro de- pende do grau de confiança do usuário em relação às suas medi- das. Essa, por sua vez, depende do perfeito entendimento de seu funcionamento e do reconhecimento da necessidade de se reali- zar manutenções periódicas. Muita resistência ao uso deriva do desconhecimento do princípio de funcionamento e da correta interpretação das leituras, bem como dos cuidados necessários à manutenção. 9.1 Acurácia Quando os tensiômetros são adequadamente instalados e operados, propiciam leituras acuradas, sendo bastante sensíveis na faixa de tensão de água no solo onde a maioria das culturas se desenvolvem. Muitas vezes, são empregados como referência para a avaliação de outros métodos de determinação da umidade do solo. Segundo T.W. Prosser Company (s.d.), variações peque- nas na umidade disponível resultantes de compactação ou tipo do solo, densidade radicular e outros fatores podem ser facil- mente registrados em vacuômetros sensíveis e dificilmente por outros métodos. Para muitos trabalhos de pesquisa, em que me- didas precisas da força de retenção e da umidade do solo são exigidas, necessita-se do tensiômetro. Em condições de campo porém, essa mesma acurácia de controle pode não ser prática. Assim, variações de 10 a 15 cbar em torno de um valor como 50 cbar, apropriado ao início da irrigação de muitas culturas de grãos podem acontecer, tanto em resposta às variações espaciais do potencial matricial no campo como à maior sensibilidade do tensiômetro. A umidade do solo estará mantida no intervalo para ótimo crescimento da cultura e mesmo maiores variações podem ocorrer por curtos períodos sem perda de produtividade ou qualidade do produto comercial.
  • 29. 9.2 Requisitos de manutenção no campo Quando o solo está seco, cai o nível de água no interior dos tensiômetros, criando um vácuo nesse espaço livre de água. Quan- do ele umedece após irrigação ou chuva, o vácuo diminui deter- minando elevação da água ao seu nível original. Entretanto, com os ciclos de umedecimento e secagem, parte do ar vindo do solo é preso na parte superior do tensiômetro, dificultando as respos- tas dos aparelhos às variações na umidade do solo e levando a leituras abaixo dos valores reais de tensão. Assim, uma das tarefas de manutenção mais importantes é, regularmente, retirar esse ar e substitui-lo por água. Para isso, retira-se a borracha e/ou tampão na extremidade superior do tubo e adiciona-se água previamente fervida e esfriada até completar o nível. Nos tensiômetros de mercúrio, essa tarefa é realizada com o auxílio de uma pisseta com rolha de borracha adaptável à introdução de água no corpo do tensiômetro. Esse serviço deve ser feito a cada três dias de leituras ou sempre que haja suspeita de acumulação de ar. O melhor período para abastecimento e retirada de ar dos tensiômetros é logo após as irrigações quando o solo encontra-se bem úmido. Deve-se rea- lizar essas tarefas após as leituras do dia. Nessas ocasiões, verifi- ca-se também o nível de água no aparelho, completando-o quan- do o rebaixamento desse nível estiver entre 2,5 e 5,0 cm abaixo da extremidade superior do tensiômetro. 10. USO DO TENSIÔMETRO PARA IRRIGAÇÃO O intervalo de medida do tensiômetro é importante para o manejo da irrigação mesmo representando pequena fração do intervalo de potenciais de água no qual as plantas conseguem extrair a água do solo (Campbell & Mulla, 1990). Segundo esses autores isso é verdade, porque a absorção de água pelas plantas
  • 30. freqüentemente começa a cair abaixo da taxa de absorção po- tencial antes que o potencial de água no solo na zona radicular alcance valores fora do intervalo prático de medida do tensiôme- tro. 10.1 Momento da aplicação de água Melhor que um único valor de tensão para início das irriga- ções, é preferível a recomendação de um intervalo ótimo de valo- res para dar flexibilidade à operacionalização da irrigação pelo irrigante. A Tabela 4 fornece informações das faixas de tensão recomendadas para o momento de irrigação em algumas culturas de grãos. TABELA 4. Indicações de tensões de água no solo para início das irrigações de algumas culturas anuais segundo diversos autores. Cultura Profundidade Tensão Referências (cm) (cbar) Trigo 10 60 Silva et al. (1993); Guerra et al. (1994) 10 40 Guerra (1995) 10 e 20* 32 - 97 Saad e Libardi (1992) Feijão 10 50 Bernardo et al. (1970) 10 70 - 100 Figuerêdo et al. (1994) 15 25 - 30 Stone e Moreira (1986) 15 30 - 40 Silveira e Stone (1994) 15 60 Azevedo e Caixeta (1986) 15 60 Libardi e Saad (1994) Milho 10 40 Guerra et al. (1997b) - 70 Resende et al. (1990) Soja 15 e 30* 37 - 63 Saad e Libardi (1992) 10 70 Guerra et al. (1997a) Arroz 15 25 Embrapa/SPI (1992) * O primeiro valor refere-se aos estádios iniciais de desenvolvimento vegetativo e o segundo às fases posteriores do ciclo.
  • 31. É interessante ressaltar que o momento de irrigar é sempre dado pela média das leituras dos tensiômetros mais superficiais em virtude da maior extração de água dessa camada, atingindo, em menor tempo, os valores de tensão indicados na Tabela 4 acima. 10.2 Momento de interromper a irrigação Pelas próprias leituras de tensiômetros pode-se determinar o momento de interromper as irrigações, pois tão logo a água penetre na cápsula de cerâmica as leituras dos vacuômetros co- meçam a cair. De acordo a T.W. Prosser Company (s.d.), as irri- gações podem ser suspensas quando os instrumentos mais rasos alcançarem leituras na faixa de 0 a 10 cbar e os mais profundos na faixa de 10 a 15 cbar, não sendo necessário irrigar até as leituras serem zeradas. As leituras dos instrumentos começam a se elevar após a drenagem da água gravitacional e início de ab- sorção de água pelas raízes. Leituras contínuas na faixa de 0 a 20 cbar indicam solo úmido, devendo as irrigações serem cortadas ou reduzidas até que essa situação seja corrigida. Esse procedi- mento sofre as limitações relativas à velocidade de resposta do tensiômetro e de redistribuição da água no perfil do solo e, por- tanto, as possibilidades de erro na aplicação da lâmina desejada são maiores do que realizando o corte com base no restabeleci- mento completo do armazenamento. Dispondo-se das curvas de retenção de água do perfil de solo de interesse da irrigação e da eficiência de aplicação de água do equipamento, é possível calcular, com relativa precisão, as lâminas brutas de irrigação correspondentes ao deficit hídrico, indicado em tempo real pelos tensiômetros de todas as profundi- dades. Esse é o procedimento recomendado para determinar a lâmina de água necessária e nesse caso o critério para parar as irrigações passa a ser o tempo necessário para aplicação integral dessa lâmina. Essa prática é considerada uma das alternativas adequadas para garantir irrigações satisfatórias.
  • 32. 11. QUESTÕES FREQÜENTES DO USUÁRIO São questões que normalmente aparecem quando os tensiô- metros são usados pela primeira vez, de acordo a T. W. Prosser Company (s.d.). a) Leituras que não parecem refletir o conteúdo real de água no solo Acontece em razão de se julgar que o teor de água no solo naquele momento é muito diferente do indicado pelo instrumen- to. É um problema muito comum e fácil de ser superado, bastan- do coletar amostras de solo na profundidade da cápsula e cons- tatar, pelo tato ou por gravimetria, a precisão das leituras dos tensiômetros. Um exemplo típico é o de agricultores que irrigam, julgando que o solo está suficientemente seco, embora as leitu- ras dos instrumentos, mesmo aqueles instalados na porção su- perficial do solo, estejam nas faixas de baixa tensão, de zero a 20 cbar, indicando umidade adequada. b) Resposta lenta a irrigações São várias as razões para esse problema. As principais são: baixa taxa de infiltração devido à compactação ou ao tipo de solo; instrumentos vazios ou com ar em seu interior; cápsulas muito usadas e parcialmente obstruídas por sais e movimento emperrado do medidor em virtude de pequenos danos. c) Necessidade freqüente de reabastecimento Em geral, é indicativo de prática de irrigações deficientes, com leituras nas faixas mais secas por períodos de vários dias. Outras causas podem ser: a instalação inadequada com o solo não convenientemente compactado em torno do tubo do apare-
  • 33. lho; abertura na vedação que pode ser borracha danificada; e falha na conexão do manômetro. d) Maiores variações na taxa de mudança das leituras São variações de umidade do solo que ocorrem devido a condições de topografia e tipo de solo, bem como em razão da variabilidade espacial das propriedades físico-hídricas do solo. Essas variações acontecem normalmente e, sendo esperadas, exi- gem maior número de aparelhos, visando à obtenção de leituras médias realísticas que possibilitem melhor controle da irrigação. 12. CONSIDERAÇÕES FINAIS Agricultores que usam corretamente os tensiômetros têm obtido resultados satisfatórios de produtividade de culturas, muito embora haja grandes variações quanto ao nível de adoção e da obediência aos procedimentos recomendados para o melhor uso dos instrumentos. Dependendo de condições de clima, do tipo de cultura explorada e do manejo da irrigação, estima-se que a utilização eficiente de tensiômetros pode determinar reduções de 25% a 40% nas lâminas de água aplicadas nas irrigações, comparativamente ao manejo sem critério, com a conseqüente economia nos dispêndios de energia. Considera-se que o custo de aproximadamente R$ 1.600,00 (um mil e seiscentos reais), de três ou quatro conjuntos de três tensiômetros, necessários a uma unidade de irrigação, que pode ser um pivô-central, é apenas marginal, quando comparado aos benefícios que propiciam e aos elevados investimentos na aquisi- ção de equipamentos de irrigação. Ressalta-se ainda que esse custo pode ser reduzido, adquirindo-se as partes componentes e construindo e testando o tensiômetro ou mesmo usando-o por vários anos desde que sejam observados cuidados na manuten- ção e conservação dos aparelhos.
  • 34. A adoção da tensiometria, principalmente nos últimos anos, por parcela crescente de produtores irrigantes tem sido, ao lado dos trabalhos de pesquisa e de difusão de tecnologia de diferen- tes instituições, um dos principais instrumentos para a amplia- ção, em maior escala, do emprego desses aparelhos no controle da irrigação. A necessidade cada vez maior de aumentar a produ- ção por unidade de área cultivada, como forma de elevar os ní- veis de rentabilidade da agricultura irrigada faz do tensiômetro um instrumento útil para controle da irrigação, pelas valiosas informações que fornece relacionadas à energia de retenção da água pelo solo na zona de raízes. 13. REFERÊNCIAS BIBLIOGRÁFICAS ARRUDA, F.B.; LELIS, L.G.L.; BARROS, S.B.M. de. Montagem e teste do tensiômetro simplificado. Campinas: IAC, 1986. 10p. (IAC. Boletim Técnico, 223). AZEVEDO, J.A. de; SILVA, E.M. da; RESENDE, M.; GUERRA, A.F. Aspectos sobre o manejo da irrigação por aspersão para o Cerrado. Planaltina: EMBRAPA-CPAC, 1983a. 53p. (EMBRAPA-CPAC. Circular Técnica, 16). AZEVEDO, J.A. de; FREIRE, J.C.; SILVA, E.M. da. Característi- cas físico-hídricas importantes para a irrigação de solos re- presentativos de Cerrados. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 11., 1981. Brasília. Anais. Brasília: SBEA, 1983b. p. 843-844. AZEVEDO, J.A. de; CAIXETA, T.J. Irrigação do feijoeiro. Planaltina: EMBRAPA-CPAC, 1986. 60p. (EMBRAPA-CPAC. Circular Técnica, 23). BERNARDO, S.; GALVÃO, J. D.; GUERINI, H.; CARVALHO, J. B. de. Efeito dos níveis de água no solo sobre a produção do feijoeiro. Seiva, Viçosa, v.30, n.71, p.7-13, 1970.
  • 35. CAMARGO A.P.; GROHMANN, F.; CAMARGO, M.B.B. Tensiô- metro simples de leitura direta. Pesquisa Agropecuária Brasi- leira, Brasília, v.17, n.12, p.1963-1972, 1982. CAMPBELL, G.S.; MULLA, D.J. Measurement of soil water content and potential. In: STEWART, B.A.; NIELSEN, D.R., ed. Irrigation of agricultural crops. Madison: ASA, 1990. p.127- 141. (Agronomy Monograph, 30). CASSEL, D.K.; KLUTE, A. Water potential: tensiometry. In: KLUTE, A., ed. Methods of soil analysis. 2ed. Madison: ASA/ Soil Science Society of America, 1986. Part 1. p. 563-596. (ASA. Agronomy, 9). DOORENBOS, J.; KASSAM, A.H. Yield response to water. Roma: FAO, 1979. 193p. (Irrigation and Drainage Paper, 33) EMBRAPA. Serviço de Produção de Informação (Brasília, DF). Re- comendações técnicas para o cultivo do arroz em regiões favorecidas: zonas 31, 36, 40, 64, 83 e 89. Brasília, 1992. 123p. FARIA, R.T. de; COSTA, A.C.S. da. Tensiômetro: construção, instalação e utilização. Londrina: IAPAR, 1987. 22p. (IAPAR. Circular, 56). FIGUERÊDO, S.F.; PERES, J.R.R.; MIYAZAWA, K.; LUCHIARI JÚNIOR, A.; GUERRA, A.F.; AZEVEDO, J.A. de; ANDRADE, L.M. de. Estabelecimento do momento de irrigação em fei- jão, baseado em níveis de tensão de água em latossolo dos cerrados. In: EMBRAPA. Centro de Pesquisa Agropecuária dos Cerrados (Planaltina, DF). Relatório técnico anual do Centro de Pesquisa Agropecuária dos Cerrados 1987/1990. Planaltina, 1994. p.159-161. GUERRA, A.F.; SILVA, E.M. da; AZEVEDO, J.A. de. Tensão de água no solo: um critério viável para irrigação do trigo na região do cerrado. Pesquisa Agropecuária Brasileira, Brasília, v.29, n.4, p.631-636, 1994.
  • 36. GUERRA, A.F. Manejo de irrigação do trigo para obtenção de máxima produtividade na região dos cerrados. Pesquisa Agropecuária Brasileira, Brasília, v.30, n.4, p.515-521, 1995. GUERRA, A.F.; ANTONINI, J.C. dos A. Irrigação suplementar para a cultura da soja. In: EMBRAPA. Centro de Pesquisa Agropecuária dos Cerrados (Planaltina, DF). Relatório técni- co anual do Centro de Pesquisa Agropecuária dos Cerrados 1991 a 1995. Planaltina, 1997a. p.99-100. GUERRA, A.F.; ANTONINI, J.C. dos A.; SILVA, D.B. da; RODRIGUES, G.C. Manejo de irrigação e fertilização nitrogenada para a cultura do milho. In: EMBRAPA. Centro de Pesquisa Agropecuária dos Cerrados (Planaltina, DF). Re- latório técnico anual do Centro de Pesquisa Agropecuária dos Cerrados 1991 a 1995. Planaltina, 1997b. p.97-98. JAMES, L.G. Principles of farm irrigation system design. New York: J. Wiley, 1988. 543p. LIBARDI, P.L.; SAAD, A.M. Balanço hídrico em cultura de feijão irrigada por pivô central em latossolo roxo. Revista Brasilei- ra de Ciência do Solo, Campinas, v.18, n.3, p.529-532, 1994. RESENDE, M.; FRANÇA, G.E. de; ALVES, V.M.C. Considerações técnicas sobre a cultura do milho irrigado. Sete Lagoas: EMBRAPA-CNPMS, 1990. 24p. (EMBRAPA-CNPMS. Docu- mentos, 7). SAAD, A.M.; LIBARDI, P.L. Uso prático do tensiômetro pelo agri- cultor irrigante. São Paulo: IPT. 1992. 27p. SILVA, D.B. da; ANDRADE, J.M.V. de; GUERRA, A.F. Informa- ções básicas para o cultivo do trigo irrigado na região do Brasil Central. Planaltina: EMBRAPA-CPAC, 1993. 31p. (EMBRAPA-CPAC. Circular Técnica, 29). SILVEIRA, P.M. da; STONE, L.F. Manejo da irrigação do feijoeiro: uso do tensiômetro e avaliação do desempenho do pivô cen- tral. Goiânia: EMBRAPA-CNPAF / Brasília: EMBRAPA-SPI, 1994. 46p. (EMBRAPA-CNPAF. Circular Técnica, 27).
  • 37. STONE, L.F.; MOREIRA, J.A.A. Irrigação do feijoeiro. Goiânia: EMBRAPA-CNPAF, 1986. 31p. (EMBRAPA-CNPAF. Circular Técnica, 20). T. W. PROSSER COMPANY (Arlington). Irrometer - moisture indicator: reference book. Arlington, [s.d.]. 30p.