Equação é uma igualdade, entre duas
    expressões onde, pelo menos numa delas
    figura uma ou mais letras que se chamam
    incógnitas
                 Primeiro        Segundo
                 membro          membro          Incógnita:

                8x + 5 = 2x + 7
                                                      x
                            Termos
            Com incógnita            Independentes

                 ,                         ,

1                                                    Carlos Ferr
Resolver uma equação é obter o valor da
    incógnita queverifica a igualdade
        Como torna a igualdade verdadeira
    A esse valor chama-seda equação
         2 é solução solução (raiz) da
    equação
     Vamos verificar se 2 é solução desta equação
                        2

                  8x + 5 = 2x + 17
              8     x + 5 = 2 x + 17

                         21 = 21
                  Igualdade numérica verdadeira
                                                  
2                                                 Carlos Ferr
Como não verifica a igualdade
     5 não é solução da equação
       Verifiquemos agora se 5 é solução


                8x + 5 = 2x + 17
            8    x + 5 = 2 x + 17

                      45 = 27         
                 Igualdade numérica falsa

3                                           Carlos Ferr
Equações equivalentes são aquelas que
    têm o mesmo conjunto solução

      As equações

      5x – 3 = 4x + 2 e 5x – 4x = 2 + 3

      são equivalentes, ambas têm como
      solução o 5



4                                    Carlos Ferr
Equações equivalentes são aquelas que
    têm o mesmo conjunto solução

      Também são equivalentes as equações
             2x = 4 e x = 4 / 2

        ambas têm como solução o 2




5                                    Carlos Ferr
Princípios de equivalência

    Princípio da adição: pode-se adicionar ou subtrair
    o mesmo número a ambos os membros de uma
    equação que se obtém uma equação equivalente
    à anterior

               2x + 7 - 7 4
                      =           -7

               2x = 4 - 7
        Na prática: o que se faz é passar o termo de um
       membro para o outro membro trocando-lhe o sinal

6                                                Carlos Ferr
Princípios de equivalência

    Princípio da multiplicação: pode-se multiplicar ou
    dividir ambos os membros de uma equação
    por um número diferente de zero que se obtém
    uma equação equivalente à anterior

            2x = 14         2x = 14            14
                                            x=
                            2     2             2


         Na prática: o coeficiente da incógnita passa a
                     dividir o outro membro

7                                                  Carlos Ferr
Passos a seguir na resolução da equação:
       - 1º “eliminamos” os parênteses

        - 2º isolamos os termos com incógnita
          num dos membros

       - 3º simplificamos cada membro

       - 4º obtemos a solução da equação


8                                        Carlos Ferr
Com base nos princípios de equivalência,
    vamos resolver uma equação

    Iremos, passo a passo, acompanhar uma
    sequência de processos que levarão à
    obtenção da solução da equação

    Se algum dos passos não estiver presente
    passamos ao passo seguinte


9                                     Carlos Ferr
Este símbolo lê-se
     Resolução da equação:                          “é equivalente a”



              2 ( x + 1 ) = 1 - (x – 2)

                    Trocamos os sinais dos termos que
                    se encontram dentro de parênteses e
                         eliminamos os parênteses


                2 x+ 2 = 1- x + 2

         1º - “eliminamos” os parênteses fazendo
             a propriedade distributiva
10                                                        Carlos Ferr
2 x+ 2 =1 + x + 2
                 -      -

                           3



     NOTA: Não te esqueças de trocar o sinal
           quando mudas de membro


      2º - vamos isolar os termos com incógnita
       no primeiro membro
11                                        Carlos Ferr
2x + x = 3 - 2

                     3x       =     1
     RECORDA
     - Soma de números com o mesmo sinal: adicionam-se os números e
       mantém-se o mesmo sinal.

     - Soma de números com sinais diferentes: subtraem-se os números
       e mantém-se o sinal do número de maior valor absoluto


          3º - simplificamos os termos semelhantes
          em cada membro
12                                                        Carlos Ferr
3
               3x       =      -1
                                1

                 x      =                  S={1/3}
                                            Conjunto solução

            O coeficiente de x divide o 2º membro.


      Dividindo ambos os membros da equação
         por 3 obtemos o valor da incógnita
                (solução da equação)

     4º - vamos obter a solução da equação

13                                                   Carlos Ferr

Equações7

  • 1.
    Equação é umaigualdade, entre duas expressões onde, pelo menos numa delas figura uma ou mais letras que se chamam incógnitas Primeiro Segundo membro membro Incógnita: 8x + 5 = 2x + 7 x Termos Com incógnita Independentes , , 1 Carlos Ferr
  • 2.
    Resolver uma equaçãoé obter o valor da incógnita queverifica a igualdade Como torna a igualdade verdadeira A esse valor chama-seda equação 2 é solução solução (raiz) da equação Vamos verificar se 2 é solução desta equação 2 8x + 5 = 2x + 17 8 x + 5 = 2 x + 17 21 = 21 Igualdade numérica verdadeira  2 Carlos Ferr
  • 3.
    Como não verificaa igualdade 5 não é solução da equação Verifiquemos agora se 5 é solução 8x + 5 = 2x + 17 8 x + 5 = 2 x + 17 45 = 27  Igualdade numérica falsa 3 Carlos Ferr
  • 4.
    Equações equivalentes sãoaquelas que têm o mesmo conjunto solução As equações 5x – 3 = 4x + 2 e 5x – 4x = 2 + 3 são equivalentes, ambas têm como solução o 5 4 Carlos Ferr
  • 5.
    Equações equivalentes sãoaquelas que têm o mesmo conjunto solução Também são equivalentes as equações 2x = 4 e x = 4 / 2 ambas têm como solução o 2 5 Carlos Ferr
  • 6.
    Princípios de equivalência Princípio da adição: pode-se adicionar ou subtrair o mesmo número a ambos os membros de uma equação que se obtém uma equação equivalente à anterior 2x + 7 - 7 4 = -7 2x = 4 - 7 Na prática: o que se faz é passar o termo de um membro para o outro membro trocando-lhe o sinal 6 Carlos Ferr
  • 7.
    Princípios de equivalência Princípio da multiplicação: pode-se multiplicar ou dividir ambos os membros de uma equação por um número diferente de zero que se obtém uma equação equivalente à anterior 2x = 14 2x = 14 14 x= 2 2 2 Na prática: o coeficiente da incógnita passa a dividir o outro membro 7 Carlos Ferr
  • 8.
    Passos a seguirna resolução da equação: - 1º “eliminamos” os parênteses - 2º isolamos os termos com incógnita num dos membros - 3º simplificamos cada membro - 4º obtemos a solução da equação 8 Carlos Ferr
  • 9.
    Com base nosprincípios de equivalência, vamos resolver uma equação Iremos, passo a passo, acompanhar uma sequência de processos que levarão à obtenção da solução da equação Se algum dos passos não estiver presente passamos ao passo seguinte 9 Carlos Ferr
  • 10.
    Este símbolo lê-se Resolução da equação: “é equivalente a” 2 ( x + 1 ) = 1 - (x – 2) Trocamos os sinais dos termos que se encontram dentro de parênteses e eliminamos os parênteses 2 x+ 2 = 1- x + 2 1º - “eliminamos” os parênteses fazendo a propriedade distributiva 10 Carlos Ferr
  • 11.
    2 x+ 2=1 + x + 2 - - 3 NOTA: Não te esqueças de trocar o sinal quando mudas de membro 2º - vamos isolar os termos com incógnita no primeiro membro 11 Carlos Ferr
  • 12.
    2x + x= 3 - 2 3x = 1 RECORDA - Soma de números com o mesmo sinal: adicionam-se os números e mantém-se o mesmo sinal. - Soma de números com sinais diferentes: subtraem-se os números e mantém-se o sinal do número de maior valor absoluto 3º - simplificamos os termos semelhantes em cada membro 12 Carlos Ferr
  • 13.
    3 3x = -1 1 x = S={1/3} Conjunto solução O coeficiente de x divide o 2º membro. Dividindo ambos os membros da equação por 3 obtemos o valor da incógnita (solução da equação) 4º - vamos obter a solução da equação 13 Carlos Ferr