SlideShare uma empresa Scribd logo
MÚLTIPLOS E DIVISORES
Aluna: Ane da Silva Oliveira Chagas
PÓLO: RIO BONITO
“Um Objeto de Aprendizagem é um arquivo digital
(imagem, filme, etc.) que pretende ser utilizado para
fins pedagógicos e que possui, internamente ou
através de associação, sugestões sobre o contexto
apropriado para sua utilização”. (Sosteric &
Hesemeier, 2001).
A IDEIA DE MÚLTIPLO E DIVISOR É CONHECIDA DESDE A
ANTIGÜIDADE GREGA. NAQUELA ÉPOCA, OS SÁBIOS DAVAM
TANTA IMPORTÂNCIA AOS NÚMEROS QUE LHES
ATRIBUÍAM CARACTERÍSTICAS HUMANAS. PARA VOCÊS
TEREM UMA IDEIA, ELES AGRUPAVAM OS NÚMEROS EM
MASCULINOS ( OS ÍMPARES) E FEMININOS ( OS PARES).
MÚLTIPLOS E DIVISORES
CRITÉRIOS DE MÚLTIPLOS E
DIVISORES
• Divisibilidade
Critérios de divisibilidade:
• São critérios que nos permite verificar se um número é divisível por
outro sem precisarmos efetuar grandes divisões.
• Um número natural é divisível por outro natural, excluindo-se o zero, se a
divisão entre eles é exata, ou seja, se tem resto zero.
• Divisibilidade por 2 Um número natural é divisível por 2 quando ele
termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par.
 Exemplos :
• 8490é divisível por 2, pois termina em 0.
• 895 não é divisível por 2, pois não é um número par
•Divisibilidade por 3 :Um número é divisível por 3 quando a soma dos valores absolutos dos
seus algarismos for divisível por 3.
Exemplo:
870 é divisível por 3, pois a soma de seus algarismos é igual a 8+7+0=15, como 15 é divisível
por 3, então 870 é divisível por 3.
•Divisibilidade por 4 :Um número é divisível por 4 quando termina em 00 ou quando o número
formado pelos dois últimos algarismos da direita for divisível por 4.
Exemplo:
9500 é divisível por 4, pois termina em 00.
6532 é divisível por 4, pois 32 é divisível por 4.
836 é divisível por 4, pois 36 é divisível por 4.
9870 não é divisível por 4, pois não termina em 00 e 70 não é divisível por 4.
•Divisibilidade por 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5.
Exemplos:
425 é divisível por 5, pois termina em 5.
78960 é divisível por 5, pois termina em 0.
976 não é divisível por 5, pois não termina em 0 nem em 5.
•Divisibilidade por 6: Um número é divisível por 6 quando é divisível por 2 e por 3 ao mesmo
tempo.
Exemplos:
6456 é divisível por 6, porque é divisível por 2e por 3 ao mesmo tempo.
984 não é divisível por 6, é divisível por 2, mas não é divisível por 3.
357 não é divisível por 6, é divisível por 3, mas não é divisível por 2.
•Divisibilidade por 8: Um número é divisível por 8 quando termina em 000, ou quando o
número formado pelos três últimos algarismos da direita for divisível por 8.
Exemplos:
2000 é divisível por 8, pois termina em 000.
98120 é divisível por 8, pois 120 é divisível por 8.
78341 não é divisível por 8, pois 341 não é divisível por 8.
•Divisibilidade por 9: Um número é divisível por 9 quando a soma dos valores absolutos dos
seus algarismos for divisível por 9.
Exemplo:
6192 é divisível por 9, pois a soma de seus algarismos é igual a 6+1+9+2=18, e como 18 é
divisível por 9, então 6192 é divisível por 9.
Divisibilidade por 10 Um número natural é divisível por 10 quando ele termina em 0.
Exemplos:
8970 é divisível por 10, pois termina em 0.
5987 não é divisível por 10, pois não termina em 0.
MÚLTIPLOS
• Se um número é divisível por outro, diferente de zero, então
dizemos que ele é múltiplo desse outro.
• Os múltiplos de um número são calculados multiplicando-se esse
número pelos números naturais. Exemplo: os múltiplos de 7 são:
7x0 , 7x1, 7x2 , 7x3 , 7x4 , ... = 0 , 7 , 14 , 21 , 28 , ...
• ATENÇÃO:
• Observações importantes
1) Um número tem infinitos múltiplos
2) Zero é múltiplo de qualquer número natural
NÚMEROS PRIMOS
• Número primo: É quando um número só é divisível por dois números diferentes; 1 e
ele mesmo.
 Exemplos:
• 2 tem apenas os divisores 1e 2, portanto 2 é primo.
23 tem apenas os divisores 1e 23, portanto 23 é primo.
10 tem os divisores 1, 2, 5e 10, portanto 10 não é primo.
Atenção:
• 1 não é um número primo, porque ele tem apenas um divisor ele mesmo.
• 2 é o único número primo que é par.
• Os números que têm mais de dois divisores são chamados números compostos.
 Exemplo: 36 tem mais de dois divisores então 36 é um número composto.
Como saber se um número é primo
Devemos dividir o número dado pelos números primos menores que ele,
até obter um quociente menor ou igual ao divisor. Se nenhum das
divisões for exata, o número é primo.
Decomposição em fatores primos
Todo número natural, maior que 1, pode ser escrito na forma de uma
multiplicação em que todos os fatores são números primos. É o que nós
chamamos de forma fatorada de um número.
Decomposição do número 36:
36 =9 x 4
36 = 3 x 3 x 2 x 2
36 = 3 x3 x 2 x 2 = 22x32
No produto 2 x 2 x 3 x 3 todos os fatores são primos.
Chamamos de fatoração de 36 a decomposição de 36 num produto de
fatores primos.
Método Prático Escrevera Forma Fatorada de um Número Natural
Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os
passos para montar esse dispositivo:
ºDividimos o número pelo seu menor divisor primo;
2ºA seguir,dividir o quociente obtido pelo seu menor divisor primo.
3ºProceder dessa forma, daí por diante, até obter o quociente 1.
Determinação dos divisores de um número
Na prática determinamos todos os divisores de um número utilizando os seus fatores
primos.
Vamos determinar, por exemplo, os divisores de 72:
1ºFatoramos o número 72.
2ºTraçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer
número.
3º Multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e
escrevemos esses produtos ao lado de cada fator primo.
4º Os divisores já obtidos não precisam ser repetidos.
Então o conjunto dos divisores de 72 = {1,2,3,4,6,8,9,12,18,36,72}
Máximo Divisor Comum (mdc)
O máximo divisor comum entre dois ou mais números naturaisnão nulos (números
diferentes de zero) é o maior número queé divisor ao mesmo tempo de todos eles.
Não vamos aqui ensinar todos as formas de se calcular o mdc, vamos nos ater apenas
a algumas delas.
Regra das divisões sucessivas
Esta regra é bem prática para o calculo do mdc, observe:
Exemplo:
Vamos calcular o mdc entre os números 160 e 24.
1º: Dividimos o número maior pelo menor.
2º: Como não deu resto zero, dividimos o divisor pelo resto da divisão anterior.
3º: Prosseguimos com as divisões sucessivas até obter resto zero.
O mdc (64; 160) = 32
mmc (18, 25, 30) = 720
1º: Escrevemos os números
dados, separados por vírgulas, e
colocamos um traço vertical a
direita dos números dados.
2º: Abaixo de cada número
divisível pelo fator primo
colocamos o resultado da divisão.
O números não divisíveis pelo
fator primo são repetidos.
3º: Continuamos a divisão até
obtermos resto 1 para todos os
números.
Mínimo Múltiplo Comum - MMC
Objeto Aprendizagem - JOGOS
Os jogos quando convenientemente planejados, são um recurso
pedagógico eficaz para a construção do conhecimento matemático. Para
que o jogo seja um material produtivo em sala, o professor deve ter
alguns cuidados ao escolher os jogos a serem aplicados como:
•não tomar o jogo algo obrigatório;
•escolher jogos em que o fator sorte não interfira nas jogadas,
permitindo que vença aquele que descobrir as melhores estratégias;
•estabelecer regras;
• estudar o jogo antes de aplicá-lo ou seja jogá-lo antes.
O JOGO
•BORBOLETAS
•ANIMAÇÃO
O JOGO
Apanhar as borboletas que carregam os números
certos, no mais curto espaço de tempo. Cada jogo é
constituído por 3 fases (números primos, divisores,
etc...). Sempre que se apanha uma borboleta
errada será sujeito a uma penalização de 30
segundos.
Múltiplos e divisores
COMO JOGAR
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Os Números
•O Objetivo do jogo é descobrir as regras
de divisibilidade, múltiplos e seus
padrões usando rapidez e a lógica
através instrumentos educacionais , ou
seja, saber se um número é múltiplo ou
divisível por outro sem efetuar
multiplicação.
•Verificar os números primos.
•Identificar números pares.
CONCLUSÃO
Um objeto de aprendizagem é qualquer recurso que possa ser reutilizado para dar suporte
ao aprendizado. Sua principal idéia é "quebrar" o conteúdo educacional disciplinar em
pequenos trechos que podem ser reutilizados em vários ambientes de aprendizagem.
Qualquer material eletrônico que provém informações para a construção de conhecimento
pode ser considerado um objeto de aprendizagem, seja essa informação em forma de uma
imagem, uma página HTM, uma animação ou simulação.
RIVED - REDE INTERNACIONAL VIRTUAL DE EDUCAÇÃO
LINK
http://nautilus.fis.uc.pt/mn/p_index.html

Mais conteúdo relacionado

Mais procurados

Expressões algébricas
Expressões algébricasExpressões algébricas
Expressões algébricas
leilamaluf
 
Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9
Angela Costa
 
3 lista - 6 ano - multiplicação e divisão simples
3   lista - 6 ano - multiplicação e divisão simples3   lista - 6 ano - multiplicação e divisão simples
3 lista - 6 ano - multiplicação e divisão simples
Luiza Helena Pinto Maciel
 
Sólidos e suas planificações
Sólidos  e suas planificaçõesSólidos  e suas planificações
Sólidos e suas planificações
gomesnelma
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
Everton Moraes
 
Exercicios plano cartesiano
Exercicios plano cartesianoExercicios plano cartesiano
Exercicios plano cartesiano
Leudo Abreu
 
Atividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 anoAtividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 ano
Elisangela Ocea
 
Equações 7
Equações 7Equações 7
Equações 7
Helena Borralho
 
SÓLIDOS GEOMÉTRICOS
SÓLIDOS GEOMÉTRICOS SÓLIDOS GEOMÉTRICOS
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
rubensdiasjr07
 
Frações equivalentes
Frações equivalentes Frações equivalentes
Frações equivalentes
Mary Alvarenga
 
Função afim
Função afimFunção afim
Função afim
wfsousamatematica
 
Baralho com as quatro operações
Baralho com as quatro operaçõesBaralho com as quatro operações
Baralho com as quatro operações
Mary Alvarenga
 
Idéia de números negativos e positivos
Idéia de números negativos e positivosIdéia de números negativos e positivos
Idéia de números negativos e positivos
yanlucas
 
Poligonos
PoligonosPoligonos
Poligonos
Helena Rocha
 
Cruzadinha números decimais
Cruzadinha números decimais Cruzadinha números decimais
Cruzadinha números decimais
Mary Alvarenga
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
João Paulo Luna
 
Círculo e circunferência 8º ano
Círculo e circunferência 8º anoCírculo e circunferência 8º ano
Círculo e circunferência 8º ano
Andréia Rodrigues
 
Quadriláteros
QuadriláterosQuadriláteros
Quadriláteros
Liliana Carvalho
 
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
clenyo
 

Mais procurados (20)

Expressões algébricas
Expressões algébricasExpressões algébricas
Expressões algébricas
 
Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9Equações do 1 grau - Balanças M2At9
Equações do 1 grau - Balanças M2At9
 
3 lista - 6 ano - multiplicação e divisão simples
3   lista - 6 ano - multiplicação e divisão simples3   lista - 6 ano - multiplicação e divisão simples
3 lista - 6 ano - multiplicação e divisão simples
 
Sólidos e suas planificações
Sólidos  e suas planificaçõesSólidos  e suas planificações
Sólidos e suas planificações
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
 
Exercicios plano cartesiano
Exercicios plano cartesianoExercicios plano cartesiano
Exercicios plano cartesiano
 
Atividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 anoAtividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 ano
 
Equações 7
Equações 7Equações 7
Equações 7
 
SÓLIDOS GEOMÉTRICOS
SÓLIDOS GEOMÉTRICOS SÓLIDOS GEOMÉTRICOS
SÓLIDOS GEOMÉTRICOS
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
 
Frações equivalentes
Frações equivalentes Frações equivalentes
Frações equivalentes
 
Função afim
Função afimFunção afim
Função afim
 
Baralho com as quatro operações
Baralho com as quatro operaçõesBaralho com as quatro operações
Baralho com as quatro operações
 
Idéia de números negativos e positivos
Idéia de números negativos e positivosIdéia de números negativos e positivos
Idéia de números negativos e positivos
 
Poligonos
PoligonosPoligonos
Poligonos
 
Cruzadinha números decimais
Cruzadinha números decimais Cruzadinha números decimais
Cruzadinha números decimais
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Círculo e circunferência 8º ano
Círculo e circunferência 8º anoCírculo e circunferência 8º ano
Círculo e circunferência 8º ano
 
Quadriláteros
QuadriláterosQuadriláteros
Quadriláteros
 
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
 

Destaque

Divisores multiplos
Divisores multiplosDivisores multiplos
Divisores multiplos
Helena Borralho
 
Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisores
Patricia Carvalhais
 
Critérios de divisibilidade
Critérios de divisibilidadeCritérios de divisibilidade
Critérios de divisibilidade
Patricia Carvalhais
 
6º ano - Critérios de divisibilidade e frações
6º ano  - Critérios de divisibilidade e frações6º ano  - Critérios de divisibilidade e frações
6º ano - Critérios de divisibilidade e frações
fabvieira
 
Atividades complementares de matematica
Atividades complementares de matematicaAtividades complementares de matematica
Atividades complementares de matematica
André Moraes
 
Multiplos divisores
Multiplos divisoresMultiplos divisores
Multiplos divisores
bjasminecg
 
Divisores de un numero natural Nivel Primaria
Divisores de un numero natural Nivel PrimariaDivisores de un numero natural Nivel Primaria
Divisores de un numero natural Nivel Primaria
Angi Di
 
Exercícios de divisibilidade
Exercícios de divisibilidade   Exercícios de divisibilidade
Exercícios de divisibilidade
Edvargue Amaro
 
Critérios de divisibilidade
Critérios de divisibilidadeCritérios de divisibilidade
Critérios de divisibilidade
mari_murara
 
Múltiplos de un_número
Múltiplos de un_númeroMúltiplos de un_número
Múltiplos de un_número
Dalton School
 
Produtos notaveis
Produtos notaveisProdutos notaveis
Produtos notaveis
Antonio Carneiro
 
Multiplos e divisores_de_um_número
Multiplos e divisores_de_um_númeroMultiplos e divisores_de_um_número
Multiplos e divisores_de_um_número
tuchav
 
Regras de simplificação de cálculo
Regras de simplificação de cálculoRegras de simplificação de cálculo
Regras de simplificação de cálculo
Ana Garcia
 
Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...
Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...
Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...
dpport
 
Divisão por 2 algarismos
Divisão por 2 algarismosDivisão por 2 algarismos
Divisão por 2 algarismos
Hugo Ferreira
 
Livro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisLivro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finais
Fran Correa
 
Trabalhando divisão
Trabalhando divisãoTrabalhando divisão
Trabalhando divisão
regimarabrand
 
Uso do sudoku nas operações com numeros naturais e fracionários
Uso do sudoku nas operações com numeros naturais e fracionáriosUso do sudoku nas operações com numeros naturais e fracionários
Uso do sudoku nas operações com numeros naturais e fracionários
cidiasales
 
Ficha divisores
Ficha divisoresFicha divisores
Ficha divisores
marcommendes
 

Destaque (20)

Divisores multiplos
Divisores multiplosDivisores multiplos
Divisores multiplos
 
Múltiplos e divisores
Múltiplos e divisoresMúltiplos e divisores
Múltiplos e divisores
 
Critérios de divisibilidade
Critérios de divisibilidadeCritérios de divisibilidade
Critérios de divisibilidade
 
6º ano - Critérios de divisibilidade e frações
6º ano  - Critérios de divisibilidade e frações6º ano  - Critérios de divisibilidade e frações
6º ano - Critérios de divisibilidade e frações
 
Atividades complementares de matematica
Atividades complementares de matematicaAtividades complementares de matematica
Atividades complementares de matematica
 
A dor de dente do hipopótamo ubeda
A dor de dente do hipopótamo  ubedaA dor de dente do hipopótamo  ubeda
A dor de dente do hipopótamo ubeda
 
Multiplos divisores
Multiplos divisoresMultiplos divisores
Multiplos divisores
 
Divisores de un numero natural Nivel Primaria
Divisores de un numero natural Nivel PrimariaDivisores de un numero natural Nivel Primaria
Divisores de un numero natural Nivel Primaria
 
Exercícios de divisibilidade
Exercícios de divisibilidade   Exercícios de divisibilidade
Exercícios de divisibilidade
 
Critérios de divisibilidade
Critérios de divisibilidadeCritérios de divisibilidade
Critérios de divisibilidade
 
Múltiplos de un_número
Múltiplos de un_númeroMúltiplos de un_número
Múltiplos de un_número
 
Produtos notaveis
Produtos notaveisProdutos notaveis
Produtos notaveis
 
Multiplos e divisores_de_um_número
Multiplos e divisores_de_um_númeroMultiplos e divisores_de_um_número
Multiplos e divisores_de_um_número
 
Regras de simplificação de cálculo
Regras de simplificação de cálculoRegras de simplificação de cálculo
Regras de simplificação de cálculo
 
Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...
Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...
Interpretação de texto ( o bicho alfabético) e gramática ( sujeito e concordâ...
 
Divisão por 2 algarismos
Divisão por 2 algarismosDivisão por 2 algarismos
Divisão por 2 algarismos
 
Livro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisLivro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finais
 
Trabalhando divisão
Trabalhando divisãoTrabalhando divisão
Trabalhando divisão
 
Uso do sudoku nas operações com numeros naturais e fracionários
Uso do sudoku nas operações com numeros naturais e fracionáriosUso do sudoku nas operações com numeros naturais e fracionários
Uso do sudoku nas operações com numeros naturais e fracionários
 
Ficha divisores
Ficha divisoresFicha divisores
Ficha divisores
 

Semelhante a Múltiplos e divisores

Matemática (6° ANO) - Divisibilidade.ppt
Matemática (6° ANO) - Divisibilidade.pptMatemática (6° ANO) - Divisibilidade.ppt
Matemática (6° ANO) - Divisibilidade.ppt
SadyDanyelevczDeBrit
 
Divisores e múltiplos de números naturais
Divisores e múltiplos de números naturaisDivisores e múltiplos de números naturais
Divisores e múltiplos de números naturais
Antonio Magno Ferreira
 
Divisores e múltiplos de números naturais
Divisores e múltiplos de números naturaisDivisores e múltiplos de números naturais
Divisores e múltiplos de números naturais
Antonio Magno Ferreira
 
Números
Números Números
Números
Fábio Alves
 
Números
NúmerosNúmeros
Números
Rodrigo Costa
 
Aula 6 ano MMC/MDC.pdf
Aula 6 ano MMC/MDC.pdfAula 6 ano MMC/MDC.pdf
Aula 6 ano MMC/MDC.pdf
TainDutra4
 
Criterios de-divisibilidade
Criterios de-divisibilidadeCriterios de-divisibilidade
Criterios de-divisibilidade
Sandro Francisco
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
LourencianneCardoso
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numero
trigono_metria
 
Exercícios resolvidos numeros naturais
Exercícios resolvidos numeros naturaisExercícios resolvidos numeros naturais
Exercícios resolvidos numeros naturais
Ederronio Mederos
 
Apostila -exercicios_de_matematica_comentada_-_joselias
Apostila  -exercicios_de_matematica_comentada_-_joseliasApostila  -exercicios_de_matematica_comentada_-_joselias
Apostila -exercicios_de_matematica_comentada_-_joselias
Maria Luiza Azevedo
 
RACIOCÍNIO LOGICO PARTE 02
RACIOCÍNIO LOGICO PARTE 02RACIOCÍNIO LOGICO PARTE 02
RACIOCÍNIO LOGICO PARTE 02
CONCURSO PM BA 2012.
 
RACIOCÍNIO LOGICO PARTE 03
RACIOCÍNIO LOGICO PARTE 03RACIOCÍNIO LOGICO PARTE 03
RACIOCÍNIO LOGICO PARTE 03
CONCURSO PM BA 2012.
 
MATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completoMATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completo
zezinhaa6
 
aula2-230531004836-b0f83255.ppttttttttttx
aula2-230531004836-b0f83255.ppttttttttttxaula2-230531004836-b0f83255.ppttttttttttx
aula2-230531004836-b0f83255.ppttttttttttx
alessandraoliveira324
 
Aula n.º 3 divisores de um número
Aula n.º 3 divisores de um númeroAula n.º 3 divisores de um número
Aula n.º 3 divisores de um número
Joana Lourenço Cunha
 
Apostila Matemática
Apostila Matemática Apostila Matemática
Apostila Matemática
Felipe Goulart
 
Apostila matematica e raciocinio logico concursos exercicios resolvidos
Apostila matematica e raciocinio logico concursos exercicios resolvidosApostila matematica e raciocinio logico concursos exercicios resolvidos
Apostila matematica e raciocinio logico concursos exercicios resolvidos
Flad Bronks
 
Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...
Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...
Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...
Marcelino Jose
 
Apostila matematica e raciocinio logico concursos exercicios resolvidos jos...
Apostila matematica e raciocinio logico concursos exercicios resolvidos   jos...Apostila matematica e raciocinio logico concursos exercicios resolvidos   jos...
Apostila matematica e raciocinio logico concursos exercicios resolvidos jos...
Cleberson Oliveira
 

Semelhante a Múltiplos e divisores (20)

Matemática (6° ANO) - Divisibilidade.ppt
Matemática (6° ANO) - Divisibilidade.pptMatemática (6° ANO) - Divisibilidade.ppt
Matemática (6° ANO) - Divisibilidade.ppt
 
Divisores e múltiplos de números naturais
Divisores e múltiplos de números naturaisDivisores e múltiplos de números naturais
Divisores e múltiplos de números naturais
 
Divisores e múltiplos de números naturais
Divisores e múltiplos de números naturaisDivisores e múltiplos de números naturais
Divisores e múltiplos de números naturais
 
Números
Números Números
Números
 
Números
NúmerosNúmeros
Números
 
Aula 6 ano MMC/MDC.pdf
Aula 6 ano MMC/MDC.pdfAula 6 ano MMC/MDC.pdf
Aula 6 ano MMC/MDC.pdf
 
Criterios de-divisibilidade
Criterios de-divisibilidadeCriterios de-divisibilidade
Criterios de-divisibilidade
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numero
 
Exercícios resolvidos numeros naturais
Exercícios resolvidos numeros naturaisExercícios resolvidos numeros naturais
Exercícios resolvidos numeros naturais
 
Apostila -exercicios_de_matematica_comentada_-_joselias
Apostila  -exercicios_de_matematica_comentada_-_joseliasApostila  -exercicios_de_matematica_comentada_-_joselias
Apostila -exercicios_de_matematica_comentada_-_joselias
 
RACIOCÍNIO LOGICO PARTE 02
RACIOCÍNIO LOGICO PARTE 02RACIOCÍNIO LOGICO PARTE 02
RACIOCÍNIO LOGICO PARTE 02
 
RACIOCÍNIO LOGICO PARTE 03
RACIOCÍNIO LOGICO PARTE 03RACIOCÍNIO LOGICO PARTE 03
RACIOCÍNIO LOGICO PARTE 03
 
MATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completoMATEMÁTICA - Slides -6º ano.pdf completo
MATEMÁTICA - Slides -6º ano.pdf completo
 
aula2-230531004836-b0f83255.ppttttttttttx
aula2-230531004836-b0f83255.ppttttttttttxaula2-230531004836-b0f83255.ppttttttttttx
aula2-230531004836-b0f83255.ppttttttttttx
 
Aula n.º 3 divisores de um número
Aula n.º 3 divisores de um númeroAula n.º 3 divisores de um número
Aula n.º 3 divisores de um número
 
Apostila Matemática
Apostila Matemática Apostila Matemática
Apostila Matemática
 
Apostila matematica e raciocinio logico concursos exercicios resolvidos
Apostila matematica e raciocinio logico concursos exercicios resolvidosApostila matematica e raciocinio logico concursos exercicios resolvidos
Apostila matematica e raciocinio logico concursos exercicios resolvidos
 
Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...
Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...
Apostilamatematicaeraciociniologicoconcursosexerciciosresolvidos 140204114442...
 
Apostila matematica e raciocinio logico concursos exercicios resolvidos jos...
Apostila matematica e raciocinio logico concursos exercicios resolvidos   jos...Apostila matematica e raciocinio logico concursos exercicios resolvidos   jos...
Apostila matematica e raciocinio logico concursos exercicios resolvidos jos...
 

Último

Oficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdfOficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdf
beathrizalves131
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
Relatório de Atividades 2016 CENSIPAM.pdf
Relatório de Atividades 2016 CENSIPAM.pdfRelatório de Atividades 2016 CENSIPAM.pdf
Relatório de Atividades 2016 CENSIPAM.pdf
Falcão Brasil
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
Falcão Brasil
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
felipescherner
 
Acróstico - Bullying é crime!
Acróstico - Bullying é crime!Acróstico - Bullying é crime!
Acróstico - Bullying é crime!
Mary Alvarenga
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
LuizHenriquedeAlmeid6
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
DirceuSilva26
 
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptxSlides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
LuizHenriquedeAlmeid6
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
SupervisoEMAC
 
Painel para comemerorar odia dos avós grátis.pdf
Painel  para comemerorar odia dos avós grátis.pdfPainel  para comemerorar odia dos avós grátis.pdf
Painel para comemerorar odia dos avós grátis.pdf
marcos oliveira
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
Mary Alvarenga
 
Ideais do Ministério jovem Adventista pdf
Ideais do Ministério jovem Adventista pdfIdeais do Ministério jovem Adventista pdf
Ideais do Ministério jovem Adventista pdf
Anesio2
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
Mary Alvarenga
 
Licao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptxLicao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptx
jetroescola
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Mary Alvarenga
 
Mini livro sanfona - Minha Escola Tem História.
Mini livro  sanfona - Minha Escola Tem História. Mini livro  sanfona - Minha Escola Tem História.
Mini livro sanfona - Minha Escola Tem História.
Mary Alvarenga
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
shirleisousa9166
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
Falcão Brasil
 

Último (20)

Oficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdfOficina de bases de dados - Dimensions.pdf
Oficina de bases de dados - Dimensions.pdf
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
Relatório de Atividades 2016 CENSIPAM.pdf
Relatório de Atividades 2016 CENSIPAM.pdfRelatório de Atividades 2016 CENSIPAM.pdf
Relatório de Atividades 2016 CENSIPAM.pdf
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
 
Acróstico - Bullying é crime!
Acróstico - Bullying é crime!Acróstico - Bullying é crime!
Acróstico - Bullying é crime!
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
 
Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24Auxiliar Adolescente 2024 3 trimestre 24
Auxiliar Adolescente 2024 3 trimestre 24
 
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptxSlides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
Caderno 1 - Módulo Água JMS 2024 (1).pdf
Caderno 1 -  Módulo Água JMS 2024 (1).pdfCaderno 1 -  Módulo Água JMS 2024 (1).pdf
Caderno 1 - Módulo Água JMS 2024 (1).pdf
 
Painel para comemerorar odia dos avós grátis.pdf
Painel  para comemerorar odia dos avós grátis.pdfPainel  para comemerorar odia dos avós grátis.pdf
Painel para comemerorar odia dos avós grátis.pdf
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
 
Ideais do Ministério jovem Adventista pdf
Ideais do Ministério jovem Adventista pdfIdeais do Ministério jovem Adventista pdf
Ideais do Ministério jovem Adventista pdf
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
 
Licao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptxLicao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptx
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
 
Mini livro sanfona - Minha Escola Tem História.
Mini livro  sanfona - Minha Escola Tem História. Mini livro  sanfona - Minha Escola Tem História.
Mini livro sanfona - Minha Escola Tem História.
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
 

Múltiplos e divisores

  • 1. MÚLTIPLOS E DIVISORES Aluna: Ane da Silva Oliveira Chagas PÓLO: RIO BONITO
  • 2. “Um Objeto de Aprendizagem é um arquivo digital (imagem, filme, etc.) que pretende ser utilizado para fins pedagógicos e que possui, internamente ou através de associação, sugestões sobre o contexto apropriado para sua utilização”. (Sosteric & Hesemeier, 2001).
  • 3. A IDEIA DE MÚLTIPLO E DIVISOR É CONHECIDA DESDE A ANTIGÜIDADE GREGA. NAQUELA ÉPOCA, OS SÁBIOS DAVAM TANTA IMPORTÂNCIA AOS NÚMEROS QUE LHES ATRIBUÍAM CARACTERÍSTICAS HUMANAS. PARA VOCÊS TEREM UMA IDEIA, ELES AGRUPAVAM OS NÚMEROS EM MASCULINOS ( OS ÍMPARES) E FEMININOS ( OS PARES). MÚLTIPLOS E DIVISORES
  • 4. CRITÉRIOS DE MÚLTIPLOS E DIVISORES • Divisibilidade Critérios de divisibilidade: • São critérios que nos permite verificar se um número é divisível por outro sem precisarmos efetuar grandes divisões. • Um número natural é divisível por outro natural, excluindo-se o zero, se a divisão entre eles é exata, ou seja, se tem resto zero. • Divisibilidade por 2 Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par.  Exemplos : • 8490é divisível por 2, pois termina em 0. • 895 não é divisível por 2, pois não é um número par
  • 5. •Divisibilidade por 3 :Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplo: 870 é divisível por 3, pois a soma de seus algarismos é igual a 8+7+0=15, como 15 é divisível por 3, então 870 é divisível por 3. •Divisibilidade por 4 :Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4. Exemplo: 9500 é divisível por 4, pois termina em 00. 6532 é divisível por 4, pois 32 é divisível por 4. 836 é divisível por 4, pois 36 é divisível por 4. 9870 não é divisível por 4, pois não termina em 00 e 70 não é divisível por 4. •Divisibilidade por 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5. Exemplos: 425 é divisível por 5, pois termina em 5. 78960 é divisível por 5, pois termina em 0. 976 não é divisível por 5, pois não termina em 0 nem em 5.
  • 6. •Divisibilidade por 6: Um número é divisível por 6 quando é divisível por 2 e por 3 ao mesmo tempo. Exemplos: 6456 é divisível por 6, porque é divisível por 2e por 3 ao mesmo tempo. 984 não é divisível por 6, é divisível por 2, mas não é divisível por 3. 357 não é divisível por 6, é divisível por 3, mas não é divisível por 2. •Divisibilidade por 8: Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8. Exemplos: 2000 é divisível por 8, pois termina em 000. 98120 é divisível por 8, pois 120 é divisível por 8. 78341 não é divisível por 8, pois 341 não é divisível por 8. •Divisibilidade por 9: Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9. Exemplo: 6192 é divisível por 9, pois a soma de seus algarismos é igual a 6+1+9+2=18, e como 18 é divisível por 9, então 6192 é divisível por 9. Divisibilidade por 10 Um número natural é divisível por 10 quando ele termina em 0. Exemplos: 8970 é divisível por 10, pois termina em 0. 5987 não é divisível por 10, pois não termina em 0.
  • 7. MÚLTIPLOS • Se um número é divisível por outro, diferente de zero, então dizemos que ele é múltiplo desse outro. • Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais. Exemplo: os múltiplos de 7 são: 7x0 , 7x1, 7x2 , 7x3 , 7x4 , ... = 0 , 7 , 14 , 21 , 28 , ... • ATENÇÃO: • Observações importantes 1) Um número tem infinitos múltiplos 2) Zero é múltiplo de qualquer número natural
  • 8. NÚMEROS PRIMOS • Número primo: É quando um número só é divisível por dois números diferentes; 1 e ele mesmo.  Exemplos: • 2 tem apenas os divisores 1e 2, portanto 2 é primo. 23 tem apenas os divisores 1e 23, portanto 23 é primo. 10 tem os divisores 1, 2, 5e 10, portanto 10 não é primo. Atenção: • 1 não é um número primo, porque ele tem apenas um divisor ele mesmo. • 2 é o único número primo que é par. • Os números que têm mais de dois divisores são chamados números compostos.  Exemplo: 36 tem mais de dois divisores então 36 é um número composto.
  • 9. Como saber se um número é primo Devemos dividir o número dado pelos números primos menores que ele, até obter um quociente menor ou igual ao divisor. Se nenhum das divisões for exata, o número é primo. Decomposição em fatores primos Todo número natural, maior que 1, pode ser escrito na forma de uma multiplicação em que todos os fatores são números primos. É o que nós chamamos de forma fatorada de um número. Decomposição do número 36: 36 =9 x 4 36 = 3 x 3 x 2 x 2 36 = 3 x3 x 2 x 2 = 22x32 No produto 2 x 2 x 3 x 3 todos os fatores são primos. Chamamos de fatoração de 36 a decomposição de 36 num produto de fatores primos.
  • 10. Método Prático Escrevera Forma Fatorada de um Número Natural Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo: ºDividimos o número pelo seu menor divisor primo; 2ºA seguir,dividir o quociente obtido pelo seu menor divisor primo. 3ºProceder dessa forma, daí por diante, até obter o quociente 1.
  • 11. Determinação dos divisores de um número Na prática determinamos todos os divisores de um número utilizando os seus fatores primos. Vamos determinar, por exemplo, os divisores de 72: 1ºFatoramos o número 72. 2ºTraçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número. 3º Multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo. 4º Os divisores já obtidos não precisam ser repetidos. Então o conjunto dos divisores de 72 = {1,2,3,4,6,8,9,12,18,36,72}
  • 12. Máximo Divisor Comum (mdc) O máximo divisor comum entre dois ou mais números naturaisnão nulos (números diferentes de zero) é o maior número queé divisor ao mesmo tempo de todos eles. Não vamos aqui ensinar todos as formas de se calcular o mdc, vamos nos ater apenas a algumas delas. Regra das divisões sucessivas Esta regra é bem prática para o calculo do mdc, observe: Exemplo: Vamos calcular o mdc entre os números 160 e 24. 1º: Dividimos o número maior pelo menor. 2º: Como não deu resto zero, dividimos o divisor pelo resto da divisão anterior. 3º: Prosseguimos com as divisões sucessivas até obter resto zero. O mdc (64; 160) = 32
  • 13. mmc (18, 25, 30) = 720 1º: Escrevemos os números dados, separados por vírgulas, e colocamos um traço vertical a direita dos números dados. 2º: Abaixo de cada número divisível pelo fator primo colocamos o resultado da divisão. O números não divisíveis pelo fator primo são repetidos. 3º: Continuamos a divisão até obtermos resto 1 para todos os números. Mínimo Múltiplo Comum - MMC
  • 14. Objeto Aprendizagem - JOGOS Os jogos quando convenientemente planejados, são um recurso pedagógico eficaz para a construção do conhecimento matemático. Para que o jogo seja um material produtivo em sala, o professor deve ter alguns cuidados ao escolher os jogos a serem aplicados como: •não tomar o jogo algo obrigatório; •escolher jogos em que o fator sorte não interfira nas jogadas, permitindo que vença aquele que descobrir as melhores estratégias; •estabelecer regras; • estudar o jogo antes de aplicá-lo ou seja jogá-lo antes.
  • 16. O JOGO Apanhar as borboletas que carregam os números certos, no mais curto espaço de tempo. Cada jogo é constituído por 3 fases (números primos, divisores, etc...). Sempre que se apanha uma borboleta errada será sujeito a uma penalização de 30 segundos.
  • 26. Os Números •O Objetivo do jogo é descobrir as regras de divisibilidade, múltiplos e seus padrões usando rapidez e a lógica através instrumentos educacionais , ou seja, saber se um número é múltiplo ou divisível por outro sem efetuar multiplicação. •Verificar os números primos. •Identificar números pares.
  • 27. CONCLUSÃO Um objeto de aprendizagem é qualquer recurso que possa ser reutilizado para dar suporte ao aprendizado. Sua principal idéia é "quebrar" o conteúdo educacional disciplinar em pequenos trechos que podem ser reutilizados em vários ambientes de aprendizagem. Qualquer material eletrônico que provém informações para a construção de conhecimento pode ser considerado um objeto de aprendizagem, seja essa informação em forma de uma imagem, uma página HTM, uma animação ou simulação. RIVED - REDE INTERNACIONAL VIRTUAL DE EDUCAÇÃO