SlideShare uma empresa Scribd logo
1 de 3
Baixar para ler offline
MATEMÁTICA


                                                    DETERMINANTES
1. INTRODUÇÃO                                                                    5. REGRA DE SARRUS
      Determinante é um número real que se associa                                      1o ) Repetem-se as duas primeiras colunas à di-
a uma matriz quadrada.                                                           reita do determinante.
                                                                                        2o ) Multiplicam-se:
      Determinante de uma matriz A de ordem 1.                                              os elementos da diagonal principal e os e-
                    det A = |a11| = a11                                                     lementos de cada paralela a essa diagonal,
      Determinante de uma matriz A de ordem 2.                                              conservando o sinal de cada produto obtido;
                   a11 a12                                                                  os elementos da diagonal secundária e os
         det A =             = a11 ⋅ a 22 − a12 ⋅ a 21
                   a 21 a 22                                                                elementos de cada paralela a essa diagonal,
                                                                                            invertendo o sinal de cada produto obtido.
2. MENOR   COMPLEMENTAR     DETERMI-
   NANTE DA MATRIZ REDUZIDA                                                                                           −a 31 . a 22 . a13
      Chama-se menor complementar Dij relativo a                                                                      −a 32 . a 23 . a11
um elemento aij da matriz A, de ordem n, o determi-                                                                   −a 33 . a 21 . a12
nante da matriz de ordem n − 1 , que se obtém a partir                                   a11   a12   a13 a11   a12
de A, suprimindo sua linha de ordem i e sua coluna                                       a 21 a 22   a 23 a 21 a 22
de ordem j.                                                                              a 31 a 32   a 33 a 31 a 32
Exemplo:                                                                                                              a13 . a 21 . a 32
                       2 − 1 3                                                                                       a12 . a 23 . a 31
                               
      Sendo        A = 0 1 4 ,              temos:
                        5 − 2 1                                                                                      a11 . a 22 . a 33
                               
                                                        0 4                            3o) e somam-se os resultados obtidos no 2o.
      a) D11 = 1         4
                             =9           b) D12 =             = −20
                   −2 1                                 5 1                      passo, ou seja:
                                                                                            det A = a11a22a33 + a12a23a31 + a13a21a32 -
3. COFATOR
                                                                                            a31a22a13    -a32a23a11 - a33a21a12
       Chama-se cofator do elemento aij, e se indica
                                                                                 6. PROPRIEDADES DOS DETERMINANTES
por Aij o seguinte número:
                                                                                          Matriz com fila nula: o determinante dessa
                    A ij = (− 1) i + j⋅ Dij                                               matriz é nulo.
Exemplo:                                                                                  Matriz triangular: o determinante é igual ao
                                                                                          produto dos elementos da sua diagonal
        O cofator do elemento a21 da matriz
                                                                                          principal.
       2 1 1
                                            1 1                                         Multiplicação de uma fila por um número k
  A = 3 5 4       é: A 21 = ( −1)2 +1             = ( −1)3 (1 ⋅ 3) = −3.
                                                                                          real: O determinante da nova matriz é igual
      6 0 3                                 0 3
                                                                                        ao anterior, multiplicado pelo número k.
                                                                                          Troca de filas paralelas: o determinante da
4. TEOREMA DE LAPLACE
                                                                                          nova matriz é o anterior com sinal trocado.
      O determinante de uma matriz quadrada de or-                                        Filas paralelas iguais: o determinante é nu-
dem n, n ≥ 2, é igual à soma dos produtos dos ele-                                        lo.
mentos de uma fila qualquer pelos respectivos                                             Filas paralelas proporcionais: o determinan-
cofatores.                                                                                te é nulo.
      Exemplo:                                                                            Matriz transposta: o determinante de uma
   a) tomando como referência a 1a linha, de uma                                          matriz A é igual ao determinante de sua
      matriz de ordem 3, temos:                                                           transposta At.
        det A = a11 . A11 + a12 . A12 + a13 . A13                                         Decomposição de uma fila: se cada elemen-
   b) tomando como referência a 2a coluna, de uma                                         to de uma das filas de um determinante é
      matriz de ordem 3, temos:                                                           uma soma de duas parcelas, então esse de-
        det A = a12 . A12 + a22 . A22 + a32 . A32                                         terminante é a soma de dois outros deter-
                                                                                          minantes, que se obtêm substituindo essa
                                                                                          fila pelas primeiras e pelas segundas parce-

Editora Exato                                                                5
las, respectivamente, e conservando inalte-                                 EXERCÍCIOS RESOLVIDOS
          radas as demais filas.
          Teorema de Cauchy: em toda matriz qua-                                                                                       3 5
          drada de ordem n ≥ 2, a soma dos produtos                      1   Calcule o determinante da matriz A =                           :
                                                                                                                                       -2 -1
          dos elementos de uma fila pelos cofatores                          Resolução:
          dos correspondentes elementos de uma fila
          paralela é zero.
          Teorema de Jacobi: se a uma das filas de
          uma matriz quadrada A de ordem n ≥ 2 adi-
                                                                                                        3
                                                                                                           ( )
                                                                                                           5
                                                                                                     A -2 -1

          cionarmos um múltiplo de outra fila parale-
          la, obteremos uma matriz B tal que det B =                         3. ( −1)  − ( −2) .5 =
                                                                                                 
          det A.
                                                                             [ −3] − [ −10] =
          Teorema de Binet: se A e B são duas matri-
                                                                             −3 + 10 = 7
          zes quadradas de ordem n, então det(A . B)
          = det A . det B.
7. CÁLCULO DA MATRIZ INVERSA                                                                       EXERCÍCIOS
                    1          t                                         1   (MACK-SP) Sendo A=(aij) uma matriz quadrada
         A −1 =         ⋅ (A ')
                  det A                                                      de ordem 2 e aij=j-J2, o determinante da matriz A
      A’ é a matriz dos cofatores dos elementos de                           é:
A.                                                                           a) 0                         d) 3
                                                                             b) 1                         e) 4
      Existe A-1 se, e somente se, detA ≠ 0.                                 c) 2
8. REGRA DE CHIÓ
                                                                                                                   x   -x
        Seja A uma matriz quadrada de ordem n ≥ 2.                       2   A solução da equação                           =0
 A regra de Chió consiste em:                                                                                      -2 x
        1o ) Sendo a11 = 1, eliminar a primeira linha e                      a) S = {−2, −0}
 a primeira coluna de A;                                                     b) S = {0, 2}
       2o ) de cada elemento que sobra em A, subtrair
                                                                             c) S= {2}
o produto dos elementos que se situam nas extremi-
dades das perpendiculares à primeira linha e à pri-                          d) S= {0}
meira coluna de A, traçadas a partir do elemento                             e) S = {−2, 2}
considerado.
9. DETERMINANTE DE VANDERMONDE
                                                                                            2     1        3
      Seja a matriz quadrada A de ordem n, n ≥ 2,                        3   Sendo A = 1 -1
                                                                                       
                                                                                                             
                                                                                                            2 ,   então det A é:
definida por:                                                                                -2   1       -1
                                                                                                            
                        1     1     1      ...1                            a) 8                                           d) 10
                                                                           b) –8                                          e) –10
                        a1    a2    a3    ...an 
                     M= 2            2
                                     a3    ...an 
                                                2                            c) 0
                        a1    a2
                                2                  
                            …

                                   …

                                       …


                                                …




                                                  
                       a1 −1 an −1 an −1 ...an −1 
                       
                         n
                               2     3         n 
                                                                         4   (VUNESP) Considera as matrizes reais:
          O determinante desse tipo de matriz é igual                                               x2 0                       4   z
          ao produto de todas as diferenças possíveis                                            A=   e B=
                                                                                                                  
                                                                                                   2 y + z y − x
          entre os elementos da linha de expoente u-
                                                                                Se a A=Bt (transposta de B), o determinante da
          nitário, com a condição de que, nas diferen-
                                                                                       x  y −1
          ças, o minuendo tenha índice maior que o
          subtraendo.                                                    matriz M =  z 1
                                                                                    
                                                                                               
                                                                                              1          é igual a:
                                                                                        4 5 2
         det(M) = (a 2 − a1 )(a3 − a 2 )(a3 − a1 )...(an − an −1 )                            
                                                                             a) –1                                          d) 2
                                                                             b) 0                                           e) 3
                                                                             c) 1




Editora Exato                                                        6
5   (UFPA) O valor de um determinante é 12. Se di-                      e) 27x=y
    vidirmos a 1.ª linha por 6 e multiplicarmos a 3.ª
    coluna por 4, o novo determinante valerá:
                                                                                        1 2 1     0
    a) 8                        d) 36
                                                                                        1 1 −2    1
    b) 18                       e) 48                               11 (MACK-SP) Se                   =0, então o valor de
    c) 24                                                                               1 −1 2 −1
                                                                                        1 3 3 x
                                                                        x é:
                                                   1    0
                                                                        a) 0
6   (UFSC) Considera as matrizes                   −1 − 1 e
                                                A=                    b) 1
                                                   1 1
                                                                      c) –1
      0 1 2                                                           d) –0,6
    B=            e n=det(AB). Calcule 7n.
      3 4 5                                                           e) 0,6


7   Calcule o valor do determinante                                                               x    0   0
                           2 2 4 5                                  12 (CEFET) Dada a matriz = 0 0 x  e a função
                                                                                                     
                           1 0 3 1                                                                x
                                                                                                       x   x 
                                                                                                              
                           0 4 1 2                                      real definida por f(x)=det(2A), podemos afirmar
                           1 0 −1 1                                     que f(-1) é igual a:
      a) 16                            d) –32                           a) –2
      b) –16                           e) 64                            b) –1
      c) 32                                                             c) 8
                                                                        d) 2
                                                                        e) –8
8   (UFRN)          O       determinante        da     matriz
        1      7 281 
                                                                                     GABARITO
    A = 0      2 200    é igual a:
        0      0 3 
                     
                                                                    1   D
    a) 6
    b) 72                                                           2   B
    c) 81                                                           3   B
    d) 161
    e) 200                                                          4   B
                                                                    5   A
9   (UFSCar-SP) Sejam:                                              6   01
         1 1        0 3            1     0   0    0
                                                                7   C
           0 −2      1 −2             −1 − 2   0    0
       A=                     e   B=
         0 0        1  0           2     1   1    0             8   A
         
         0 0                                       
                    0 3 
                                      −3 5
                                               4    3
                                                                   9   D
    Então, det (A.B) é igual a:
    a) –36                                                          10 D
    b) 12                                                           11 D
    c) 6
    d) 36                                                           12 C
    e) –6

10 (UFBA) Sendo
             12 18 9           12      18   9
       x = 21 17 15       e y = 63 51 45        , então:
           32 60 14             32     60 14
    a) x=y
    b) x=3y
    c) x=27y
    d) 3x=y
Editora Exato                                                   7

Mais conteúdo relacionado

Mais procurados

Apostila nivelamento 1
Apostila nivelamento 1Apostila nivelamento 1
Apostila nivelamento 1smpgiacobbo
 
Plano de Aula Duncan PO1 CAP 2
Plano de Aula Duncan PO1 CAP 2Plano de Aula Duncan PO1 CAP 2
Plano de Aula Duncan PO1 CAP 2luisadr
 
Matemática básica radiciação equações
Matemática básica radiciação equaçõesMatemática básica radiciação equações
Matemática básica radiciação equaçõesAlessandro Lisboa
 
2 0 cap 002
2 0 cap 0022 0 cap 002
2 0 cap 002luisadr
 
Lista de exercícios 7 - Mat Elem
Lista de exercícios 7 - Mat ElemLista de exercícios 7 - Mat Elem
Lista de exercícios 7 - Mat ElemCarlos Campani
 
Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).Julia Maldonado Garcia
 
Apostila matematica ens medio 000
Apostila matematica ens medio 000Apostila matematica ens medio 000
Apostila matematica ens medio 000resolvidos
 

Mais procurados (15)

Determinantes
Determinantes Determinantes
Determinantes
 
Apostila nivelamento 1
Apostila nivelamento 1Apostila nivelamento 1
Apostila nivelamento 1
 
Mat76a
Mat76aMat76a
Mat76a
 
Raiz quadrada
Raiz quadradaRaiz quadrada
Raiz quadrada
 
Sistemas equacoes lineares
Sistemas equacoes linearesSistemas equacoes lineares
Sistemas equacoes lineares
 
Plano de Aula Duncan PO1 CAP 2
Plano de Aula Duncan PO1 CAP 2Plano de Aula Duncan PO1 CAP 2
Plano de Aula Duncan PO1 CAP 2
 
Apostila álgebra linear
Apostila   álgebra linearApostila   álgebra linear
Apostila álgebra linear
 
Matemática básica radiciação equações
Matemática básica radiciação equaçõesMatemática básica radiciação equações
Matemática básica radiciação equações
 
Potencias
PotenciasPotencias
Potencias
 
Lista matrizes 2_ano_2012_pdf
Lista matrizes 2_ano_2012_pdfLista matrizes 2_ano_2012_pdf
Lista matrizes 2_ano_2012_pdf
 
2 0 cap 002
2 0 cap 0022 0 cap 002
2 0 cap 002
 
Determinantes 2º ano
Determinantes 2º anoDeterminantes 2º ano
Determinantes 2º ano
 
Lista de exercícios 7 - Mat Elem
Lista de exercícios 7 - Mat ElemLista de exercícios 7 - Mat Elem
Lista de exercícios 7 - Mat Elem
 
Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).
 
Apostila matematica ens medio 000
Apostila matematica ens medio 000Apostila matematica ens medio 000
Apostila matematica ens medio 000
 

Semelhante a 02 determinantes

Apostila De Algebra Linear
Apostila De Algebra LinearApostila De Algebra Linear
Apostila De Algebra LinearJackeline Costa
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]Antonio Carneiro
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]guest202a61
 
Mat matrizes determinantes 001
Mat matrizes determinantes  001Mat matrizes determinantes  001
Mat matrizes determinantes 001trigono_metrico
 
www.aulasapoio.com - Matemática - Determinantes
www.aulasapoio.com  - Matemática -  Determinanteswww.aulasapoio.com  - Matemática -  Determinantes
www.aulasapoio.com - Matemática - DeterminantesAulas Apoio
 
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes
www.AulasDeMatematicaApoio.com.br - Matemática - DeterminantesBeatriz Góes
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - DeterminantesClarice Leclaire
 
www.professoraparticularapoio.com.br -Matemática - Determinantes
www.professoraparticularapoio.com.br -Matemática -  Determinanteswww.professoraparticularapoio.com.br -Matemática -  Determinantes
www.professoraparticularapoio.com.br -Matemática - DeterminantesPatrícia Morais
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes resIsabella Silva
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes resIsabella Silva
 

Semelhante a 02 determinantes (20)

Matrizes 2014
Matrizes 2014Matrizes 2014
Matrizes 2014
 
Apostila De Algebra Linear
Apostila De Algebra LinearApostila De Algebra Linear
Apostila De Algebra Linear
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Matrizes e determinantes
Matrizes e determinantesMatrizes e determinantes
Matrizes e determinantes
 
Objeto
ObjetoObjeto
Objeto
 
Objeto de aprendizagem
Objeto de aprendizagemObjeto de aprendizagem
Objeto de aprendizagem
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]
 
MatemáTica Matrizes [TaíS Andrade]
MatemáTica   Matrizes [TaíS Andrade]MatemáTica   Matrizes [TaíS Andrade]
MatemáTica Matrizes [TaíS Andrade]
 
Matrizes
MatrizesMatrizes
Matrizes
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Mat matrizes determinantes 001
Mat matrizes determinantes  001Mat matrizes determinantes  001
Mat matrizes determinantes 001
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Radiciaçâo
 
Aula 03 determinantes
Aula 03   determinantesAula 03   determinantes
Aula 03 determinantes
 
www.aulasapoio.com - Matemática - Determinantes
www.aulasapoio.com  - Matemática -  Determinanteswww.aulasapoio.com  - Matemática -  Determinantes
www.aulasapoio.com - Matemática - Determinantes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 
www.professoraparticularapoio.com.br -Matemática - Determinantes
www.professoraparticularapoio.com.br -Matemática -  Determinanteswww.professoraparticularapoio.com.br -Matemática -  Determinantes
www.professoraparticularapoio.com.br -Matemática - Determinantes
 
82111_recordar_algebra_funcoes_9.pdf
82111_recordar_algebra_funcoes_9.pdf82111_recordar_algebra_funcoes_9.pdf
82111_recordar_algebra_funcoes_9.pdf
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
 

02 determinantes

  • 1. MATEMÁTICA DETERMINANTES 1. INTRODUÇÃO 5. REGRA DE SARRUS Determinante é um número real que se associa 1o ) Repetem-se as duas primeiras colunas à di- a uma matriz quadrada. reita do determinante. 2o ) Multiplicam-se: Determinante de uma matriz A de ordem 1. os elementos da diagonal principal e os e- det A = |a11| = a11 lementos de cada paralela a essa diagonal, Determinante de uma matriz A de ordem 2. conservando o sinal de cada produto obtido; a11 a12 os elementos da diagonal secundária e os det A = = a11 ⋅ a 22 − a12 ⋅ a 21 a 21 a 22 elementos de cada paralela a essa diagonal, invertendo o sinal de cada produto obtido. 2. MENOR COMPLEMENTAR DETERMI- NANTE DA MATRIZ REDUZIDA −a 31 . a 22 . a13 Chama-se menor complementar Dij relativo a −a 32 . a 23 . a11 um elemento aij da matriz A, de ordem n, o determi- −a 33 . a 21 . a12 nante da matriz de ordem n − 1 , que se obtém a partir a11 a12 a13 a11 a12 de A, suprimindo sua linha de ordem i e sua coluna a 21 a 22 a 23 a 21 a 22 de ordem j. a 31 a 32 a 33 a 31 a 32 Exemplo: a13 . a 21 . a 32 2 − 1 3 a12 . a 23 . a 31   Sendo A = 0 1 4 , temos:  5 − 2 1 a11 . a 22 . a 33   0 4 3o) e somam-se os resultados obtidos no 2o. a) D11 = 1 4 =9 b) D12 = = −20 −2 1 5 1 passo, ou seja: det A = a11a22a33 + a12a23a31 + a13a21a32 - 3. COFATOR a31a22a13 -a32a23a11 - a33a21a12 Chama-se cofator do elemento aij, e se indica 6. PROPRIEDADES DOS DETERMINANTES por Aij o seguinte número: Matriz com fila nula: o determinante dessa A ij = (− 1) i + j⋅ Dij matriz é nulo. Exemplo: Matriz triangular: o determinante é igual ao produto dos elementos da sua diagonal O cofator do elemento a21 da matriz principal.  2 1 1   1 1 Multiplicação de uma fila por um número k A = 3 5 4 é: A 21 = ( −1)2 +1 = ( −1)3 (1 ⋅ 3) = −3. real: O determinante da nova matriz é igual 6 0 3 0 3   ao anterior, multiplicado pelo número k. Troca de filas paralelas: o determinante da 4. TEOREMA DE LAPLACE nova matriz é o anterior com sinal trocado. O determinante de uma matriz quadrada de or- Filas paralelas iguais: o determinante é nu- dem n, n ≥ 2, é igual à soma dos produtos dos ele- lo. mentos de uma fila qualquer pelos respectivos Filas paralelas proporcionais: o determinan- cofatores. te é nulo. Exemplo: Matriz transposta: o determinante de uma a) tomando como referência a 1a linha, de uma matriz A é igual ao determinante de sua matriz de ordem 3, temos: transposta At. det A = a11 . A11 + a12 . A12 + a13 . A13 Decomposição de uma fila: se cada elemen- b) tomando como referência a 2a coluna, de uma to de uma das filas de um determinante é matriz de ordem 3, temos: uma soma de duas parcelas, então esse de- det A = a12 . A12 + a22 . A22 + a32 . A32 terminante é a soma de dois outros deter- minantes, que se obtêm substituindo essa fila pelas primeiras e pelas segundas parce- Editora Exato 5
  • 2. las, respectivamente, e conservando inalte- EXERCÍCIOS RESOLVIDOS radas as demais filas. Teorema de Cauchy: em toda matriz qua-  3 5 drada de ordem n ≥ 2, a soma dos produtos 1 Calcule o determinante da matriz A =  :  -2 -1 dos elementos de uma fila pelos cofatores Resolução: dos correspondentes elementos de uma fila paralela é zero. Teorema de Jacobi: se a uma das filas de uma matriz quadrada A de ordem n ≥ 2 adi- 3 ( ) 5 A -2 -1 cionarmos um múltiplo de outra fila parale- la, obteremos uma matriz B tal que det B = 3. ( −1)  − ( −2) .5 =     det A. [ −3] − [ −10] = Teorema de Binet: se A e B são duas matri- −3 + 10 = 7 zes quadradas de ordem n, então det(A . B) = det A . det B. 7. CÁLCULO DA MATRIZ INVERSA EXERCÍCIOS 1 t 1 (MACK-SP) Sendo A=(aij) uma matriz quadrada A −1 = ⋅ (A ') det A de ordem 2 e aij=j-J2, o determinante da matriz A A’ é a matriz dos cofatores dos elementos de é: A. a) 0 d) 3 b) 1 e) 4 Existe A-1 se, e somente se, detA ≠ 0. c) 2 8. REGRA DE CHIÓ x -x Seja A uma matriz quadrada de ordem n ≥ 2. 2 A solução da equação =0 A regra de Chió consiste em: -2 x 1o ) Sendo a11 = 1, eliminar a primeira linha e a) S = {−2, −0} a primeira coluna de A; b) S = {0, 2} 2o ) de cada elemento que sobra em A, subtrair c) S= {2} o produto dos elementos que se situam nas extremi- dades das perpendiculares à primeira linha e à pri- d) S= {0} meira coluna de A, traçadas a partir do elemento e) S = {−2, 2} considerado. 9. DETERMINANTE DE VANDERMONDE 2 1 3 Seja a matriz quadrada A de ordem n, n ≥ 2, 3 Sendo A = 1 -1   2 , então det A é: definida por:  -2 1 -1    1 1 1 ...1  a) 8 d) 10   b) –8 e) –10  a1 a2 a3 ...an  M= 2 2 a3 ...an  2 c) 0  a1 a2 2  … … … …   a1 −1 an −1 an −1 ...an −1   n 2 3 n  4 (VUNESP) Considera as matrizes reais: O determinante desse tipo de matriz é igual  x2 0  4 z ao produto de todas as diferenças possíveis A= e B=   2 y + z y − x entre os elementos da linha de expoente u- Se a A=Bt (transposta de B), o determinante da nitário, com a condição de que, nas diferen- x y −1 ças, o minuendo tenha índice maior que o subtraendo. matriz M =  z 1   1 é igual a:  4 5 2 det(M) = (a 2 − a1 )(a3 − a 2 )(a3 − a1 )...(an − an −1 )   a) –1 d) 2 b) 0 e) 3 c) 1 Editora Exato 6
  • 3. 5 (UFPA) O valor de um determinante é 12. Se di- e) 27x=y vidirmos a 1.ª linha por 6 e multiplicarmos a 3.ª coluna por 4, o novo determinante valerá: 1 2 1 0 a) 8 d) 36 1 1 −2 1 b) 18 e) 48 11 (MACK-SP) Se =0, então o valor de c) 24 1 −1 2 −1 1 3 3 x x é:  1 0 a) 0 6 (UFSC) Considera as matrizes  −1 − 1 e A=  b) 1  1 1   c) –1 0 1 2  d) –0,6 B=  e n=det(AB). Calcule 7n. 3 4 5  e) 0,6 7 Calcule o valor do determinante x 0 0 2 2 4 5 12 (CEFET) Dada a matriz = 0 0 x  e a função   1 0 3 1 x  x x   0 4 1 2 real definida por f(x)=det(2A), podemos afirmar 1 0 −1 1 que f(-1) é igual a: a) 16 d) –32 a) –2 b) –16 e) 64 b) –1 c) 32 c) 8 d) 2 e) –8 8 (UFRN) O determinante da matriz 1 7 281    GABARITO A = 0 2 200  é igual a: 0 0 3    1 D a) 6 b) 72 2 B c) 81 3 B d) 161 e) 200 4 B 5 A 9 (UFSCar-SP) Sejam: 6 01 1 1 0 3 1 0 0 0     7 C 0 −2 1 −2  −1 − 2 0 0 A= e B= 0 0 1 0 2 1 1 0 8 A  0 0     0 3   −3 5  4 3  9 D Então, det (A.B) é igual a: a) –36 10 D b) 12 11 D c) 6 d) 36 12 C e) –6 10 (UFBA) Sendo 12 18 9 12 18 9 x = 21 17 15 e y = 63 51 45 , então: 32 60 14 32 60 14 a) x=y b) x=3y c) x=27y d) 3x=y Editora Exato 7