SlideShare uma empresa Scribd logo
1 
Matemática 
Aulas 17 e 18 – Matemática 
Texto A 
_______________________________________________________ 
PROBLEMA (problema 3 da aula) 
Uma indústria pode produzir dois tipos de produtos, A e B, utilizando três tipos de materiais, I, II e III. O modo como ela opera é descrito na tabela abaixo: Produtos >> Materiais A B Estoque I 1 3 10 II 2 2 12 III 0 1 4 Lucro unitário >> 4 reais 6 reais Lucro Total L 
(Para produzir uma unidade de A utilizam-se 1 unidade do material I, 2 unidades do material II e nada do material III; no caso de B, utilizam-se 3 unidades do material I, 2 unidades de II e 1 unidade de III) 
Determine quantas unidades devem ser produzidas de A e quantas de B de modo que o Lucro Total seja máximo 
ROTEIRO PARA A RESOLUÇÃO 
1. Qual a função a ser otimizada? Trata-se da busca de um máximo ou de um mínimo? 
Máximo 
Lucro Total=Lt =4x +6y 
2. Quais as limitações impostas aos valores de x e y, devido à natureza do problema e às condições da produção?
2 
3. Como se formula o problema proposto sinteticamente, na linguagem matemática? 
MAX Lucro Total = Lt =4x +6y 
4. Represente no plano cartesiano os pontos (x, y) que satisfazem a restrição x + 3y ≤ 10 
5. Represente no plano cartesiano os pontos (x;y) que satisfazem às inequações 2x + 2y ≤ 12 (material II) e y ≤4 (material III) 
2x + 2y ≤ 12 é a área hachurada em verde 
e y ≤4 é representado pela área hachurada em rosa
3 
Os pontos são a intersecção entre as áeas rosa e verde. 
6. Represente no plano cartesiano a região que corresponde aos pontos (x; y) que satisfazem simultaneamente todas as condições do enunciado. 
7. Para escolher entre os pontos de V o que responde a pergunta do problema, ou seja, o par (x; y) que torna o Lucro L máximo, calcule o valor de L = 4x + 6y em um ponto qualquer da região V; por exemplo, no ponto (6; 0). 
L=4 *6+ 6*0 
L=24 
8. Note que o valor de L é 24 ao longo de toda a reta 4x + 6y = 24. Represente tal reta no plano cartesiano, juntamente com a região de viabilidade V.
4 
9. Calcule o valor de L em outro ponto da região de viabilidade, por exemplo, no ponto (0; 10/3). 
L=4 *0+ 6*10/3 
L=20 
10. Verifique que a reta 4x + 6y = 20, ao longo do qual o lucro L é igual a 20, é paralela à reta 4x + 6y = 24, situando-se abaixo dela. Como o ponto em que a reta 4x + 6y = L corta o eixo Y no ponto (0; L/6), quanto maior o lucro L, mais alto no eixo Y é o ponto em que a reta L = 4x + 6y o corta. Assim, o lucro máximo corresponde à reta L = 4x + 6y que corta o eixo Y no ponto mais alto. Será uma reta paralela a 4x +6y = 20, mas que passa pelo ponto da região V que possibilita o maior valor da ordenada em que corta o eixo Y. Verifique que tal ponto é justamente a interseção das retas I e II. Determine esse ponto e calcule o valor de L correspondente. Esse será o máximo lucro possível, respeitadas as exigências do enunciado. 
Para encontar o ponto de intersecção das retas devemos resolver o sistema linear a seguir: 
x+3y=10 
x+y=6 
Y=2 , X=4 
O ponto da solução ótima é X=4 e Y=2.

Mais conteúdo relacionado

Mais procurados

Teorema de pick
Teorema de pickTeorema de pick
Teorema de pickLudovina
 
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Anderson V N Soares
 
áReas não regulares
áReas não regularesáReas não regulares
áReas não regularesRonymVentura
 
Lista global - 3º bimestre - 8º ano - 2015
Lista   global - 3º bimestre - 8º ano - 2015Lista   global - 3º bimestre - 8º ano - 2015
Lista global - 3º bimestre - 8º ano - 2015proffelipemat
 
Fichatra6fraccoes
Fichatra6fraccoesFichatra6fraccoes
Fichatra6fraccoessilvia_lfr
 
Lista 4 sobre funções quadrática e congruências
Lista 4 sobre funções quadrática e congruênciasLista 4 sobre funções quadrática e congruências
Lista 4 sobre funções quadrática e congruênciasAlexsandraeJakson Heberle
 
Historia da analise combinatoria (sв matematica)
Historia da analise combinatoria (sв matematica)Historia da analise combinatoria (sв matematica)
Historia da analise combinatoria (sв matematica)almirante2010
 

Mais procurados (10)

Teorema de pick
Teorema de pickTeorema de pick
Teorema de pick
 
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
 
áReas não regulares
áReas não regularesáReas não regulares
áReas não regulares
 
ADIVINHA 1
ADIVINHA 1ADIVINHA 1
ADIVINHA 1
 
Números complexos 2008
Números complexos 2008Números complexos 2008
Números complexos 2008
 
Lista global - 3º bimestre - 8º ano - 2015
Lista   global - 3º bimestre - 8º ano - 2015Lista   global - 3º bimestre - 8º ano - 2015
Lista global - 3º bimestre - 8º ano - 2015
 
Fichatra6fraccoes
Fichatra6fraccoesFichatra6fraccoes
Fichatra6fraccoes
 
Lista 4 sobre funções quadrática e congruências
Lista 4 sobre funções quadrática e congruênciasLista 4 sobre funções quadrática e congruências
Lista 4 sobre funções quadrática e congruências
 
Historia da analise combinatoria (sв matematica)
Historia da analise combinatoria (sв matematica)Historia da analise combinatoria (sв matematica)
Historia da analise combinatoria (sв matematica)
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 

Semelhante a Matematica semana4 aulas17 e 18

Introdução a função.ppt
Introdução a função.pptIntrodução a função.ppt
Introdução a função.pptERANDIDELIMACRUZ
 
Funções - Conceito.ppt
Funções - Conceito.pptFunções - Conceito.ppt
Funções - Conceito.pptCarolAlencar11
 
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptxMagellaAlmeida
 
Funções - Conceito.pptx
Funções - Conceito.pptxFunções - Conceito.pptx
Funções - Conceito.pptxJakson Ney Reis
 
Matematica [teste avaliacao_9ano]
Matematica [teste avaliacao_9ano]Matematica [teste avaliacao_9ano]
Matematica [teste avaliacao_9ano]Artur (Ft)
 
Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2
Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2
Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2Yolanda Acurcio
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -Patrícia Costa Grigório
 
Apostila sobre operações de polinômios com material concreto
Apostila sobre operações de polinômios com material concretoApostila sobre operações de polinômios com material concreto
Apostila sobre operações de polinômios com material concretoGloria Maria Silva
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricasLarissa Souza
 
Lista de exercícios equação - 7 ano - 5ª etapa
Lista de exercícios   equação - 7 ano - 5ª etapaLista de exercícios   equação - 7 ano - 5ª etapa
Lista de exercícios equação - 7 ano - 5ª etapaLuciana Ayres
 
Produtos notáveis e fatoração.pptx
Produtos notáveis e fatoração.pptxProdutos notáveis e fatoração.pptx
Produtos notáveis e fatoração.pptxGustavoNascimentoSil
 
Problemas em aberto da matemática
Problemas em aberto da matemáticaProblemas em aberto da matemática
Problemas em aberto da matemáticaXequeMateShannon
 
Slides Matemática para Negócios.pptx
Slides Matemática para Negócios.pptxSlides Matemática para Negócios.pptx
Slides Matemática para Negócios.pptxMARCELOROGERIOCARDOS
 

Semelhante a Matematica semana4 aulas17 e 18 (20)

Aula17e18
Aula17e18Aula17e18
Aula17e18
 
Introdução a função.ppt
Introdução a função.pptIntrodução a função.ppt
Introdução a função.ppt
 
Funções - Conceito.ppt
Funções - Conceito.pptFunções - Conceito.ppt
Funções - Conceito.ppt
 
Funções - Conceito.ppt
Funções - Conceito.pptFunções - Conceito.ppt
Funções - Conceito.ppt
 
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx
 
Funções - Conceito.pptx
Funções - Conceito.pptxFunções - Conceito.pptx
Funções - Conceito.pptx
 
Matematica [teste avaliacao_9ano]
Matematica [teste avaliacao_9ano]Matematica [teste avaliacao_9ano]
Matematica [teste avaliacao_9ano]
 
Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2
Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2
Exame de Matematica 9º ano , 2016 1ª Fase ,Caderno 2
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
 
1 cm mat
1 cm mat1 cm mat
1 cm mat
 
Apostila sobre operações de polinômios com material concreto
Apostila sobre operações de polinômios com material concretoApostila sobre operações de polinômios com material concreto
Apostila sobre operações de polinômios com material concreto
 
Fatoração
FatoraçãoFatoração
Fatoração
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Lista de exercícios equação - 7 ano - 5ª etapa
Lista de exercícios   equação - 7 ano - 5ª etapaLista de exercícios   equação - 7 ano - 5ª etapa
Lista de exercícios equação - 7 ano - 5ª etapa
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Produtos notáveis e fatoração.pptx
Produtos notáveis e fatoração.pptxProdutos notáveis e fatoração.pptx
Produtos notáveis e fatoração.pptx
 
1323093437588
13230934375881323093437588
1323093437588
 
Problemas em aberto da matemática
Problemas em aberto da matemáticaProblemas em aberto da matemática
Problemas em aberto da matemática
 
Slides Matemática para Negócios.pptx
Slides Matemática para Negócios.pptxSlides Matemática para Negócios.pptx
Slides Matemática para Negócios.pptx
 
Funções
Funções Funções
Funções
 

Último

Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40vitoriaalyce2011
 
Evangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdfEvangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdfPastor Robson Colaço
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfssuserbb4ac2
 
Apresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimentoApresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimentoPedroFerreira53928
 
Apresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao AssédioApresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao Assédioifbauab
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosbiancaborges0906
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxMartin M Flynn
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assisbrunocali007
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptxlucioalmeida2702
 
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]ESCRIBA DE CRISTO
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Rosana Andrea Miranda
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...LuizHenriquedeAlmeid6
 
Junho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na IgrejaJunho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na IgrejaComando Resgatai
 
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdfmanual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdfLeandroTelesRocha2
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilMariaHelena293800
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaCludiaRodrigues693635
 
ATPCG 27.05 - Recomposição de aprendizagem.pptx
ATPCG 27.05 - Recomposição de aprendizagem.pptxATPCG 27.05 - Recomposição de aprendizagem.pptx
ATPCG 27.05 - Recomposição de aprendizagem.pptxmairaviani
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leiteprofesfrancleite
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxGraycyelleCavalcanti
 
00Certificado - MBA - Gestão de projetos
00Certificado - MBA - Gestão de projetos00Certificado - MBA - Gestão de projetos
00Certificado - MBA - Gestão de projetosLeonardoHenrique931183
 

Último (20)

Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40
 
Evangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdfEvangelismo e Missões Contemporânea Cristã.pdf
Evangelismo e Missões Contemporânea Cristã.pdf
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
 
Apresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimentoApresentação de vocabulário fundamental em contexto de atendimento
Apresentação de vocabulário fundamental em contexto de atendimento
 
Apresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao AssédioApresentação Formação em Prevenção ao Assédio
Apresentação Formação em Prevenção ao Assédio
 
Fotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anosFotossíntese para o Ensino médio primeiros anos
Fotossíntese para o Ensino médio primeiros anos
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptx
 
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
INTRODUÇÃO A ARQUEOLOGIA BÍBLICA [BIBLIOLOGIA]]
 
Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
 
Junho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na IgrejaJunho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na Igreja
 
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdfmanual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantil
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
ATPCG 27.05 - Recomposição de aprendizagem.pptx
ATPCG 27.05 - Recomposição de aprendizagem.pptxATPCG 27.05 - Recomposição de aprendizagem.pptx
ATPCG 27.05 - Recomposição de aprendizagem.pptx
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leite
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
00Certificado - MBA - Gestão de projetos
00Certificado - MBA - Gestão de projetos00Certificado - MBA - Gestão de projetos
00Certificado - MBA - Gestão de projetos
 

Matematica semana4 aulas17 e 18

  • 1. 1 Matemática Aulas 17 e 18 – Matemática Texto A _______________________________________________________ PROBLEMA (problema 3 da aula) Uma indústria pode produzir dois tipos de produtos, A e B, utilizando três tipos de materiais, I, II e III. O modo como ela opera é descrito na tabela abaixo: Produtos >> Materiais A B Estoque I 1 3 10 II 2 2 12 III 0 1 4 Lucro unitário >> 4 reais 6 reais Lucro Total L (Para produzir uma unidade de A utilizam-se 1 unidade do material I, 2 unidades do material II e nada do material III; no caso de B, utilizam-se 3 unidades do material I, 2 unidades de II e 1 unidade de III) Determine quantas unidades devem ser produzidas de A e quantas de B de modo que o Lucro Total seja máximo ROTEIRO PARA A RESOLUÇÃO 1. Qual a função a ser otimizada? Trata-se da busca de um máximo ou de um mínimo? Máximo Lucro Total=Lt =4x +6y 2. Quais as limitações impostas aos valores de x e y, devido à natureza do problema e às condições da produção?
  • 2. 2 3. Como se formula o problema proposto sinteticamente, na linguagem matemática? MAX Lucro Total = Lt =4x +6y 4. Represente no plano cartesiano os pontos (x, y) que satisfazem a restrição x + 3y ≤ 10 5. Represente no plano cartesiano os pontos (x;y) que satisfazem às inequações 2x + 2y ≤ 12 (material II) e y ≤4 (material III) 2x + 2y ≤ 12 é a área hachurada em verde e y ≤4 é representado pela área hachurada em rosa
  • 3. 3 Os pontos são a intersecção entre as áeas rosa e verde. 6. Represente no plano cartesiano a região que corresponde aos pontos (x; y) que satisfazem simultaneamente todas as condições do enunciado. 7. Para escolher entre os pontos de V o que responde a pergunta do problema, ou seja, o par (x; y) que torna o Lucro L máximo, calcule o valor de L = 4x + 6y em um ponto qualquer da região V; por exemplo, no ponto (6; 0). L=4 *6+ 6*0 L=24 8. Note que o valor de L é 24 ao longo de toda a reta 4x + 6y = 24. Represente tal reta no plano cartesiano, juntamente com a região de viabilidade V.
  • 4. 4 9. Calcule o valor de L em outro ponto da região de viabilidade, por exemplo, no ponto (0; 10/3). L=4 *0+ 6*10/3 L=20 10. Verifique que a reta 4x + 6y = 20, ao longo do qual o lucro L é igual a 20, é paralela à reta 4x + 6y = 24, situando-se abaixo dela. Como o ponto em que a reta 4x + 6y = L corta o eixo Y no ponto (0; L/6), quanto maior o lucro L, mais alto no eixo Y é o ponto em que a reta L = 4x + 6y o corta. Assim, o lucro máximo corresponde à reta L = 4x + 6y que corta o eixo Y no ponto mais alto. Será uma reta paralela a 4x +6y = 20, mas que passa pelo ponto da região V que possibilita o maior valor da ordenada em que corta o eixo Y. Verifique que tal ponto é justamente a interseção das retas I e II. Determine esse ponto e calcule o valor de L correspondente. Esse será o máximo lucro possível, respeitadas as exigências do enunciado. Para encontar o ponto de intersecção das retas devemos resolver o sistema linear a seguir: x+3y=10 x+y=6 Y=2 , X=4 O ponto da solução ótima é X=4 e Y=2.